ESTTA Tracking number:

ESTTA328253 01/22/2010

Filing date:

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Notice of Opposition

BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD

Notice is hereby given that the following party opposes registration of the indicated application.

Opposer Information

Name	Miller Waste Mills, Inc. d/b/a RTP Company
Granted to Date of previous extension	01/23/2010
Address	580 East Front Street Winona, MN 55987-0439 UNITED STATES

Correspondence	Margaret M. Duncan, Esq.
information	Attorney for Applicant
	McDermott Will & Emery LLP
	227 W. Monroe Street Suite 4400
	Chicago, IL 60606-5096
	UNITED STATES
	chicago_ip_docket@mwe.com, mduncan@mwe.com, ryoon@mwe.com
	Phone:312-372-2000

Applicant Information

Application No	77645151	Publication date	11/24/2009
Opposition Filing Date	01/22/2010	Opposition Period Ends	01/23/2010
Applicant	Perfection Mighty Industrial C No. 20, Lane 256, Hai Wei Ro Taichung Hsien, TAIWAN		

Goods/Services Affected by Opposition

Class 017.

Opposed goods and services in the class: Packing materials of rubber and plastics for forming seals; Insulating adhesive tapes for industrial or commercial packing use; Mica; Mica powder for use in the manufacture of electronic instruments; Rubber, namely, natural rubber; Injecting plastic for use in manufacture; Processed plastic powder for use in manufacturing; Processed plastic granules for use in manufacturing; Synthetic rubbers; Adhesive-coated plastic sheets; Non-metal pipe connectors and pipe caps

Grounds for Opposition

Priority and likelihood of confusion	Trademark Act section 2(d)
--------------------------------------	----------------------------

Mark Cited by Opposer as Basis for Opposition

l No	U.S. Registration	1361268	Application Date	12/07/1984
140.	No.			

Registration Date	09/24/1985	Foreign Priority Date	NONE			
Word Mark	RTP CO.					
Design Mark		77	Co.			
Description of Mark	NONE					
Goods/Services	Class 001. First use: First Us	e: 1983/11/18 First l	Jse In Commerce: 1983/11/18			
	PRE-COLORED RESINS AN FOR GENERAL INDUSTRIA		PLASTICS IN PELLET FORM			
	Class 037. First use: First Use: 1983/11/18 First Use In Commerce: 1983/11/18					
	CUSTOM MANUFACTURING PLASTICS FOR OTHERS	G, COLORING AND	REPROCESSING OF			
	Class 042. First use: First Us [DISTRIBUTORSHIP AND]		Jse In Commerce: 1983/11/18 FHE FIELD OF PLASTICS			

Attachments	73512563#TMSN.gif (1 page)(bytes) rtpu opposition.pdf (5 pages)(16822 bytes)
	rtpu exhibits.pdf (20 pages)(4301430 bytes)

Certificate of Service

The undersigned hereby certifies that a copy of this paper has been served upon all parties, at their address record by First Class Mail on this date.

Signature	/Margaret M. Duncan/
Name	Margaret M. Duncan
Date	01/22/2010

UNITED STATES PATENT AND TRADEMARK OFFICE TRADEMARK TRIAL AND APPEAL BOARD

IN THE MATTER	OF APPLICATION)	
Mark:	R-TPU)	
Applicant:	Perfection Mighty)	
	Industrial Co., Ltd.)	Opposition No.
Serial No.:	77/645,151)	
Filed:	January 7, 2009)	
Published in the)	
Official Gazette:	November 24, 2009)	

NOTICE OF OPPOSITION

Miller Waste Mills, Inc. d/b/a RTP Company, a Minnesota corporation with a principal place of business at 580 East Front Street, P.O. Box 5439, Winona, Minnesota 55987 ("Opposer"), believes that it will be damaged by the registration of the mark R-TPU in U.S. trademark application Serial No. 77/645,151 filed by Perfection Mighty Industrial Co., Ltd. ("Applicant") and hereby opposes registration of the mark in International Class 17. The grounds for opposition are as follows:

- 1. Opposer is a world leader in the manufacture of custom-engineered plastics, producing thousands of plastic compounds each year for a variety of markets, including electronics, business machine, automotive, appliance, consumer, medical, sports and leisure, industrial and others.
- 2. Since at least as early as 1983, Opposer has been using the mark RTP for plastic compounds and their custom manufacture, coloring and reprocessing, and, as such, the RTP trademark is distinctive as applied to Opposer's goods and services. Opposer has also been using the mark RTP as a trade name for Opposer's business since at least 1983. Examples of use of the RTP trademark and trade name are attached hereto as Exhibit A.)

- 3. Opposer also owns a U.S. trademark registration for the mark RTP CO. and Design, Registration No. 1,361,268, which issued on September 24, 1985 from an application filed on September December 7, 1984. The mark is registered for use in connection with "precolored resins and compounded plastics in pellet form for general industrial use" in International Class 1, "custom manufacturing, coloring and reprocessing of plastics for others" in International Class 37, and "engineering in the field of plastics" in International Class 42. The date of first use in interstate commerce of the RTP CO. and Design trademark was November 18, 1983. The combined affidavit and renewal application for the registration was accepted on January 3, 2006. A current printout of the registration record from the USPTO TARR System, which shows the current status and title of the registration, is attached hereto as Exhibit B.
- 4. Opposer's trademark registration for the mark RTP CO. and Design is incontestible under Section 15 of the Lanham Act, 15 U.S.C. § 1065. Consequently, this registration is conclusive evidence of the validity of the registered mark, Opposer's ownership of the mark, and Opposer's exclusive right to use the registered mark in commerce under Section 33 of the Lanham Act, 15 U.S.C. § 1115.
- 5. Notwithstanding Opposer's prior use of and rights in the RTP and RTP CO. and Design trademarks for use in connection with plastics, on January 7, 2009, Applicant filed an intent-to-use based application, now U.S. Application Serial No. 77/645,151, for registration of the R-TPU mark for use in connection with, *inter alia*, "injecting plastic for use in manufacture; processed plastic powder for use in manufacturing; processed plastic granules for use in manufacturing" and "adhesive-coated plastic sheets" in International Class 17.
- 6. Applicant's mark published for opposition on November 24, 2009. Opposer filed and the Board approved an extension of time to oppose Applicant's mark until January 23, 2010.

- 7. Opposer has expended substantial sums and resources to advertise and promote its products and services under the RTP and RTP CO. and Design trademarks throughout the United States for over twenty-six years. Opposer has also made substantial sales under these marks. As a result, Opposer has developed substantial goodwill in the RTP and RTP CO. and Design trademarks. The marks have come to be recognized as identifying Opposer and the source and high quality of Opposer's goods and services throughout the United States.
- 8. Opposer has priority with respect to the RTP and RTP CO. and Design trademarks. Opposer began use of the marks at least as early as 1983, twenty-six years prior to Applicant's filing date of its application. Opposer also owns U.S. Registration No. 1,361,268 that registered twenty-four years before the filing date of Applicant's application.
- 9. Applicant's R-TPU mark is confusingly and deceptively similar to Opposer's previously used RTP trademark and trade name and duly registered RTP CO. and Design trademark. Specifically, Applicant's R-TPU mark is substantially similar in sight, sound and commercial impression to Opposer's marks.
- 10. Upon information and belief, Applicant intends to use the R-TPU mark in connection with identical goods as Opposer's goods.
- 11. Upon information and belief, Applicant intends to sell its goods bearing the R-TPU mark to the same customers as Opposer's goods.
- 12. Due to the similarity between Applicant's claimed mark, R-TPU, and Opposer's previously used marks and the closely related nature of the goods and services of the respective parties, customers and potential customers are likely to believe that Applicant's goods originate from Opposer, resulting in a likelihood of confusion in the marketplace and damage to Opposer.

8. Consequently, Applicant's registration and intended use of the R-TPU mark will interfere with Opposer's RTP and RTP CO. and Design trademarks and will seriously damage Opposer and its goodwill and reputation.

WHEREFORE, Opposer respectfully requests that this Notice of Opposition be sustained and that the registration sought by Applicant be denied.

This Notice of Opposition is being submitted electronically. Please charge our Deposit Account No.: 13-0206 for any fees that may be required.

Respectfully submitted,

Date: January 22, 2010 MILLER WASTE MILLS, INC. D/B/A RTP COMPANY

By: /s/ Margaret M. Duncan
Margaret M. Duncan
Rita J. Yoon
McDERMOTT WILL & EMERY LLP
227 West Monroe Street
Chicago, Illinois 60606
312.372.2000 (telephone)
312.984.7700 (facsimile)
Chicago_IP_Docket@mwe.com

Attorneys for Opposer

CERTIFICATE OF SERVICE

I hereby certify that a true and correct copy of the foregoing **NOTICE OF OPPOSITION** was served on January 22, 2010, by first class mail, postage prepaid, to the following attorney of record for Applicant:

C. David Pai Pai Patent & Trademark Law Firm 1001 4th Ave Ste 3200 Seattle, WA 98154-1003

/s/ Margaret M. Duncan
Margaret M. Duncan

CHI99 5208241-1.014908.0096

EXHIBIT A

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

WWW.RTPCOMPANY.COM

RTP COMPANY

CONTACTS

PRODUCTS

TECH INFO

NEWS

SUPPORT

ABOUT

RTP COMPANY SPECIALTY COMPOUNDS

Specialty compounding is an exacting, yet creative, science. RTP Company enhances these and other resin systems with a wide range of <u>additives and reinforcements</u>. The result is a unique material that meets your design criteria for performance and appearance.

- Select an RTP Series number in the first column to view a selection of data sheets.
- Select a polymer name in the second column to view a description of its characteristics.

Performance Improvements

RTP Series	Base Polymer		Structural	Conductive	Flame Retardant	Wear Resistant	Color
<u>100</u>	Polypropylene	(PP)	~	~	V	~	V
200	Nylon 6/6	(PA 6/6)	V	V	V	V	~
<u>200 A</u>	Nylon 6	(PA 6)	V	V	~	V	V
<u>200 B</u>	Nylon 6/10	(PA 6/10)	V	~	V	~	V
<u>200 C</u>	Nylon 11	(PA 11)	V	V	V	V	V
200 D	Nylon 6/12	(PA 6/12)	~	V	V	V	V
200 E	Amorphous Nylon	(PA)	V	V	V	V	~
<u>200 F</u>	Nylon 12	(PA 12)	~	V	V	V	V
<u>200 H</u>	Impact-Modified Nylon 6/6	(PA 6/6)	~	V	~	V	V
<u>200 K</u>	<u>Polyarylamide</u>	(PARA)	~	V	~	V	~
300	Polycarbonate	(PC)	V	V	V	V	V
<u>400</u>	Polystyrene	(PS)	V	V	V	V	V
<u>500</u>	Styrene Acrylonitrile	(SAN)	V	V	V	V	V
<u>600</u>	Acrylonitrile Butadiene Styrene	(ABS)	1	V	V	V	V
<u>700</u>	High Density Polyethylene	(HDPE)	~	V	V	V	V
<u>700 A</u>	Low Density Polyethylene	(LDPE)	V	V	V	V	V

800	Acetal	(POM)			V		
900	Polysulfone	(PSU)				./	
1000	Polybutylene Terephthalate	(PBT)	~	~	~	~	~
<u>1100</u>	Polyethylene Terephthalate	(PET)	~	6	6	V	V
1200 S	Ester-based Thermoplastic Polyurethane Elastomer	(TPUR)	V	~	V	V	~
1200 T	Ether-based Thermoplastic Polyurethane Elastomer	(TPUR)	V	V	~	V	~
1300	Polyphenylene Sulfide	(PPS)	V	V	~	V	V
1400	Polyethersulfone	(PES)	V	V	V	V	V
1500	Polyether-Ester Block Copolymer Thermoplastic Elastomer	(TEEE)	~	~	~	V	~
1700	Modified Polyphenylene Oxide	(PPO)	V	V	V	V	V
1800	Acrylic	(PMMA)	V	V	V	V	V
1800 A	Polycarbonate/Acrylic Alloy	(PC/PMMA)	V	V	V	V	V
2000	Custom Alloys		V	V	V	V	V
2100	Polyetherimide	(PEI)	V	V	V	V	V
2200	Polyetheretherketone	(PEEK)	V	V	V	V	V
2200 A	Polyetherketone	(PEK)	V	V	V	V	V
2300	Rigid Thermoplastic Polyurethane	(RTPU)	V	V	V	V	V
2500	Polycarbonate/ABS Alloy	(PC/ABS)	V	V	V	V	V
2700	Styrenic Block Copolymer Thermoplastic Elastomer	(TES)	~	V	~	~	~
2800	Thermoplastic Polyolefin Elastomer	(TEO)	V	V	V	V	V
2900	Polyether-Block-Amide Thermoplastic Elastomer	(PEBA)	~	~	~	V	~
3000	Polymethylpentene	(PMP)	V	X	~	V	V
3100	Perfluoroalkoxy	(PFA)	V	V	V	×	V
3200	Ethylene Tetrafluoroethylene	(ETFE)	V	~	V	x	V
3300	Polyvinylidene Fluoride	(PVDF)	V	~	V	X	V
3400	Liquid Crystal Polymer	(LCP)	V	V	V	V	~
3500	Fluorinated Ethylene Propylene	(FEP)	,	~	~	¥	~
0000	Tabiliated Englished Topylene	(1 -1)				-	

3900	Polyetherketoneetherketoneketone	(PEKEKK)	V	V	V	×	~
4000	<u>Polyphthalamide</u>	(PPA)	V	V	V	V	V
4000 A	Hot Water Moldable Polyphthalamide	(PPA)	~	V	~	V	V
<u>4100</u>	Polyetherketoneketone	(PEKK)	V	V	V	V	V
4200	Thermoplastic Polyimide	(TPI)	~	V	V	V	X
<u>4300</u>	Polysulfone/Polycarbonate Alloy	(PSU/PC)	~	V	~	V	V
4400	High Temperature Nylon	(HTN)	~	V	~	V	V
4600	Syndiotactic Polystyrene	(SPS)	~	V	~	V	V
<u>4700</u>	Polytrimethylene Terephthalate	(PTT)	~	V	V	V	V
6000	Specialty Thermoplastic Elastomer	(TPE)					V
RTP Series	Base Polymer		Structural	Conductive	Flame Retardant	Wear Resistant	Color

Performance Improvements

Corporate Headquarters:

U.S. toll-free 1-800-433-4787 • Voice (507) 454-6900 • Fax (507) 454-2041 RTP Company • 580 East Front Street • Winona, MN, 55987, USA Internet www.rtpcompany.com • E-mail rtp@rtpcompany.com © 1995-2009 RTP Company • Warranty_bisclaimer

VLF 80109 CC

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

WWW.RTPCOMPANY.COM

RTP COMPANY

CONTACTS

PRODUCTS

TECH INFO

NEWS

SUPPORT

ABOUT

STANDARD POLYPROPYLENE (PP) COMPOUNDS

Select a product number from the table below to view a product data sheet for these materials using polypropylene as the base resin.

- 199X numbered products are our proprietary formulations. Data sheets for these products are generally not available on our website. However, they are <u>available upon request</u>.
- Our <u>nomenclature guide</u> explains RTP Company's product numbering system.
- <u>Definitions</u> for physical properties that appear on data sheets.
- To obtain samples for evaluation or volume pricing information use our <u>People Finder</u> feature to locate a sales representative that serves your geographic area or market segment.

View polypropylene data sheets by product group:

[All | Conductive | Flame Retardant | Structural | Wear Resistant]

Product	Description
RTP 100	Unreinforced Base Resin (Precolor Only)
RTP 101	Glass Fiber 10%
RTP 102	Glass Fiber 15%
RTP 103	Glass Fiber 20%
RTP 105	Glass Fiber 30%
RTP 107	Glass Fiber 40%
RTP 109	Glass Fiber 50%
Search by mechanical	properties • Side-by-side material comparisons • Visit data.rtpcompany.com
RTP 199 X 118048 (20%)	60% Long Glass Fiber Concentrate - Let down to 20%
RTP 199 X 118048 (30%)	60% Long Glass Fiber Concentrate - Let down to 30%
RTP 199 X 118048 (40%)	60% Long Glass Fiber Concentrate - Let down to 40%
VLF 80105 CC	Long Glass Fiber 30% - Chemically Coupled
VLF 80107 CC	Long Glass Fiber 40% - Chemically Coupled

Long Glass Fiber 50% - Chemically Coupled

Product	Description
VLF 80111 CC	Long Glass Fiber 60% - Chemically Coupled
RTP 100 AR 15	Aramid Fiber 15%
RTP 101 CC	Glass Fiber 10% - Chemically Coupled
RTP 102 CC	Glass Fiber 15% - Chemically Coupled
RTP 103 CC	Glass Fiber 20% - Chemically Coupled
RTP 105 CC	Glass Fiber 30% - Chemically Coupled
RTP 107 CC	Glass Fiber 40% - Chemically Coupled
RTP 109 CC	Glass Fiber 50% - Chemically Coupled
RTP 101 CC FR	Glass Fiber 10% - Chemically Coupled - Flame Retardant - UL94 V-0
RTP 105 CC FR	Glass Fiber 30% - Chemically Coupled - Flame Retardant - UL94 V-0
RTP 105 CC FR UV	Glass Fiber 30% - Chemically Coupled - Flame Retardant - UV Stabilized
RTP 103 CC HB	Glass Fiber 20% - Chemically Coupled - UL94 HB
RTP 105 CC HB	Glass Fiber 30% - Chemically Coupled - UL94 HB
RTP 107 CC HB	Glass Fiber 40% - Chemically Coupled - UL94 HB
RTP 101 CC HI	Glass Fiber 10% - Chemically Coupled - High Impact
RTP 102 CC HI	Glass Fiber 15% - Chemically Coupled - High Impact
RTP 103 CC HI	Glass Fiber 20% - Chemically Coupled - High Impact
RTP 105 CC HI	Glass Fiber 30% - Chemically Coupled - High Impact
RTP 107 CC HI	Glass Fiber 40% - Chemically Coupled - High Impact
RTP 101 CC HI FR	Glass Fiber 10% - Chemically Coupled - High Impact - Flame Retardant - UL94
RTP 103 CC HI HB	Glass Fiber 20% - Chemically Coupled - High Impact - UL94 HB
RTP 105 CC TFE 15	Glass Fiber 30% - Chemically Coupled - PTFE 15%
RTP 100 FR	Flame Retardant - UL94 V-0
RTP 101 FR	Glass Fiber 10% - Flame Retardant - UL94 V-0
RTP 102 FR	Glass Fiber 15% - Flame Retardant
RTP 103 FR	Glass Fiber 20% - Flame Retardant - UL94 V-0
RTP 100 FR HF	Flame Retardant - High Flow - UL94 V-0
RTP 100 FR LF	Flame Retardant - Low Flow - UL94 V-0
RTP 100 GB 10	Glass Bead 10%

Product	Description
RTP 100 GB 20	Glass Bead 20%
RTP 100 GB 30	Glass Bead 30%
RTP 100 GB 40	Glass Bead 40%
RTP 101 HB	Glass Fiber 10% - UL94 HB
RTP 102 HB	Glass Fiber 15% - UL94 HB
RTP 103 HB	Glass Fiber 20% - UL94 HB
RTP 104 HB	Glass Fiber 25% - UL94 HB
RTP 105 HB	Glass Fiber 30% - UL94 HB
RTP 106 HB	Glass Fiber 35% - UL94 HB
RTP 107 HB	Glass Fiber 40% - UL94 HB
RTP 100 HF UV	High Flow - UV Stabilized
RTP 100 HI	High Impact
RTP 100 SI 2	Silicone 2%
RTP 100 TFE 15	PTFE 15%
RTP 100 TFE 20	PTFE 20%
RTP 105 TFE 15	Glass Fiber 30% - PTFE 15%
RTP 103 White	Glass Fiber 20% - NSF
RTP 103 Z	Glass Fiber 20% - FDA Compliant Ingredients
Search by mechanical	properties • Side-by-side material comparisons • Visit data.rtpcompany.com
RTP 131	Talc 10%
RTP 128	Talc 20%
RTP 132	Talc 30%
RTP 127	Talc 40%
RTP 128 FR	Talc 20% - Flame Retardant
RTP 127 HB	Talc 40% - UL94 HB
RTP 127 HF	Talc 40% - High Flow
RTP 131 HI	Talc 10% - High Impact
RTP 128 HI	Talc 20% - High Impact
RTP 132 HI	Talc 30% - High Impact

Product	Description
RTP 127 HI	Talc 40% - High Impact
RTP 132 Z	Talc 30% - FDA Compliant Ingredients
RTP 136	Mineral 40%
RTP 136 HB	Mineral 40% - UL94 HB
RTP 142	Calcium Carbonate 10%
RTP 141	Calcium Carbonate 20%
RTP 143	Calcium Carbonate 30%
RTP 140	Calcium Carbonate 40%
RTP 140 HB	Calcium Carbonate 40% - UL94 HB
RTP 140 HI	Calcium Carbonate 40% - Impact Modified
RTP 141 HI	Calcium Carbonate 20% - Impact Modified
RTP 142 HI	Calcium Carbonate 10% - Impact Modified
RTP 143 HI	Calcium Carbonate 30% - Impact Modified
RTP 149	Mica 25%
RTP 148	Mica 40%
RTP 149 HB	Mica 25% - UL94 HB
RTP 149 HI	Mica 25% - Impact Modified
RTP 148 HI	Mica 40% - Impact Modified
RTP 199 X 86144	High Gravity 2.0
RTP 199 X 85860 B	High Gravity 2.5
RTP 199 X 108940 B	High Gravity 3.0
RTP 199 X 108940 C	High Gravity 4.0
RTP 199 X 108940 D	High Gravity 5.0
RTP 199 X 86144	High Gravity 2.0 - Platable
RTP 199 X 108935	High Gravity 2.5 - Platable
RTP 199 X 108940 B	High Gravity 3.0 - Platable
RTP 199 X 102002	3M™ Scotchlite™ Glass Bubbles
RTP 199 X 89849 B	3M™ Scotchlite™ Glass Bubbles
Search by mechanical	properties • Side-by-side material comparisons • Visit data.rtpcompany.com

Product	Description
RTP 199 X 71878 FR	Flame Retardant / Halogen-Free - UL94 V-0
RTP 150	Flame Retardant - UL94 V-0
RTP 151	Flame Retardant / Halogen Free - UL94 V-0
RTP 152	Flame Retardant - UL94 V-2
RTP 154	Flame Retardant - UL94 V-0
RTP 155	Mineral 20% - Flame Retardant - UL94 V-0
RTP 156	Copolymer - Flame Retardant - UL94 V-0
RTP 150 HF	Flame Retardant - High Flow - UL94 V-0
RTP 151 HF	Flame Retardant / Halogen Free - High Flow
RTP 152 HF	Flame Retardant - High Flow - UL94 V-2
RTP 154 HF	Flame Retardant - High Flow
RTP 156 HF	Copolymer - Flame Retardant - High Flow - UL94 V-0
RTP 152 HI	Flame Retardant - High Impact
RTP 154 HI	Flame Retardant - High Impact
RTP 152 HI HF	Flame Retardant - High Flow - High Impact
RTP 154 HF HI	Flame Retardant - High Flow - High Impact
RTP 150 HI UV	Flame Retardant - High Impact - UV Stabilized
RTP 154 HI UV	Flame Retardant - High Impact - UV Stabilized
RTP 150 LF	Flame Retardant - Low Flow - UL94 V-0
RTP 152 LF	Flame Retardant - Low Flow - UL94 V-2
RTP 154 LF	Flame Retardant - Low Flow
RTP 156 LF	Copolymer - Flame Retardant - Low Flow - UL94 V-1
RTP 152 UV	Flame Retardant - UV Stabilized
RTP 154 UV	Flame Retardant - UV Stabilized
RTP 175	Glass Fiber Reinforced - Glass Bead Reinforced - Chemically Coupled
RTP 175 X HB	Glass Fiber Reinforced - Glass Bead Reinforced - UL94 HB
RTP 178 HB	Glass Fiber Reinforced - Mineral - UL94 HB
RTP 183 HI	Carbon Fiber 20% - Impact Modified
RTP 199 X 104849 A	Thermally Conductive - Electrically Conductive

Product	Description
RTP 199 X 91020 A Z	Thermally Conductive - Electrically Insulative - FDA Compliant Ingredients
Search by mechanical p	roperties • Side-by-side material comparisons • Visit data.rtpcompany.com
PermaStat® 100	Permanently Anti-static/All Polymeric
PermaStat® 100 FR	Permanently Anti-static/All Polymeric - Flame Retardant
PermaStat® 100 HI	Permanently Anti-static/All Polymeric - High Impact
PermaStat® 100 LE	Permanently Anti-static/All Polymeric - Low Extractables
ESD A 100	Static Dissipative - (Standard) Low Flow
ESD A 100 FR	Static Dissipative - Flame Retardant
ESD A 100 HF	Static Dissipative - High Flow
ESD A 100 MF	Static Dissipative - Medium Flow
ESD C 100	Electrically Conductive - (Standard) Low Flow
ESD C 100.5	Electrically Conductive - Glass Fiber 5%
ESD C 101	Electrically Conductive - Glass Fiber 10%
ESD C 102	Electrically Conductive - Glass Fiber 15%
ESD C 103	Electrically Conductive - Glass Fiber 20%
ESD C 105	Electrically Conductive - Glass Fiber 30%
ESD C 100 FR	Electrically Conductive - Flame Retardant
ESD C 101 FR	Electrically Conductive - Glass Fiber 10% - Flame Retardant
ESD C 100 HF	Electrically Conductive - High Flow
ESD C 100 MF	Electrically Conductive - Medium Flow
ESD C 180	Electrically Conductive - Carbon Fiber
EMI 161	EMI/RFI Shielding - Stainless Steel Fiber 10%
EMI 162	EMI/RFI Shielding - Stainless Steel Fiber 15%
<u>EMI 161 Z</u>	EMI/RFI Shielding - Stainless Steel Fiber 10% - FDA Compliant Ingrediants

Additional Data for Select Compounds

Tensile Stress/Strain & Bi-Directional Design Data

Corporate Headquarters:

U.S. toll-free 1-800-433-4787 • Voice (507) 454-6900 • Fax (507) 454-2041 RTP Company • 580 East Front Street • Winona, MN, 55987, USA Internet www.rtpcompany.com • E-mail rtp@rtpcompany.com © 1995-2009 RTP Company • Warranty Disclaimer

Product Data Sheet & General Processing Conditions

RTP 100 Polypropylene (PP) Unfilled

PROPERTIES & AVERAGE VALUES OF INJECTION MOLDED SPECIMENS

DEDMANISHOE	F	CIMANA	ASTM
PERMANENCE	English	SI Metric	TEST
Specific Gravity	0.91	0.91	D 792
Melt Flow Rate			
@ 230 °C, / 2.16 kg	4.00 g/10 min	4.00 g/10 min	D 1238
Molding Shrinkage		NAME AND ASSESSED ASSESSED.	
1/8 in (3.2 mm) section	0.0150 - 0.0200 in/in	1.50 - 2.00 %	D 955
MECHANICAL			
Impact Strength, Izod			
notched 1/8 in (3.2 mm) section	1.0 ft-lbs/in	53 J/m	D 256
unnotched 1/8 in (3.2 mm) section	30.0 ft-lbs/in	1602 J/m	D 4812
Tensile Strength	4700 psi	32 MPa	D 638
Tensile Elongation	> 10.0 %	> 10.0 %	D 638
Tensile Modulus	0.25 x 10^6 psi	1724 MPa	D 638
Flexural Strength	6000 psi	41 MPa	D 790
Flexural Modulus	0.20 x 10^6 psi	1379 MPa	D 790
THERMAL			
Deflection Temperature			
@ 264 psi (1820 kPa)	130 °F	54 °C	D 648
@ 66 psi (455 kPa)	225 °F	107 °C	D 648
Ignition Resistance*			
Flammability**	HB @ 1/16 in	HB @ 1.5 mm	D 635
PROPERTY NOTES			

Data herein is typical and not to be construed as specifications.

Unless otherwise specified, all data listed is for natural or black colored materials. Pigments can affect properties.

GENERAL PROCESSING FOR INJECTION MOLDING

	English	SI Metric	
Injection Pressure	10000 - 15000 psi	69 - 103 MPa	
Melt Temperature	375 - 450 °F	191 - 232 °C	
Mold Temperature	90 - 150 °F	32 - 66 °C	
Drying	2 hrs @ 175 °F	2 hrs @ 79 °C	
PROCESSING NOTES			

23 Jul 2004 KMH

This information is intended to be used only as a guideline for designers and processors of modified thermoplastics. Because design and processing is complex, a set solution will not solve all problems. Observation on a "trial and error" basis may be required to achieve desired results.

Data are obtained from specimens molded under carefully controlled conditions from representative samples of the compound described herein. Properties may be materially affected by molding techniques applied and by the size and shape of the item molded. No assurance can be implied that all molded articles will have the same properties as those listed.

No information supplied by RTP Company constitutes a warranty regarding product performance or use. Any information regarding performance or use is only offered as suggestion for investigation for use, based upon RTP Company or other customer experience. RTP Company makes no warranties, expressed or implied, concerning the suitability or fitness of any of its products for any particular purpose. It is the responsibility of the customer to determine that the product is safe, lawful and technically suitable for the intended use. The disclosure of information herein is not a license to operate under, or a recommendation to infringe any patents.

^{*} This rating is not intended to reflect hazards of this or any other material under actual fire conditions.

^{**} Values per RTP Company testing.

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

WWW.RTPCOMPANY.COM

RTP COMPANY

CONTACTS

PRODUCTS


TECH INFO

NEWS

SUPPORT

ABOUT

HISTORY OF RTP COMPANY

Joe and Jenny Miller, like millions of others, emigrated to the U.S. in the late 1800's, from Eastern Europe, now Poland, seeking a better life. But instead of settling in one of America's great cities, such as New York or Chicago or Minneapolis, which might have made more sense and certainly would have been more traditional, they chose Winona. Minnesota.

They were quite a couple — Joe an exceptionally powerful and determined man, and Jenny an exceptionally insightful and even more determined woman. Both had an enormous dedication to family, and education (of which they had very little), and their community. Joe and Jenny had eight children, all born and raised in Winona.

In those days Winona was a big lumber town, with sawmills extending several miles along most of what is now Front Street, bordering the Mississippi River. Logs, mainly white pine, were floated

down the Mississippi River by the millions, assembled in huge log trains held together by steel chain. Winona was a good place to process the logs as the Mississippi turns east and it was easy for the lumbermen to bring the logs ashore. Also, Second Street, the next street over, was the center of Winona's entertainment area, daytime or nighttime, which lumbermen often frequented, but that's another story. Anyway, Joe Miller was an entrepreneur, and early on realized steel was associated in a big way with the lumber industry, along with other things, and that he should be able to make a living based on that, and therefore Winona would be a good place to settle. So they did and he started trading in metal, fabrics and a variety of other things. His family also got involved in demolishing buildings to recover metal and other products, an early form of recycling. It's been said Joe was an absolute terror with his 30 lb. sledge hammer, called the "Big Joe," and that he could smash more metal, or anything else, faster, for longer periods of time, than all others. He implored his workers, and his sons, to keep up with him, always, seemingly, to no avail. That big hammer mysteriously disappeared one day (some say it found its permanent resting place at the bottom of the Mississippi River), never to return.

Perhaps the loss of his hammer was the turning point, perhaps not, but in any case Joe decided to try something different, and established Miller Waste Mills in 1923. Logic really doesn't adequately explain the reasoning, but entrepreneurial spirit might. In any event, Miller Waste Mills was formed, which processed fabric used to lubricate railroad wheels. It grew and prospered for 30 years, and while it's considerably smaller today, it still does operate.

That pivotal event proved to be the Miller family's manufacturing business debut. The material produced, called waste, was dipped in oil and then placed in a journal box over the axle. And that was how railroad wheels were lubricated prior to the advent of ball bearings. Miller Waste Mills grew rapidly, as railroads themselves were growing rapidly and the demand for waste was high.

Realizing by the mid to late 40's the waste business had peaked, Ben and Rudy Miller, two of Joe's sons who were by then running Miller Waste Mills, knew something had to be done. So, for reasons again making little sense other than that they were entrepreneurial, they started Fiberite, a thermoset plastic company, in 1948. Fiberite struggled at first but proceeded to grow and prosper, and was sold to Beatrice Foods in 1980.

A small fraction of Fiberite's products were thermoplastics, but that portion of the business was sold back to the Miller family and ultimately became RTP Company in 1982. Hugh Miller, Ben's son and Joe's grandson, has been running RTP Company since then.

Today RTP Company is a world leader in specialty thermoplastic compounding, headquartered in Winona, and as circumstances would have it, the plant is located on Front Street where a sawmill once stood. RTP Company makes thousands of products each year for a variety of markets, including electronics, business machine, automotive, appliance, consumer, medical, sports and leisure, industrial and others. RTP Company features very strong customer service focusing on technology, flexibility, independence and speed. In 2006 RTP Company acquired Wiman Corporation, makers of specialty plastic film. RTP Company employs over 850 people and has four other plants in the U.S., one in France, one in Singapore and one in China.

It seems fitting RTP Company's headquarters and largest plant are in Winona, near the Mississippi River, on Front Street, over a sawmill, where Joe and Jenny established roots more than 125 years ago, and knew so well.

Corporate Headquarters:

U.S. toll-free 1-800-433-4787 • Voice (507) 454-6900 • Fax (507) 454-2041 RTP Company • 580 East Front Street • Winona, MN, 55987, USA Internet www.rtpcompany.com • E-mail rtp@rtpcompany.com © 1995-2009 RTP Company • Warranty_Disclaimer

YOUR GLOBAL COMPOUNDER OF CUSTOM ENGINEERED THERMOPLASTICS

WWW.RTPCOMPANY.COM

RTP COMPANY

CONTACTS

PRODUCTS

TECH INFO

NEWS

SUPPORT

ABOUT

ABOUT RTP COMPANY

Specialty Compounding

Overview of the process that creates custom compounds for you.

Production Facilities

Details on our global network of manufacturing plants.

History of RTP Company

A look back at the steps it took to become the leader in speciality compounding.

Employment Opportunities

Review positions currently available and find out how to apply.

RTP COMPANY — YOUR GLOBAL COMPOUNDER OF CUSTOMER ENGINEERED THERMOPLASTICS

Thermoplastics That Provide

- · Conductive Static Dissipation
- Structural Reinforcement
- Lubricated Wear Resistance
- High Continuous Use Temperatures
- UL Recognized Flammability
- Soft-touch Overmoldable Elastomers
- Special Color and Appearance Effects

RTP Company At A Glance

- Privately owned specialty compounder
- Independent, unbiased product development
- Worldwide representation and distribution
- · 5-10 day standard product lead-time
- Eight global manufacturing facilities
- ISO 9001:2000 registered facilities

RTP Company's private ownership allows our expert polymer engineers to be independent and unbiased as they select from 60+ engineering resins and 100's of modifying additives to tailor a thermoplastic compound designed to meet your specific end-use requirements.

Our specialty compounds can provide multi-property solutions in a single material, reducing manufacturing costs and speeding time to market while providing the freedom necessary for product designers and engineers to realize their vision for applications spanning every major market segment.

If your in the process of application development, let RTP Company solve your material challenge by formulating a custom compound optimized to make your product a success — don't compromise with another suppliers off-the-shelf offering.

Commitment to Quality

Through the continual improvement of our quality system, processes and products, RTP Company is committed to delivering on-time, defect-free products which meet or exceed the requirements of our internal and external customers.

RTP Company supports its commitment to quality with ISO 9001:2008 Registered Facilities in Winona, MN; Sauk Rapids, MN; South Boston, VA; Forth Worth, TX; Indianapolis, IN; Beaune, France; Singapore; and Suzhou, China.

Corporate Headquarters:

U.S. toll-free 1-800-433-4787 • Voice (507) 454-6900 • Fax (507) 454-2041 RTP Company • 580 East Front Street • Winona, MN, 55987, USA Internet www.rtpcompany.com • E-mail rtp@rtpcompany.com © 1995-2009 RTP Company • Warranty_Disclaimer

EXHIBIT B

Thank you for your request. Here are the latest results from the TARR web server.

This page was generated by the TARR system on 2010-01-22 11:58:41 ET

Serial Number: 73512563 Assignment Information Trademark Document Retrieval

Registration Number: 1361268

Mark

(words only): RTP CO.

Standard Character claim: No

Current Status: This registration has been renewed.

Date of Status: 2006-01-03

Filing Date: 1984-12-07

Transformed into a National Application: No

Registration Date: 1985-09-24

Register: Principal

Law Office Assigned: (NOT AVAILABLE)

If you are the applicant or applicant's attorney and have questions about this file, please contact the Trademark Assistance Center at <u>TrademarkAssistanceCenter@uspto.gov</u>

Current Location: 830 -Post Registration

Date In Location: 2006-01-03

LAST APPLICANT(S)/OWNER(S) OF RECORD

1. MILLER WASTE MILLS, INCORPORATED

DBA/AKA/TA/Formerly: DBA RTP CO.

Address:

MILLER WASTE MILLS, INCORPORATED P.O. BOX 439 580 EAST FRONT STREET

WINONA, MN 55987

United States

Legal Entity Type: Corporation

State or Country of Incorporation: Minnesota

GOODS AND/OR SERVICES

International Class: 001 Class Status: Active

PRE-COLORED RESINS AND COMPOUNDED PLASTICS IN PELLET FORM FOR GENERAL

INDUSTRIAL USE

Basis: 1(a)

First Use Date: 1983-11-18

First Use in Commerce Date: 1983-11-18

International Class: 037 Class Status: Active

CUSTOM MANUFACTURING, COLORING AND REPROCESSING OF PLASTICS FOR OTHERS

Basis: 1(a)

First Use Date: 1983-11-18

First Use in Commerce Date: 1983-11-18

International Class: 042 Class Status: Active

ENGINEERING IN THE FIELD OF PLASTICS

Basis: 1(a)

First Use Date: 1983-11-18

First Use in Commerce Date: 1983-11-18

ADDITIONAL INFORMATION

Disclaimer: "RTP CO."

Design Search Code(s):

26.13.02 - Plain single or multiple line quadrilaterals; Quadrilaterals (single line or multiple line)

26.13.03 - Incomplete quadrilaterals and quadrilaterals made of broken or dotted lines; Quadrilaterals made with broken lines; Quadrilaterals (incomplete)

26.13.12 - Quadrilaterals with bars, bands and lines

26.17.12 - Angles (geometric); Chevrons

MADRID PROTOCOL INFORMATION

(NOT AVAILABLE)

PROSECUTION HISTORY

NOTE: To view any document referenced below, click on the link to "Trademark Document Retrieval" shown near the top of this page.

2006-01-03 - First renewal 10 year

2006-01-03 - Section 8 (10-year) accepted/ Section 9 granted

2006-01-03 - Assigned To Paralegal

2005-04-11 - Combined Section 8 (10-year)/Section 9 filed

2005-04-11 - PAPER RECEIVED

1991-12-12 - Section 8 (6-year) accepted & Section 15 acknowledged

1991-05-01 - Section 8 (6-year) and Section 15 Filed

1985-09-24 - Registered - Principal Register

1985-07-16 - Published for opposition

1985-06-15 - Notice of publication

1985-05-10 - Approved for Pub - Principal Register (Initial exam)

1985-03-01 - Non-final action mailed

1985-02-11 - Assigned To Examiner

ATTORNEY/CORRESPONDENT INFORMATION

Attorney of Record

JAMES E. GRIFFITH

Correspondent

JAMES E. GRIFFITH MCDERMOTT, WILL & EMERY 227 WEST MONROE ST., SUITE 4400 CHICAGO, IL 60606-5096