Trademark Trial and Appeal Board Electronic Filing System. http://estta.uspto.gov
ESTTA Tracking number: ESTTA404691

Filing date: 04/20/2011

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD

Proceeding 91193335
Party Defendant

RStudio, Inc.
Correspondence CHARLES E. WEINSTEIN
Address FOLEY HOAG LLP

155 SEAPORT BLVD, STE 1600

BOSTON, MA 02210-2600

UNITED STATES

ARufo@foleyhoag.com, JHuston@foleyhoag.com,
USTrademark@foleyhoag.com, cweinstein@foleyhoag.com,
jjarvis@foleyhoag.com

Submission Defendant's Notice of Reliance

Filer's Name Anthony E. Rufo

Filer's e-mail arufo@foleyhoag.com

Signature /Anthony E. Rufo/

Date 04/20/2011

Attachments Applicant's Notice of Reliance.pdf (7 pages)(24558 bytes)

Exhibit B.pdf (8 pages)(36688 bytes)
Exhibit C.pdf (75 pages)(7211579 bytes)
Exhibit D.pdf (52 pages)(1855702 bytes)

http://estta.uspto.gov

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD

EMBARCADERO TECHNOLOGIES, INC., Opposition No. 91193335
Opposer, Applications S.N.
V. 771691980
RSTUDIO, INC. ;;;gg%gg?
Applicant.

APPLICANT’'S NOTICE OF RELIANCE
Pursuant to 37 CFR 88 2.120(j)(1); 2.120(j)@nd 2.122(e), Applicant RStudio, Inc.

(“Applicant”), by its attorneys, hereby submitsdbgh its Notice of Reliance that it will or may

rely upon and make of record with this opifios proceeding the items set forth below.

A. Specified portions of tha0(b)(6) discovery deposition of Opposer Embarcadero
Technologies, Inc. (“Opposer”), dated Noveer 4, 2010, as well as any applicable
exhibit discussed in the speeifi portions. Applicant intels to rely on pp. 1-4, 12-27,
40-50, 53-54, 60-67, 70-80, and 93-98 and deposition Exhibit 6. Pursuant to the Board’s
Standardized Protective Agreement, cerfairtions of the aboveeferenced excerpts
have been designated by Opposer asd@i@ecret/Commercially Sensitive” and,
accordingly, have been redacted fromttla@script for public filing. A Notice of
Reliance without redaction shall be filechcarrently under sealA true and correct
copy of these excerpts from the certified s@npt and a copy of the deposition exhibit
are attached hereto as Exhibit A.

B. Opposer's Amended Responses to Applicant’'s Amended First Set of Interrogatories,

specifically, Opposer’'s Response to IntertogaNo. 14. A trueand correct copy is

attached hereto as Exhibit B.

Chapters 19 (pp. 369-372), 20 (pp. 373-433), 2B (pp. 463-468) of R In a Nutshell: A

Desktop Quick Referendsy Joseph Adler, releasedDecember 2009 by O'Reilly

Media Inc., 1005 Gravenstein HighyBlorth, Sebastopol, CA 95472, upon which
applicant intends to rely to demonstratedistiaal computing functions inherent in the R
computing language. A true and corrempy is attached hereto as Exhibit C.
Applicant’s current website (www.rsdlio.org) as of April 18, 2011, upon which
Applicant intends to rely to demonstrafg) Applicant’s currentise of its RSTUDIO
trademark; and (2) Applicant’s direct afiieg of its RSTUDIO statistical computing
software. A true and correct copyatached hereto as Exhibit D.

A collection of fifty (50) web pages whiatemonstrate that the term “studio” is
commonly used in the names of softwpreducts which are comparable to products
offered by the Opposer or the product offelbgdhe Applicant. For the convenience of
the Board, a summary presenting the contehteese voluminous web pages has been

included. True and correct copies are attached hereto as Exhibit E.

http://www.activestateoen/activeperl-pro-studio
http://www.activestateoen/activetcl-pro-studio

http://www.aptana.com/

http://www.aquafold.com/
http://www.atmel.com/dyn/prodtgztools_card.asp?tool_id=2725
http://www.atxtechnologies.co.uk/
http://www.yessoftware.com/products/product_detail.php?product_id=1

N ok owbnRE

8. http://lwww-01.ibm.com/softwarefiegration/optimization/cplex-
optimization-studio/

9. http://www.ivrsoft.com/ct-developer-studio.htm
10. http://datafeedstudio.com/
11. http://www.devart.com/dbforge/mysgl/studio/

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

28.
29.

30.

31.
32.
33.
34.
35.

36.

37.

38.
39.
40.
41.

©

http://www.softwarefx.com/devstudio/
http://www.gadwin.com/cad_programs.htm
http://lwww.eiffel.com/products/studio/
http://libre.adacore.com/libre/tools/gps/
http://usa.autodesk.com/adskvset/pc/index?id=11179508&sitelD=123112
http://www.ohloh.net/p/gtkstudio
http://mww-01.ibm.com/softwartdata/optim/data-studio/
http://software.intel.com/erstintel-parallel-studio-home/
http://ironpythonstudio.codeplex.com/
http://www.redhat.com/developer_studio/
http://confluencatlassian.com/display/JIRASTUDIO
http://mwww.thekompany.com/projects/kdestudio/
http://mwww.liquid-technologies.com/
http://www.ufasoft.com/lisp/
http://lua-studio.luaforge.net/

http://lwww.enterprisedb.com/produggestgres_plus_as/overview.do#TabOv
erview

http://www.omnis.net/productsislio/index.html?detail=overview
http://www-01.ibm.com/softwamdta/optim/development-studio/

http://www.oracle.com/technetwork/server-
storage/solarisstudiaverview/index.htmi

http://www.devart.cordbforge/oracle/studio/
http://www.cayoren.com/Perl-Studio/
http://www.cayoren.com/PHP-Studio/
http://www.gppstudio.net/documentation.htm
http://www.realsoftware.com/realstudio/

https://www-
304.ibm.com/jct03001c/services/learniteg.wss/us/en?pageType=course_d
escription&courseCode=B2425

http://www.microsoft.com/robotics/
http://www.abb.com/product/se327/78fb236cae7e605dc1256f1e002a892c.
aspx

http://support.sas.com/rnd/app/studio/studio.html
http://mww-01.ibm.com/softwamdta/informix/serverstudio/
http://www.synsys.com/Products/stStudio/index.html

42.
43.
44,
45.
46.
47.

48.

49.

50.

http://www.codesegment.com/products.htm
http://www.sqlstudio.com/
http://www.sglmanager.tiproducts/studio/oracle
http://susestudio.com/
http://kakum.chat.ru/tcldev/
http://www.pragsoft.com/

http://www.microsoft.com/visuatudio/en-us/visual-studio-2010-
launch?WT.mc_id=SEARCH&WT .srch=1

http://mww-01.ibm.com/software/integration/wsadie/

http://shop.zend.com/en/zend-studio-for-
eclipse.html?gclid=CLRucuz6aMCFd9n5QodISw92Q

A collection of fifty (50) web pages which densgirate that the term “ER” as applied to

relational databases and database software means “Entity Relationship.” For the

convenience of the Board, a summary preseritie contents of these voluminous web

pages has been included. True and corgues are attached hereto as Exhibit F.

ok wWnNPRE

WO N O

10.
11.
12.
13.
14.
15.

http://www.pera.net/Mabdologies/ARIS/ARIS.html
http://www.umsl.edu/~sautéanalysis/er/er_intro.html
http://wofford-ecs.org/DataAndStalization/ermodel/material.htm

http://www.conceptdraw.com/gmoducts/cd5/ap_er_diagram.php
http://media.visual-
paradigm.com/media/documertisa40dg/pdf/dbva_designer_guide_chapter
4.pdf

http://databases.about.com/cs/specificproducts/g/er.htm
http://searchsqlserver.techtarget.com/definition/entity-relationship-model

http://www.worldlingo.com/ma/enti/en/Entity-relationship_model
http://mwww.pcmag.com/encyclopaditerm/0,2542,t=entity+relationship+mo
del&i=42662,00.asp

http://mwww.scribd.com/doc/3053988/ER-Diagram-convention
http://www.dulcian.comi#&Q/Designer%20FAQ%20page.htm
http://cisnet.baruchuay.edu/holowczak/class@d40/entityrelationship/
http://www.downloadatoz.com/topligéntity+relationshp+diagram.html
http://msdn.microsoft.com/en-us/library/aa224825%28SQL.80%29.aspx
http://www.sethi.org/classket415/lab_notes/lab_03.html

16.

17.
18.
19.
20.

21.
22.

23.
24,

25.
26.

27.
28.

29.
30.

31.
32.
33.
34.
35.
36.
37.
38.

39.
40.

41.

42.

43.
44,
45.
46.

http://www.utexas.edu/its/archiveidiows/database/datamodeling/index.htm
I

http://bit.csc.Isudu/~chen/chen.html
http://www.aquafold.com/er-modeler.html
http://www.tmssoftware.com/site/tmsdm.asp
http://www.casestudio.com/enu/products.aspx

http://www.sglmaestro.com/products/mlysiaestro/tour/database_designer/
http://www.sparxsystems.com/emiese architect_user_guide/modeling_lan
guages/entity relationship_diagrams_e.html

http://www.visual-paradigm.coprioduct/vpuml/provides/dbmodeling.jsp
http://www.orafaq.com/tools/heraut/dezign.htm

http://www.information-management.com/infodirect/20030123/6268-1.html
http://www.devarticles.com/c/a/Ddepment-Cycles/Entity-Relationship-
Modeling/

http://en.allexperts.com/q/Oracle5l4Entity-Relationship-Diagrammer.htm

http://bit.csc.Isu.edu/~chen/pdf/english.pdf
http://en.wikipedia.org/wiki/Entity-
relationship_model#ER_diagramming_tools
http://www.codewalkers.com/c/a/Dbaése-Code/Relationships-Entities-and-
Database-Design/2/

http://www.amazon.com/dp/3540582177
http://www.crcpress.com/product/isbn/9780849315480
http://www.smartdraw.com/resourcesstials/entity-relationship-diagrams/
http://www.ncgia.ucsb.edyiscc/units/u045/u045.htmi
http://www.techdictiongrcom/search_action.lasso
http://it.toolbox.com/wiki/index.php/Entity _Relationship_Diagram
http://it.toolbox.com/wiki/index.php/Entity _Relationship_Diagram
http://www.computeruser.com/dictionary/

http://dictionary.refrence.com/browse/ER

http://www.visual-
paradigm.com/VPGallery/datamodeling/EntityRelationshipDiagram.html
http://www.oppapers.com/essagsithal-Entry-Reersal-Entity-
Relationship-Diagram/96308
http://www.computingstudents.com/estdatabase systems/entities_entity r
elationship_er_modelling.php

http://www.edrawsoft.com/chen-erd.php
http://www.datanamic.com/dezign/index.html
http://searchcrm.techtarget.com/angidata-modeling-Dimensional-vs-E-R
http://drenet/glossary/er

47. http://'www.ibm.com/developerworkatronal/library/cotent/03July/2500/27
85/2785 _uml.pdf

48. http://bit.csc.lsu.edu/~chen/pdf/Chen_Pioneers.pdf
49. http://www.ischool.drexel.edu/facylsong/publications/p_Jcse-erd.PDF
50. http://docs.aquafoldben/docs-er-diagram.html

A portion of Opposer’'s websitevivw.embarcadero.copwhich lists software products

sold by Opposer, including those branded il ER/STUDIO marlat issue in this
proceeding, which demonstrates how Embagoadategorizes its various products. A
true and correct copy is attahhereto as Exhibit G.

A portion of Opposer’s websitevivw.embarcadero.copwhich lists the current prices

charged as of April 19, 2011 for various ERUSIO products. A true and correct copy
is attached hereto as Exhibit H.

A Wikipedia article titled “@mparison of Statistical Paafges” that lists a number of
statistical software packages and their varfeasures and which is demonstrative of the
statistical computing software category asxitsts in commerce. A true and correct copy

is attached hereto as Exhibit I.

Respectfully submitted,
RSTUDIO, INC.,

/Anthony E. Rufo/

Dated: April 20, 2011 Julia Huston
Charles E. Weinstein
Joshua S. Jarvis
AnthonyE. Rufo
Foley Hoag LLP
155SeaporBoulevard
BostonMA 02210
Tel.617/832-1000
jhuston@foleyhoag.com
cweinstein@foleyhoag.com
jjarvis@foleyhoag.com
arufo@foleyhoag.com

Attorneys for Applicant

CERTIFICATE OF SERVICE

| hereby certify that | have this day senattue copy of thelmve-identified Notice of
Reliance upon Opposer’s attorneys of record:

Martin R. Greenstein

Mariela P. Vidolova
TechMark A Law Corporation
4820 Harwood Road,"2Floor
San Jose, CA 95124-5273

via First-Class Mail and e-mail to MRGI@chMark.com and MPV@TechMark.com.

/Anthony E. Rufo/

Anthony E. Rufo

DATED: April 20, 2011

B3866254.1

Exhibit B

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD

EMBARCADERO TECHNOLOGIES,
INC.

Opposition No. 91-193,335

Opposer, Trademarks: RSTUDIO
V.
Serial Nos.: 77/691,980
RSTUDIO, INC. 77/691,984
77/691,987
Applicant.

OPPOSER’S OBJECTIONS AND AMENDED RESPONSES TO
APPLICANT’'S AMENDED FIRST SET OF INTERROGATORIES TO OPPOSER

Pursuant to Federal Rules of Civil Prduee 26 and 33 and Trademark Rule 2.120, Opposer,
EMBARCADERO TECHNOLOGIES, INC. ("Embarcatb” or “Opposer”) makes the following
objections and responses to Applicant's Amended First Set of Interrogatories to Opposer by
Applicant, RSTUDIO, INC. (“RStudio” or “Applicant”).

GENERAL OBJECTIONS

The following General Objections are applicable to, and are hereby incorporated by reference
into each of Opposer’'s Responses and Objections to the specific discovery requests propounded
herein. The provision of any response, in wiwle part, is not intended to and does not waive
any of these General Objections, or any speolfjection with respect to any discovery request.

1. Opposer objects to each and every disgawgjuest propounded herein by Applicant

to the extent that it is overly broad, vague, ambiguous, cumbersome, unduly burdensome, and/or

seeks information that is neither relevant nor reasonably calculated to lead to the discovery of
admissible evidence.

2. Opposer objects to each and every disgonezjuest propounded herein to the extent
itimposes or attempts to impose greater obligatior@pposer than those authorized by the Federal
Rules of Civil Procedure and the Trademark RoféBractice, or which are inconsistent therewith

3. Opposer objects to each and every disgokeguest propounded herein that seeks
legal opinions or conclusions, or that isne@roperly propounded as a request for admission.

4, Opposer objects to each and every disgoregjuest propounded herein to the extent
that they mis-characterize Opposer, Opposer's products, services, or any fact alleged by Opposer.
By responding to these discovery requests, Opposer does not admit that Applicant's characterizations
are accurate or correct.

5. Opposer objects to each and every disgoregjuest propounded herein to the extent
that it requests information or responses relating to information to which Opposer has objected.

6. Opposer objects to each and every disgoregjuest propounded herein to the extent
it purports to demand information not in the pessan, custody or control of Opposer, or to require
Opposer to undertake efforts to respond theredb dhe not reasonably calculated to ascertain
information responsive to one or more specific discovery requests propounded herein.

7. Opposer objects to each and every disgorerjuest propounded herein on the basis
that it is not stated simply or directly, and/or uses compound terms.

8. Opposer objects to each and every disgoregjuest propounded herein to the extent
that it contains interdependent, compound issuespaisdiremised on a fact that is denied, and/or

contains words, terms or phrases that are vagd@mbiguous, and therefore not subject to succinct

response.

9. Opposer objects to each and every disgoregjuest propounded herein to the extent
that and on the basis that it goes beyond the permissible scope of discovery, including but not
limited to the fact that it goes beyond the marks and goods/services at issue in this proceeding,
and/or is not limited to commerce which may be lalyfregulated by Congress. To the extent any
response to any such discovery request is provitisgyrovided with respect to the United States,
use in the United States, or use in commerce which may be lawfully regulated by Congress.

10. Opposer objects to each and every oveqiyaasive and vague “Definition” or other
term or phrase which Applicant purports to impberein and which renders the discovery sought
irrelevant, not likely to lead to relevant information, overly burdensome and beyond the scope of
permissible discovery, including, but not limitéd, the overly broad and overly expansive
definitions of “Opposer” and “Embarcadero Technaodsginc.”, of “Applicant” and “Rstudio, Inc.”,
of “Person”, of the “Opposer's Mark”, and each and every other overly broad, expansive and
improper definition or term.

11. Opposer objects to each and every disgoegjuest propounded herein on the basis
that it is vague, uncertain, ill-defined and notadalp of response because of the vagueness and
uncertainty created by overly broad definitions and instructions.

12. Opposer objects to each and every disgaegjuest propounded herein to the extent
that it asks a question that is not reasonably utw#i©r subject to interpretation, and thus is not
capable of response.

13. Opposer objects to each and every disgaeguest propounded herein to the extent

that it asks for information about future plans, non-public information, confidential information,

confidential business information, trade secmt®therwise protected information unless such
production is pursuant to an appropriate protective order for the information at question.

14. Opposer objects to each and every disgaeguest propounded herein to the extent
that it asks for information that is protectednfr discovery by the attorney-client privilege, the
attorney work-product doctrine or any other aqgdile privilege. Opposer objects to divulging any
such information in response to discovery requests propounded herein. To the extent any such
information is or may be divulged in response to discovery requests propounded herein, the
divulging of such information is inadvertent anchst deemed to be a waiver of the privilege in
guestion, or of any other applicable privilege, wabpect to the divulged information or any other
information.

15. Opposer objects to each and every disgaegjuest propounded herein to the extent
that it asks for confidential information. Puast to Rule 2.116(g) of the Trademark Rules of
Practice, all produced documents requiring confidential treatment shall be subject to the TTAB
Standard Protective Order and marked in accordance with its provisions.

16. Opposer's internal inquiries and digery are ongoing. Opposer therefore objects
to Applicant’s discovery requests propounded herdimg@xtent that they cut off or purport or may
have the effect of cutting off Opposer's righstipplement its responses. Opposer reserves its right
to supplement its responses up to and including time of trial.

17. These general objections are applicablenid are incorporated into each specific
response herein, with or without further referenlcesertion of specific objections in the response
to any particular discovery request shall notdmstrued as a waiver of such objection in any other

response.

RESPONSE:

Subject to the foregoing objections, the terruto” is simply a metaphor sometimes used
in the software industry to suggest a collectbtools or programs in a way somewhat analogous

to what one may find in an artist’s “Studio” or a music “Studio”.

INTERROGATORY NO. 14

Explain whether STUDIO is or is not desc¢ive as applied to any of Opposer’s products

associated with Opposer’s Mark.

RESPONSE:

Subject to the foregoing objections, the terruto” is simply a metaphor sometimes used
in the software industry to suggest a collectbtools or programs in a way somewhat analogous

to what one may find in an artist’s “Studio” or a music “Studio”.

INTERROGATORY NO. 15

Identify each product offered under Opposer’s Mgt is used in connection with entity

relationship modeling.

RESPONSE

Subject to the foregoing general objectiond & the vague and unclear meaning of the
guestion, Opposer response that when &dipted the products under its ER/STUDIO mark

included features and functionality iretheld of entity relationship modelinignter alia. Since then

-11 -

Dated: November -L 2010

Dated: September 30, 2010
Re-signed November |, 2010

AS TO RESPONSES

Embarcaderc’) Technologies, Inc.

By: P
o at———— 'A“‘?"
Name: E\Ag e LA Ve
Title: Do Lyl » pAcntLl (RN
Qs v S bpoMere

AS TO OBJECTIONS:
By: /Martin R Greenstein/

Martin R. Greenstein

Mariela P. Vidolova

TechMark a Law Corporation

4820 Harwood Road, 2™ Floor

San Jose, CA 95124-5237

Tel: 408-266-4700 Fax: 408-850-1955

E-mail: MRG@TechMark.com
Attorneys for Opposer

-18 -

8

1

CERTIFICATE OF SERVICE

| hereby certify that a copy of the foregoif@PPOSER’'S OBJECTIONS AND
AMENDED RESPONSES TO APPLICANT'S AMENDED FIRST SET OF
INTERROGATORIES TO OPPOSER is being served by first class mail postage prepaid on this

1st day of November, 2010, on Applicant's attorneys:

Julia Huston

Charles E. Weinstein

Anthony E. Rufo

FOLEY HOAG LLP

155 Seaport Blvd, Ste 1600

Boston, MA 02210-2600

Attorneys for Applicant
[Martin R Greenstein/
Martin R. Greenstein

-19 -

Exhibit C

\‘\\\‘Q
N
N\

)
’l‘"‘ql///
/ /

v

IN A NUTSHELL

A Deskiop Quick Reference

Joseph Adler

R

IN A NUTSHELL

|

IN A NUTSHELL

Joseph Adler

O’REILLY®

Beijing + Cambridge + Farnham - Koln - Sebastopol « Taipei + Tokyo

Rin a Nutshell
by Joseph Adler

Copyright © 2010 Joseph Adler. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http:/fmy.safaribooksonline.com). For more infor-
mation, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Mike Loukides Cover Designer: Karen Montgo;nery
Production Editor: Sumita Mukherji Interior Designer: David Futato
Production Services: Newgen North lustrator: Robert Romano

America, Inc.

Printing History:
December 2009: First Edition.

5

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade-
marks of O'Reilly Media, Inc. R in a Nutshell, the image of a harpy eagle, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media,
Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

RepKover,
=e= This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80170-0

M] ' [3/10]
1267050233

elative of the chi-squared test. Iy

- function:

m, ...)

we looked at above:

.m test shows that it is very likely

19

Power Tests

When designing an experiment, it’s often helpful to know how much data you need
to collect to get a statistically significant sample (or, alternatively, the maximum
significance of results that can be calculated from a given amount of data). R provides
a set of functions to help you calculate these amounts.

Experimental Design Example

Suppose that you want to test the efficacy of a new drug for treating depression. A
common score used to measure depression is the Hamilton Rating Scale for De-
pression (HAMD). This measure varies from 0 to 48, where higher values indicate
increased depression. Let’s consider two different experimental design questions.
First, suppose that you had collected 50 subjects for the study and split them into
two groups of 25 people each. What difference in HAMD scores would you need to
observe in order for the results to be considered statistically significant?

We assume a standard deviation of 8.9 for this experiment.” We'll also assume that
we want a power of .95 for the experiment (meaning that the probability of a Type
Il error is less than .05). To calculate the minimum statistically significant difference
in R, we could use the following expression:

* Number from hitp:/fwww. fda.gov/OHRMS/DOCKETS/ac/07/slides/2007—42 73s1_05.pdf.

369

> power.t.test(power=.95, sig.level=.gs, sd=8.9, n=25)

Two-sample t test power calculation

n =25
delta = 9.26214
sd = 8.9
sig.level = 0,05
power = 9,95

alternative = two.sided

> power.t.test(power=.95, sig.level=.05, sd=8.9, n=50)

Two-sample t test power calculation

n =50
delta = 6.480487
sd = 8.9
sig.level = 0,05
power = 0,95

alternative = two.sided

NOTE: n is number in *each* group

» the power functions can be very useful for designing an experiment,

yOU to estimate, in advance, how large a difference you need to see
S to get statistically significant results.

t-Test Design

As you can see
They can help
between group

test to check the signifi-
culate the mean value of

population), then you can
ment:

arandom variable for g “est” population and a “contro]”

-test function to help design the experi

power.t.test(n = NULL, delta = NULL, s
power = NULL,

type = c("two.sample", “one.sa
alternative = c("two.sided",
strict = FALSE)

d=1, sig.level = 0.05,

mple", "paired"),
“one.sided"),

For this function, n specifies the number

true difference in meang between the groups; sd is the true standard deviation of the
underlying distribution; sig.level is the significance level (TypeIerror probability);
Power is the power of the test (1 - Type I error probability); type specifies whether
the test is one sample,

two sample, or paired; alternative specifies whether the test
is one or two sided; and st

rict specifies whether to use g strict interpretation in the
two-sided case. This function will calculate either n, delta, sig. level, sd, or power,

370 | Chapter 19; PowerTests

of observations (per group); delta is the

That’s right, the estimate is over 2,724 at bats. So, let’s ask the opposite question:

what is the confidence we can have in the results? Let’s fix sig.level=0.05 and
power=0.95:

> power.prop.test(n=10, p1=.260, p2=.300, power=.95,
+ sig.level=NULL, alternative="one.sided")

3
Two-sample comparison of proportions power calculation

n =10
pl = 0.26
p2 = 0.3
sig.level = 0.9256439
power = 0.95
alternative = one.sided

NOTE: n is number in *each* group

> power.prop.test(n=10,p1=.260,p2=.300, power=NULL,
+ sig.level=.05,alternative="one.sided")

Two-sample comparison of proportions power calculation

n =10
pl = 0.26
p2 = 0.3
sig.level = 0.05
power = 0.07393654
alternative = one.sided

NOTE: n is number in *each* group

With significance levels that low, I think it’s safe to say that most of these situational
statistics are nonsense.

ANOVA Test Design

If you are designing an experiment where you will be using ANOVA, you can use
the power . anova.test function:
power.anova.test(groups = NULL, n = NULL,

between.var = NULL, within.var = NULL,
sig.level = 0.05, power = NULL

For this function, groups specifies the number of groups, n specifies the number of
observations (per group), between. var is the variance between groups, within.varis
the variance within groups, sig. level is the significance level (Type I error proba-
bility), and power is the power of the test (1 - Type Il error probability). This function
will calculate either groups, n, sig.level, between.var, power, within.var, or
sig.level, depending on the input. You must specify exactly six of these parameters,

and the remaining argument must be null; this-is the value that the function
calculates.

372 | Chapter19: PowerTests

2, let’s ask the opposite question:
les? Let’s fix sig.level=0.05 and

Wer=.95,

wer calculation

WLL,

'r calculation

ty that most of these situational

| ¢ using ANOVA, you can use

= NULL,

1ps, n specifies the number of
. etween groups, within.var is
1ce level (Type I error proba-
or probability). This function
. -var, power, within.var, or
<actly six of these parameters
the value that the functior;

2

20

Regression Models

A regression model shows how a continuous value (called the response variable, or
the dependent variable) is related to a set of other values (called the predictors, stim-
ulus variables, or independent variables). Often, a regression model is used to predict
values where they are unknown. For example, warfarin is a drug commonly used as
a blood thinner or anticoagulant. A doctor might use 2 regression model to predict
the correct dose of warfarin to give a patient based on several known variables about
the patient (such as the patient’s weight). Another example of a regression model
might be for marketing financial products. An analyst might estimate the average
balance of a credit card customer (which, in turn, affects the expected revenue from
that customer).

Sometimes, a regression model is simply used to explain a phenomenon, but not to
actually predict values. For example, a scientist might suspect that weight is corre-
Jated to consumption of certain types of foods, but wants to adjust for a variety of
factors, including age, exercise, genetics (4nd, hopefully, other factors). The scientist
could use a regression model to help show the relationship between weight and food
consumed by including other variables in the regression. Models can be used for
many other purposes, including visualizing trends, analysis of variance tests, and
testing variable significance. '

This chapter looks at regression models in R; classification models are covered in
Chapter 21. To show how to use statistical models in R, I will start with the simplest
type of model: linear regression models. (Specifically, I'll use the least squares
method to estimate coefficients.) I'll show how to build, evaluate, and refine a model
in R. Then I'll describe functions in R for building more sophisticated types of
models. :

Example: A Simple Linear Model

A linear regression assumes that there is a linear relationship between the response
variable and the predictors. Specifically, a linear regression assumes that a response
variable y is a linear function of a set of predictor variables x1, X2, -, Xn-

373

fields we want using an SQL query:

i > library(RSQLite)
> drv <- dbDriver("SQLite")
> con <- dbConnect(drv,
+ dbname=paste(.Library, "/nutshell/data/bb.db", sep="")
> team.batting.00t008 <- dbGetQuery(con,
+ paste(
+ 'SELECT teamID, yearID, R zs Tuns, °,
+ " H-"2B"-"3p" R as singles, *,
+ “2B" as doubles, "3g* as triples, HR as homeruns, ',
+ " BB as walks, SB as Stolenbases, (S as caughtstealing, ',
+ .
+
+
+
+
+

HBP as hitbypitch, SF as sacrificeflies, ',
AB as atbats °

FROM Teams '
WHERE year1p between 2000 and 2008

y

k]

Or, if youw'd like, you can just load the file from the nutshell package:

> library(nutshell)
> data(team.batting.00t008)

> attach(team.batting.ootoos);
> forplot «- make. groups (

+ singles = data.frame(value=singles, teamID,yearID,runs),
+ doubles = data.frame(value=doubles, teamID,yearID,runs),
+ triples = data.frame(value=triples, teamID,yearID,runs),
+ homeruns = data.frame(value=homeruns, teamID,yearID,runs),
+ walks = data.frame(value=walks, teamID,yearID,runs),
+ stolenbases = data.frame(value=stolenbases, teamID,yearID,runs),
+ caughtstealing = data.frame(value=caughtstealing,teamID,yearID,runs),
+ hitbypitch = data.frame(value=hitbypitch, teamID,yearID,runs),
*+ sacrificeflies = data.frame(value=sacrificeflies,teamID,yearID,runs)
+ ; -

> detach(team.batting.ootoo8);

Now, we’ll generate the scatter plots using the xyplot function:

> xyplot(runs”value[which, data=forplot,
+ scales=list(relation="free"),

a8
g
O
= o
35
=3
gg
= 0
3G
=0
.:a-
oA
58
—
<
S o
FNGE)
5
g8
O o

=3

3

no intercept. For more about thjs problem, see [Adler2006].

374 | Chapter20; Regression Models .

-erent metrics predict the runs
lata for every team between 20
used in Chapter 14 and extr

SCOred
00 ang
act the

a/bb.db", sep="")

s

» HR as homeruns, *,
€S as caughtstealing, *
ceflies, *

)
3

08'

the nutshell package:

utbaseball, Irenamed the common
.Let s look at scatter plots of runs
tich variables are likely to be most

.ake.groups function:

s, teamID, yearlID,runs),
S, teamID, yearID,runs),
s, teamID,yearID,runs),
ns, teamID,yearID,runs),

teamID, yeariD, runs),

ases, teamID,yearID,runs),
?teallng,teamID,yearID,runs) ,
.tch,. teamID,yearID,runs),
_ .ceflies, teamip, yearID,runs)

“.lot function:

vhich was popularized by Pete Palmer
ball. The original batter runs formula
above or below the mean, and it had

pch=19, cex=.2,
strip=strip.custom(strip.levels=TRUE,
horizontal=TRUE,
par.strip.text=list{cex=.8))

)

The results are shown in Figure 20-1. Intuitively, teams that hit a lot of home runs
score a lot of runs. Interestingly, teams that walk a lot score a lot of runs as well
(maybe even more than teams that score a lot of singles).

F N

caughtstealing
- .
RN ZIERS

o | 5%, £ o
S .- M. | O
[o0] s e | CO
o 1 .IRWEC o
Q- “e o . Q
© T ®
20 40 60
=
0w o |. o
c S o
> @ .S @«
2 -
o f. 4 o
S K S
@ o

600 800
600 800

900 1100

Figure 20-1. Scatter plots: runs as a function of different batter statistics

Fitting a Model

Let’s fit a linear model to the data and assign it to the variable runs.mdl. We’ll use
the 1m function, which fits a linear model using ordinary least squares:

> runs.mdl <- Im(
formula=runs~singles+doubles+triples+homeruns+
walks+hitbypitch+sacrificeflies+
stolenbases+caughtstealing,
data=team.batting.00to08)

+ o+ o+ o+

R doesn’t show much information when you fit a model. (If you don’t print the
returned object, most modeling functions will not show any information, unless

Example: A Simple Linear Model | 375

uoissaibay

there is an error.) To get information about g model, you have to use helpe,
functions.

Helper Functions for Specifying the Model

In a formula object, some symbols have special interpretations, Specifically, «
“7, 2 and “AN” gre interpreted specially by R. This means that you need ¢

formula, use the identity function I(). For example, suppose that you wan to in-
clude only the product of variables a and bin a formula specification, but not just
aorb. If you specify a*b, this is interpreted as a, b, or a*b. To include only a*b, yse
the identity function I() to protect the expression a*b:

In(y~I(a*b))

Sometimes, you would like to fit a polynomial function. Writing out all the terms
individually can be tedious
once. To do this, you use the poly function to add all terms Up to a specified degree:

using poly to generate predicted values), and raw to'specify whether to use raw and

not orthogonal polynomials. For more information op how to specify formulas, see
“Formulas” on page 88.

If you simply call 2 model function in R, but don’t assign the mode] to a variable,
the R console wil] print the object. (Specifically, it will cajj the. generic method
print with the object generated by the modeling function.) R doesn’t clutter your
screen with lots of information you might not want, Instead, R includes a large set
of functions for printing information about model objects. This section describes
the functions for getting information about 1 objects. Many of these functions may
also be used with other types of models; see the help files for more information,

Viewing the model

For most model functions (including 1m), the best Place to start is with the print

method. Ifyou are using the R console, you cansimply enter the name of the returned
object on the console to see the results of print:

> runs.mdl

Call:

376 | Chapter20: Regression Models

. 1S me.
l‘}PIe addition, '€ans that you need g,
foin
1) Foieéiret a? eXpression Jire
Ot am
‘and b ip 4 fgr::; SluPPose that you wan; ;
. Ula s if: . 0
reted as 3 Decification, b
u .
 expressic b, ora*b. To include . ' ot |
Dression g*p- ude Only a*p
- 3

rally, and ne, .

in-
ust
use

7 objects; starisgic
1ta statistica) moq
€y print a lot of 4
Ot print any jn

al model;

ng functions
Ost statistica]
lnfOI'mam'On.

el with m
lagnostic
formation,

. l,’eSt Place to
~ implyenter th

(formula = runs ~ singles + doubles + triples + homeruns +

wa
data = team.batting.00to08)

cOefficients :
(Intercept) singles doubles triples
-507.16020 0.56705 0.69110 1.15836
homeruns walks hitbypitch sacrificeflies
1.47439 0.30118 0.37750 0.87218
ctolenbases caughtstealing
0.04369 -0.01533
To show the formula used to fit the model, use the formula function:

formula(X, ...}

Here is the formula on which the model function was called:

> formula(runs.mdl)
runs ~ singles + doubles + triples + homeruns + walks + hitbypitch +

sacrificeflies + stolenbases + caughtstealing
To get the list of coefficients for a model object, use the coef function:
coef(object, ...) :
Here are the coefficients for the model fitted above:

> coef(runs.mdl)
(Intercept) singles doubles triples

-507.16019759 0.56704867 0.69110420 1.15836091
homeruns walks hitbypitch sacrificeflies
1.47438916 0.30117665 0.37749717 0.87218094

stolenbases caughtstealing
0.04369407 -0.01533245

Alternatively, you can use the alias coefficients to access the coef function.

To get a summary of a linear model object, you can use the summary function. The

method used for linear model objects is:

summary(object, correlation = FALSE, symbolic.cor = FALSE, .. .)
For the example above, here is the output of the summary function:

> summary(runs.mdl)

Call:
1m(formula = runs ~ singles + doubles + triples + homeruns +

walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,

data = team.batting.00to08)

Residuals:
Min 1Q Median 3Q Max
-71.9019 -11.8282 -0.4193 14. 6576 61.8743

Coefficients:

Estimate Std. Error t value Pr(>|t})
(Intercept) -507.16020 32.34834 -15.678 < 2e-16 ook
singles 0.56705 0.02601 21.801 < 2e-16 ***

1ks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,

Example: A Simple Linear Model | 377 -

=
1)
t=1
=
Il
v
2.
=)
=3

_—

S

378 | Chapter20; Regression Models

doubles 0.69110 0.05922 11.670 < 2e-16 *¥*

triples 1.15836 0.17309 6.692 1.34e-10 *+*
homeruns 1.47439 0.05081 29.015 < 2e-16 *+*
walks 0.30118 0.02309 13.041 < 2e-16 #**
hitbypitch 0.37750 0.11006 3.430 0.000702 *+*
sacrificeflies 0.87218 0.19179 4.548 8.33e-06 ***

stolenbases 0.04369 0.05951

0.734 0.463487
Caughtstealing -0.01533 0.15550

~0.099 0.921530

Signif. codes: 0 “##%2 g 001 xwr g gp ks 0.05 ‘.’ 0.1 ¢ 7 3

Residual standard error: 23.21 on 260 degrees of freedom

Multiple R-squared: 0.9144, Adjusted R-squared: 0.9114

F-statistic: 308.6 on 9 and 260 DF, p-value: < 2.2e-16
When you print a summary object, the following method is used:

print(x, digits = max(3, getOption(“"digits*) - 3),
symbolic.cor = x$symbolic.covrl,
signif.stars = getOption("shdw.signif.stars"),

Predicting values using a model

To get the vector of residuals from a linear model fit, use the r

esiduals function:
Tesiduals(object, ..)

To get a vector of fitted values, use the fitted function:
fitted(object, ..)

Suppose that you wanted to use the m
set. You can use the predict function t
object and another data frame:

odel object to predict values in another data
o calculate predicted values using the model

interval = ¢("none", "confidence", “prediction"),
level = 0.95, type = c("response”, "terms"),
terms = NULL, na.action = na.pass,

pred.var = res.var/weights, weights = 1, .)

predict(object, newdata, se,fit = FALSE, scale = NULL, df = Inf,

Analyzing the fit

To get the list of coefficients for a model object, use the co
coef(object, ...)

ef function:

2 11.670 < 2e-16 **x
9 6.692 1.34e-10 **x
29.015 < 2e-16 *xx
13.041 < 2e-16 #k*
3.430 0.000702 **x*
4.548 8.33e¢-06 ***
0.734 0.463487
-0.099 0.921530

_ﬁ.Ol (£ 0.05 <.% ¢ 16
. . . 1

?0 degrees of freedon
ted R-squared: 0.9114
- p-value: < 2.2e-16

lowing method js used:
‘igits") - 3),

signif.stars"), ...

‘model fit, use the residuals function:

ad function:

b .
it I]aetct to p%'edlct values in another datg
- late predicted valyes using the mode]

scale = NULL, df

T =1
J? pIEdiCtio;")’ nf,
s "terms"),

s =1, ...)

| r:ae.ci (l?ty the ﬁttl'n.g function, newdata

e 1on specifies how to deal with
-t 1gnores missing values. Yoy
1011S In newdata with missing value:1 r)1

intervals for predicti
) edictions, i i
~nation. ns, in addition

| use the coef function:

re are the coefficients for the model fitted above:

> coef(runs.mdl)

(Intercept) singles doubles triples
-507.16019759 0.56704867 0.69110420 1.15836091
homeruns walks hitbypitch sacrificeflies

1.47438916 0.30117665 0.37749747 0.87218094
stolenbases caughtstealing
0.04369407 -0.01533245

Alernatively, you can use the alias coefficients to access the coef function.
To compute confidence intervals for the coefficients in the fitted model, use the
confint function:
confint(object, parm, level = 0.95, eed)
The argument object specifies the model returned by the fitting function, parm

specifies the variables for which to show confidence levels, and level specifies the
confidence level. Here are the confidence intervals for the coefficients of the model

fitted above:

> confint(runs.mdl)

2.5% 97.5 %
(Intercept) -570.85828008 -443.4621151
singles 0.51583022 0.6182671
doubles 0.57449582 0.8077126
triples 0.81752968 1.4991921
homeruns 1.37432941 1.5744489
walks 0.25570041 0.3466529
hitbypitch 0.16077399 0.5942203
sacrificeflies 0.49451857 1.2498433
stolenbases -0.07349342 0.1608816
caughtstealing -0.32152716 0.2908623

To compute the influence of different parameters, you can use the influence
function:
influence(model, do.coef = TRUE, ves)

For more friendly output, try influence.measures:
influence.measures(model)

To get analysis of variance statistics, use the anova function. For linear models, the
method used is anova. lmlist, which has the following form:

anova.lmlist(object, ..., scale = 0, test = "F")

By default, F-test statistics are included in the results table. You can specify
test="F" for F-test statistics, test="Chisq" for chi-squared test statistics, test="Cp"
for Mallows’ C, statistic, or test=NULL for no test statistics. You can also specify an
estimate of the noise variance o2 through the scale argument. If you set scale=0 (the
default), the anova function will calculate an estimate from the test data. The test
statistic and p-values compare the mean square for each row to the residual mean

square.

Example: A Simple Linear Model | 379

=
)
(=1
=
I
wy
2,
=
=

Here are the ANOVA staristics for the model fitted above:

> anova(runs.mdl)
Analysis of Variance Table

Response: runs

Df Sum Sq Mean Sq F value . Pr(>F)
singles 1 215755 215755 400.4655 < 2.2e-16 *+*
doubles 1 356588 356588 661.8680 < 2.2e-16 **k
triples 1 237 237 0.4403 0.5075647
homeruns 1 790051 790051 1466.4256 < 2.2e-16 ***
walks 1 114377 114377 212.2971 < 2.2e-~16 ***
hitbypitch 1 7396 7396 13.7286 0.0002580 ***
sacrificeflies 1 11726 11726 21.7643 4.938e-06 ***
stolenbases 1 357 357 0.6632 0.4161654
caughtstealing 1 5 5 0.0097 0.9215298
Residuals 260 140078 539

Signif. codes: 0 %% 0,001 ¥k .01 %2 0,05 .2 g.q ¢ 1

Interestingly, it appears that triples, stolen bases, and times caught stealing are not
| statistically significant,

You can also view the effects from a firted model. The effects are the uncorrelated
; single degree of freedom values obtained by projecting the data onto the successive
: orthogonal subspaces generated by the QR-decomposition during the fitting
process. To obtain a vector of orthogonal effects from the model, use the effects
function:

effects(object, set.sign = FALSE, ...)

To calculate the variance-covariance matrix from the linear model object, use the
veov function:

veov(object, ...)
Here is the variance-covariance matrix for the model fitted above:
> veov(runs.mdl) .
(Intercept) singles doubles triples
(Intercept) 1046.4149572 -6.275356e-01 -6.908905e-01 -0.8115627984
singles -0.6275356 6.765565e-04 ~1.475026e-04 0.0001538296
doubles -0.6908905 -1.475026e-04 3.506798e-03 -0.0013459187
triples -0.8115628 1.538296e-04 -1.345919e-03 0.0299591843
homeruns -0.3190194 2.314669e-04 -3.940172e-04 0.0011510663
walks ~0.2515630 7.950878e-05 -9.902388e-05 0.0004174548
hitbypitch -0.9002974 3.385518e-04 -4.090707e-04 0.0018360831
sacrificeflies 1.6870020 -1.723732e-03 -2.253712e-03 -0.0051709718
stolenbases 0.2153275- -3.041450e-04 2.871078e-04 ~0.0009794480
caughtstealing -1.4370890 3.126387e-04 1.466032e-03 -0.0016038175
: homeruns walks hitbypitch sacrificeflies
(Intercept) -3.190194e-01 -2.515630e-01 -0.9002974059 1.6870019518
singles 2.314669e-04 7.950878e-05 0.0003385518 -0.0017237324
doubles -3.940172e-04 -9.902388e-05 -0.0004090707 -0.0022537124
triples 1.151066e-03 4.174548e-04 0.0018360831 -0.0051709718
i homeruns 2.582082e-03 -4.007590e-04 -0.0008183475 -0.0005078943
walks -4.007590e-04 5.333599e-04 0.0002219440 ~0.0010962381
i
380 | Chapter20: Regression Models

‘' mode] fitred above:

: 400.4655 < 2.2e-16 %k
. 6i;.8680 < 2.26-16 %
"465.4403 0.5075647
-4256 < 2.2e-16 *+%
'2112.2971 < 2.2e-16 #xx
213'77(336 0.0002580 *x
0.6643 4.938e-06 *+x
0 0032 0.4161654
-0097 0.921529g

01 **x
0.05 <2 9.1 ¢ s,

dses i

»b a

, and times caught stealing are n
ot

- mode], T
projectmhet;ffects are the uncorrelated
et rgpo Se. tc?atal onto the successjye
e hopo ition during the fieg
. the mode], yge the eﬁ‘eclt]s

Tom the Jj '
linear modej object, use ¢h
. ’ e

nodel fitted above:

doubles

~6.908905¢-07 triples

~0. 8115627984
: 8'0001538295
1.345019e-03 o gpsas9187

=0.0009794480
~0.00160381 75
sacrificeflies
1.6870019518
~0.0017237324
~0.0022537124
~0.0051709718
~0.0005078943
-0, 0010962381

0008183475
3002219440

'—‘_‘——_ﬁ“-‘~_—__“‘~———__

hitbypitCh -8.183475e-04 2.219440e-04 0.0121132852 -0.0011315622
096238e-03 -0.0011315622 0.0367839752

sacrificeflies -5.078943e-04 -1.
stolenbases -2.041656e-06 -1.400052e-04 -0.0001197102 -0.0004636454

caughtstealing 3.469784e-04 6.008766e-04 0.0001742039 -0.0024880710

stolenbases caughtstealing

(Intercept) 2.153275e-01 -1.4370889812
singles -3.041450e-04 0.0003126387
doubles 2.871078e-04 0.0014660316
triples -9.794480e-04 -0.0016038175
homeruns -2.041656e-06 0.0003469784
walks -1.400052e-04 0.0006008766
hitbypitch -1.197102e-04 0.0001742039
sacrificeflies -4.636454e-04 -0.0024880710
stolenbases 3.541716e-03 -0.0050935339
caughtstealing -5.093534e-03 0.0241794596

To return the deviance of the fitted model, use the deviance function:

deviance(object, ...)

Here is the deviance for the model fitted above (though this value is just the residual
sum of squares in this case because runs.mdl is a linear model):

> deviance(runs.mdl)
[1] 140077.6

Finally, to plot a set of useful diagnostic diagrams, use the plot function:

plot(x, which = c(1:3,5),
caption = list("Residuals vs Fitted", "Normal Q-Q",
“Scale-location", "Cook's distance”,
"Residuals vs Leverage",

expression("Cook's dist vs Leverage © o p[ii] / (2 - h[ii])),

panel = if(add.smooth) panel.smooth else points,

sub.caption = NULL, main = "%,
ask = prod(par("mfcol")) < length(which) 83 dev.interactive(),

cees
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75,
gqline = TRUE, cook.levels = c(0.5, 1.0),

add. smooth = getOption("add.smooth"), label.pos = c(4,2),
cex.caption = 1)

This function shows the following plots:

Residuals against fitted values

A scale-location plot of sqre{| residuals |} against fitted values

A normal Q-Q plot '

(Not plotted by default) A plot of Cook’s distances versus row labels

A plot of residuals against leverages

(Not plotted by default) A plot of Cook’s distances against leverage/(l -

leverage)

There are many more functions available in R for regression diagnostics; see the help
file for influence.measures for more information on many of these.

Example: A Simple Linear Model | 381

uoissaibay

b
i
f
i
1

Refining the Model

Often, it is better to use the update function to refit a model. This Can save you some
typing if you are using R Interactively. Additionally, this can save on computatiop
time (for large data sets). You can run update after changing the formula (perhaps
adding or subtracting a term) or even afrer changing the data frame.

For example, let’s fit a slightly different model to the data above. We'll omit the

nd add 0 as a variable (which means to fit the model with
0o intercept):

> runs.mdl2 <- update(runs.mdl, formula=runs ~
+ triples + homeruns + walks + hitbypitch +

+ stolenbases + caughtstealing + o)
> runs.mdl2

singles + doubles +

Call:

Im(formula = runs ~ singles + doubles + triples + homeruns +
walks + hitbypitch + stolenbases + caughtstealing - 1,
data = team.batting.o00too08)

Coefficients:
singles doubles triples homeruns
0.29823 0.41280 0.95664 1.31945
walks hitbypitch stolenbases caughtstealing
0.21352 -0.07471 0.18828 -0.70334

Details About the Im Function

Now that we’ve seen a simple exam
detail what 1m does and how

know). Technically, we assume that:
y=c0+clxl+c2x2+---+cnxn+e

where y is the response variable, x;, x,, ..., x
tors), ¢y, ¢, ..., ¢, are the coefficients for the
and ¢ is the error term. (For more details on the assumptions of the least squares

model, see “Assumptions of Least Squares Regression” on page 384.) The predictors
can be simple variables or even nonlinear functions of variables.

n are the predictor variables (or predic-
predictor variables, Co is the intercept,

382 | Chapter20; Regression Models

1 to refit a mode]. T4
. - Thi
d . S can sav
ail::(;rtl“? lly, this can saye on cofnyoleltso'me'
o er changing the formula (P atiop;
anglﬂg the data frame Perhaps
odel to the

d ?
ible (which ata above, We'y omit the

means to fir the mode] wig, -

‘runs ~

o
itch + ingles + doubes 4

triples + pg

- meruns

-aughtstealing -1 *
b4

;g‘ﬁlse: homeryng
1ases 1.31945
8828 caughtstealing
-0. 70334

. n;)dels work in R
tlinear regression

ssion mode]
You want to pred IS appro-

Y ict) can b i
x ‘ € esti-
bles (the information that YOlll

let’s describe in

i€ predictor vari,
tor Van’ables’ o

- otr Varla‘l‘ales Xand g vector of
;rerms matrix” and “vector”
3 ;rllgdelé SO given a set of cq
, ut data X ,
» calculati
the acty ¢ e
al values y
are called
sure of the icti
prediction er.
ror:
| iSfI: to the actya] values We’
al response valyes and the

residual values (the error term in the model) is 0. This is important to remember: at
pest, a model is probabilistic.T

Our goal is to find the set of coefficients ¢ that does the best job of estimating Y given
x; we’d like the estimates § to be as close as possible to Y. In a classical linear re-
gression model, we find coefficients ¢ that minimize the sum of squared differences
petween the estimates § and the observed values Y. Specifically, we want to find
values for ¢ that minimize:

This is called the least squares method for regression. You can use the 1m function
in R to estimate the coefficients in a linear model:¥
Im(formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

Arguments to 1m include the following.

formula A formula object that specifies the form of the model to fit.
data A data frame, list, or environment (or an object that can be coerced to a data
frame) in which the variables in formula can be evaluated.
subset A vector specifying the observations in data to include in the model.
weights A numeric vector containing weights for each observationin data. NULL
na.action A function that specifies what 1m should do if there are NA values in the data. i~ getOp-
NULL, Imuses na.omit. tion(“na.action”),
which defaults to
nafail

method The method to use for fitting. Only method="qr " fitsamodel, thoughyoucan ~ “qr"
specify method="model.frame" to return a model frame.

model A logical value specifying whether the “model frame” should be returned. TRUE
X Logical values specifying whether the “model matrix” should be returned. FALSE
y A logical value specifying whether the response vector shoufd be returned. FALSE
qr Alogical value specifying whether the GR-decomposition should be returned. TRUE
singular.ok A logical value that specifies whether a singufar fit results is an error. TRUE

1 By the way, the estimate returned by a model is not an exact prediction. It is, instead, the expected
value of the response variable given the predictor variables. To be precise, the estimate § means:

J=E[ylx, %5000 %,)
This observation is important when we talk about generalized linear models later.

1 To efficiently calculate the coefficients, R uses several matrix calculations. R uses a method called
QR-decomposition to transform X into an orthogonal matrix Q and an upper triangular matrix
R, where X = QR, and then calculates the coefficients as ¢ = R-1QTy.

Details About the Im Function | 383

=
b
o
=
@
v
a,
=]
=

contrasts Alist of contrasts for factors in the model, specifying one contrast for each

When con-
factorinthemodel.Forexample,forformulay"'a+b,tospecifyaHelmertcontrast trasts=NULL (the

for a and a treatment contrast for b, you would use the argument
contrasts=(a="contr.helmert", b="contr.treatment").
Some options in Rare "contr . helmert" for Helmert contrasts,

“contr. sum" forsum-to-zero contrasts, "contr . treatment " to contrast
each level with the baseline level, and "contr. poly" for contrasts based on
orthogonal polynomials. See [Venables 20021 foran explanation of why contrasts
are important and how they are used.

default), Im uses
the value from
options(“contrasts”)

offset Avector of offsets to use when building the model. (An offset s a linear term
that is included in the model without fitting.)

Additional arguments passed to lower-level functions such as 1m. fit(forun-
weighted models) or Im. wfit {for weighted models).

Model-fitting functions in R return model objects. A model object contains a lot of
information about the fitted model (and the fitting operation). Different model ob-
jects contain slightly different information.

You may notice that most modeling functions share a few common variables: for

mula, data, na.action, subset, weights. These arguments mean the same thing
for most modeling functions.

If you are working with a very large data set, you may want to consider using the
biglm function instead of 1m. This function uses only p? memory for p variables,
which is much less than the memory required for Im.

Assumptions of Least Squares Regression

Linear models fit with the least squares method are one of the oldest statistical
methods, dating back to the age of slide rules. Even today, when computers are
ubiquitous, high-quality statistical software is free, and statisticians have developed
thousands of new estimation methods, they are still popular. One reason why linear
regression is still popular is because linear models are easy to understand. Another
reason is that the least squares method has the smallest variance among all unbiased
linear estimates (proven by the Gauss-Markov theorem).

Technically, linear regression is not always appropriate. Ordinary least squares

(OLS) regression (implemented through 1m) is only guaranteed to work when certain
properties of the training data are true. Here are the key assumptions:

L. Linearity. We assume that the response variable ¥ is a linear function of the

predictor variables xy, x5, ..., Cpe

2. Fullrank. Thereis no linear relationship between any pair of predictor variables.

(Equivalently, the predictor matrix is not singular.) Technically, V x;, x, B¢

such that x; = cx;.

3. Exogenicity of the predictor variables. The expected value of the error term ¢ is
0 for all possible values of the predictor variables.

384 | Chapter20: Regression Models

one contrast for each

(When con-
vv)speafya Helmertcontrast trasts=NyL| :
1eargument default), Im u(:le i
tr.treatment"). the value from -
ert contrasts, options("com,am
treatment" to contrast
.y" for contrasts based on
Hanation of whycontrasts

“voffset is a linear term
suchas Im. fit (forun-

——

s. A model object contains a lot of
1g operation). Different mode] o,

“are a few common variables: for
~arguments mean the same thing

- may want to consider using the

: ;)nly p? memory for p variables
~ 1m. 7

are one of the oldest statistical
ven today, when computers are
and statisticians have developed
L popular. One reason why linear
are easy to understand. Another

- lest variance among all unbiased
rem).

- dpriate. Ordinary least squares
suaranteed to work when certain
2 key assumptions:

_dle y is a linear function of the

. 1any pair of predictor variables.
" ular.) Technically, v X X, B ¢

cted value of the error term ¢ is
s,

" yariables is not linear).

moscedasticity. The variance of the error term ¢ is constant and is not cor-
ted with the predictor variables.

onaucocorrelation. In a sequence of observations, the values of y are not cor-
‘fated with each other.

xogenously generated data. The predictor variables x1, X3, ..., X, are generated
independently of the process that generates the error term &.

The error term € is normally distributed with standard deviation o and mean 0.

réctice, OLS models often make accurate predictions even when one (or more)
ese assumptions are violated.

uoissaibay

¢ way, it’s perfectly OK for there to be a nonlinear relationship between some
the predictor variables. Suppose that one of the variables is age. You could add

2, log(age), or other nonlinear mathematical expressions using age to the model
'3 not violate the assumptions above. You are effectively defining a set of new
edictor variables: wq = age, wy = age?, wy = log(age). This doesn’t violate the
carity assumption (because the model is still a linear function of the predictor
sriables) or the full rank assumption (as long as the relationship between the new

“ [fyou want to be careful, you can use test functions to check if the OLS assumptions

apply:

« You can test for heteroscedasticity using the function ncv. test in the car (Com-
panion to Applied Regression) package, which implements the Breusch-Pagan
test. (Alternatively, you could use the bptest function in the Imtest library,
which implements the same test. The 1mtest library includes a number of other

functions for testing for heteroscedasticity; see the documentation for more
details.)

« You can test for autocorrelation in a model using the function durbin.watson in
the car package, which implements the Durbin-Watson test. You can also use
the function dwtest in the library Imtest by specifying a formula and a data set.
(Alternatively, you could use the function bgtest in the Imtest package, which
implements the Breusch-Godfrey test. This functions also tests for higher-order
disturbances.)

e You can check that the predictor matrix is not singular by using the
singular.ok=FALSE argument in 1m.

Incidentally, the example used in “Example: A Simple Linear Model” on page 373
is not heteroscedastic:

> ncv.test(runs.mdl)

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 1.411893 Df =1 p = 0.2347424

Details About the Im Function | 385

Nor is there a problem with autocorrelation:

> durbin.watson(runs.mdl)
lag Autocorrelation p-W Statistic p-value
1 0.003318923 1.983938 0.884
Alternative hypothesis: rho != 0
Or with singularity:
runs.mdl <- Im(

formula=runs“singles+doub1es+triples+homeruns+
walks+hitbypitch+sacrificefliess
stolenbases+caughtstealing,

data=team.batting. 00t008, singular.ok=FALSE)

If the model has problems with heteroscedasticity or outliers, consider using a re.
sistant or robust regression function, as described in “Robust and Resistant Regres.
sion” on page 386. If the data is homoscedastic and not autocorrelated, byt the
error form is not normal, a good choice is ridge regression, which is described i
“Ridge Regression” on page 389. If the predictors are closely correlated (and nearly
collinear), a good choice s principal components regression, as described in “Prip.
cipal Components Regression and Partial Least Squares Regression” on page 391.

>
+
+
+
+

Robust and Resistant Regression

Often, ordinary least squares regression works well even with imperfect data. How-
ever, it’s better in many situations to use regression techniques that are less sensitive

to outliers and heteroscedasticity. With R, there are alternative options for fitting
linear models.

Resistant regression

Ityou would like to fit a linear regression model to data with outliers, consider using

uares (LMS) and least trimmed

library(mass)

53 method for class ‘formula‘:

1gs(formula, data, ...,
method = c("1ts", "lgs", "Ims", "s",
subset, na.action, model = TRUE,
X.ret = FALSE, y.ret = FALSE, contrasts = NULL)

"model. frame"),

Default S3 method:
1gs(x, vy, intercept = TRUE, method = c("1ts", "1gs", “Ims", “s"),
quantile, control = 1gs.control(...), ko = 1.548, seed, ...)

Robust regression

Robust regression methods can be useful when there are
heteroscedasticity and outliers in th

a model using MM-estimation:

53 method for class "formula’:
rim{formula, data, weights, ..., subset, na.action,

386 | Chapter20: Regression Models

problems with
e data. The function rlm in the MaSS package fits

-ation:

p-value
0.884

“iples+homeryns+
-acrificefliess
/Stealing,

iar.ok=FALSE)

“«dasticity or outlie

scribed in «
» 'edastif in dRobust and Resistant Regres
ed and not autocorrelated, byt the

which is described in

y correlate
JTents regressio d (and nearly

1, as described in “py;
n . ed In “Prin-
st Squares Regression” op page 39in

ks well even with im
" ession techni

- h

perfect data. How.
o niech ques that are Jess sensitive
alternative options for fitting

- 2l to data with outliers, co

Squares (LMS) and le aoider using

ast trimmed

lmodel . -frame u)’

S = NULL)

;") lllqsll lllmsll Mern
- i S
.0 = 1,548, seed:)),

---':;he.n therc? are problems with
| ction rlmin the Mass package fits

iction,

IS, consider using a re.

method = c("M", "MM", "model.frame"),
wt.method = c("inv.var", "case"),
model = TRUE, x.ret = TRUE, y.ret = FALSE, contrasts = NULL)

Default S3 method:
rim(x, y, weights, ..., w = rep(1, nrow(x)),
init = "1s", psi = psi.huber,
scale.est = c("MAD", "Huber", "proposal 2"), k2 = 1.345,
method = c("M", "MM"), wt.method = c("inv.var", "case"),
maxit = 20, acc = le-4, test.vec = "resid", lqs.control = NULL)

You may also want to try the function ImRob in the robust package, which fits a model
using MS- and S-estimation:

library(robust)

ImRob{formula, data, weights, subset, na.action, model = TRUE, x = FALSE,

y = FALSE, contrasts = NULL, nrep = NULL,
control = 1mRob.control(...), genetic.control = NULL, ...)

Comparing Im, Igs, and rlm

As a quick exercise, we’ll look at how Im, 1gs, and rlm perform on some particularly
ugly data: U.S. housing prices. We’ll use Robert Schiller’s home price index as an
example, looking at home prices between 1890 and 2009.8 First, we'll load the data
and fit the data using an ordinary linear regression model, a robust regression model,
and a resistant regression model:

library(nutshell)

data(schiller.index)

hpi.lm <- 1m(Index~Year,data=schiller.index)

hpi.rlm <- rlm(Index~Year,data=schiller.index)

hpi.lgs <- lgs(IndexYear,data=schiller.index)

vV Vv VvV VvV Vv

Now, we’ll plot the data to compare how each method worked. We’'ll plot the mod-
els using the abline function because it allows you to specify a model as an argument
{as long as the model function has a coefficient function):

> plot(hpi,pch=19,cex=0.3)

> abline(reg=hpi.lm,lty=1)

> abline(reg=hpi.rlm,1ty=2)

> abline(reg=hpi.lgs,1ty=3)

> legend(x=1900,y=200,legend=c(“1m","rIn","1gs"), 1ty=c(1,2,3))

Asyou can see from Figure 20-2, the standard linear model is influenced by big peaks
(such as the growth between 2001 and 2006) and big valleys (such as the dip between
1920 and 1940). The robust regression method is less sensitive to peaks and valleys
in this data, and the resistant regression method is the least sensitive.

Subset Selection and Shrinkage Methods

Modeling functions like 1m will include every variable specified in the formula, cal-
culating a coefficient for each one. Unfortunately, this means that Im may calculate

§ The data is available from http://www.irrationalexuberance.com/.

Subset Selection and Shrinkage Methods | 387

=
[
=1
=
©
A
Z.
=}
>

et A BRI

O .
O —

N .

— Im .

N - flm .

84 i igs .

— L]

Index
120

80

1900 1940 1980

Year

.

coefficients for variables that aren’t needed. You can manually tune a model using
diagnostics like summary and 1m. influence. However, you can also use some other

statistical techniques to reduce the effect of insignificant variables or remove them
from a model altogether.

Figure 20-2. Home prices and Im, rlm, and lqs models

Stepwise Variable Selection

A simple technique for selecting the most important variables is stepwise variable
selection. The stepwise algorithm works by repeatedly adding or removing variables
from the model, trying to “improve” the model at each step. When the algorithm
can no longer improve the model by adding or subtracting variables, it stops and
returns the new (and usually smaller) model.

Note that “improvement” does not just mean reducing the residual sum of squares
(RSS) for the fitted model. Adding an additional variable to a model will not increase
the RSS (see a statistics book for an explanation of why), but it does increase model
complexity. Typically, AIC (Akaike’s information criterion) is used to measure the
value of each additional variable. The AIC is defined as AIC = — 2 = log(L) + k * edf,
where L is the likelihood and edf is the equivalent degrees of freedom.

In R, you perform stepwise selection through the step function:

step(object, scope, scale = o,
direction = c("both", "backward", “forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)

388 | Chapter20: Regression Models

“in manually tune a model using

721, you can also use some other
ficant variables or remove them

1t variables is stepwise variable
ly adding or removing variables
:ach step. When the algorithm
__ tracting variables, it stops and

.- g the residual sum of squares

-, ble to amodel will not increase

- hy), but it does increase model

- iterion) is used to measure the

©as AIC=-2+log(L) + k = edf,
grees of freedom.

" p function:

'),

2, ..)

escription of the arguments to step.

An object representing a model, such as the objects returned by 1m, glm, or aov.

An argument specifying a set of variables that you want in the final model and list of
all variables that you want to consider including in the model. The first set is called the
Jower bound, and the second is called the upper bound. If a single formula is specified, it
is interpreted as the upper bound. To specify both an upper and a lower bound, pass a
tist with two formulas labeled as upper and lower.

A value used in the definition of AlC for Lm and aov models. See the help file for 0
extractAIC for more information.

Specifies whether variables should be only added to the model (direction="for o"both”,
ward"), removed from the mode! (direction="backward"), orboth (direc “backward”,
tion="both"). “forward")

A numeric value that specifies whether to print out details of the fitting process. Specify 1
trace=0 (or a negative number) to suppress printing, trace=1 for normal detail, and
higher numbers for even more detail.

Afunction used to select a subset of arguments to keep from an object. The function NULL
accepts a fitted model object and an AlC statistic.

Anumeric value that specifies the maximum number of steps to take before the function 1000
halts.

The multiple of the number of degrees of freedom to be used in the penalty calculation 2
(extractAIC).

Additional arguments for extractAIC.

There is an alternative implementation of stepwise selection in the MASS library: the
stepAIC function. This function works similarly to step, but operates on a wider
range of model objects.

Ridge Regression

Stepwise variable selection simply fits a model using 1m, but limits the number of
variables in the model. In contrast, ridge regression places constraints on the size of
the coefficients and fits a model using different computations.

Ridge regression can be used to mitigate problems when there are several highly
correlated variables in the underlying data. This condition (called multicollinear-
ity) causes high variance in the results. Reducing the number, orimpact, of regressors
in the data can help reduce these problems.!

In “Details About the Im Function” on page 382, we described how ordinary linear
regression finds the coefficients that minimize the residual sum of squares. Ridge
regression does something similar. Ridge regression attempts to minimize the sum
of squared residuals plus a penalty for the coefficient sizes. The penalty is a constant

Il For example, see [Greene2007].

Subset Selection and Shrinkage Methods | 389

=
[
[t=]
=
I3
v
2,
=]
S

A times the sum of squared coefficients. Specifically, ridge regression tries to mip;.
mize the following quantity:

N

RSS, e (€)= (3~ 7423 &
‘vlv j=l

i=]

To estimate a model using ridge regression, you can use the 1m.ridge function from
the MASS package:
library(MASS)

lm.ridge(formula, data, subset, na.action, lambda = 0, model = FALSE,
X = FALSE, y = FALSE, contrasts = NULL, ...)

Arguments to 1m.ridge are the following.

 AaumER
formula Aformula object that specifies the form of the model to fit.

data Adata frame, list, or environment (or an object that can be coerced to a data frame) in which
the variables in formula can be evaluated.

subset Avector specifying the observations in data to include in the model.

na.action Afunction that specifies what 1m should do if there are NA values in the data. IFNUL L, Im

usesna.omit.
lambda A scalar or vector of ridge constants, 0
model A Iogical value specifying whether the “model frame” should be returned. FALSE
X Logical values specifying whether the “model matrix” should be returned. FALSE
y Alogical value specifying whether the response vector should be returned. FALSE
contrasts Alist of contrasts for factors in the model. NULL

Additional arguments to 1m. fit.

Lasso and Least Angle Regression

Another technique for reducing the size of the coefficients (and thus reducing their
impact on the final model) is the lasso. Like ridge regression, lasso regression puts
a penalty on the size of the coefficients. However, the lasso algorithm uses a different
penalty: instead of a sum of squared coefficients, the lasso sums the absolute value
of the coefficients. (In math terms, ridge uses L2-norms, while lasso uses Linorms.)
Specifically, the lasso algorithm tries to minimize the following value:

M=

RSSIasso (C)=

i

m
A2
(yi=3) 'H\Z le
1 j=1
The best way to compute lasso regression in R is through the lars function:
library(lars)
lars(x, y, type = c("lasso®, "lar", "forward.stagewise", "stepwise"),

390 { Chapter20: Regression Models

ally, ridge regression tries to Minj-

‘an use the Im. ridge function from

lambda = 0, model = FALSE,
L, ...)

€ coerced to a data frame) in which

1 the model.
Avalues in the data. If NULL, 1m

0
ild be returned. FALSE
“4ld be returned, FALSE
- uld be returned. FALSE
NULL

ficients (and thus reducing their
egression, lasso regression puts
zlasso algorithm uses a different
€ lasso sums the absolute value
ms, while lasso uses L!-norms.)
e following value:

'ough the lars function:

:agewise", "stepwise"),

trace = FALSE, normalize = TRUE, intercept = TRUE, Gram,
eps = .Machine$double.eps, max.steps, use.Gram = TRUE)

The lars function computes the entire lasso path at once. Specifically, it begins with
a model with no variables. It then computes the lambda values for which each
variable enters the model and shows the resulting coefficients. Finally, the lars al-
gorithm computes a model with all the coefficients present, which is the same as an
ordinary linear regression fit.

This function actually implements a more general algorithm called least angle re-
gression; you have the option to choose least angle regression, forward stagewise
regression, or stepwise regression instead of lasso. Here are the arguments to the
lars function.

A matrix of predictor variables.

y A numeric vector containing the response variable.

type The type of model to fit. Use type="1asso" forlasso, (“lasso”, “lar”,
type="lar" forleast angle regression, type="forward.stage “forward.stagewise”,
wise" forinfinitesimal forward stagewise, and type="stepwise" “stepwise”)
for stepwise.

trace Alogical value specifying whether to print details as the function is FALSE
running.

normalize Alogical value specifying whether each variable will be standardized to TRUE
have an (2-norm of 1.

intercept Alogical value indicating whether an intercept should beincludedinthe TRUE
model.

Gram TheX'’Xmatrixusedinthe calculations. Torerunlarswithslightlydifferent
parameters, but the same underlying data, you may reuse the Gram
matrix from a prior run to increase efficiency.

eps An effective 0. Machine$double.eps

max.steps Alimit on the number of steps taken by the Lax's function.

use.Gram Alogical value specifying whether 1ars should precompute the Gram TRUE
matrix. (For large , this can be time consuming.)

Principal Components Regression and Partial Least Squares Regression

Ordinary least squares regression doesn’t always work well with closely correlated
variables. A useful technique for modeling effects in this form of data is principal
components regression. Principal components regression works by first transform-
ing the predictor variables using principal components analysis. Next, a linear re-
gression is performed on the transformed variables.

A closely related technique is partial least squares regression. In partial least squares
regression, both the predictor and the response variables are transformed before
fitting a linear regression. In R, principal components regression is available through
the function per in the pls package:

Subset Selection and Shrinkage Methods | 391

=
)
=1
=
o
v
2,
=]
S

library(pls)
pcr(..., method = pls.options()$pcralg)

Partial least squares is available through the function plsr in the same package.
plsr(..., method = pls.options()$plsralg)

Both functions are actually aliases to the function mvr:

mvr (formula, ncomp, data, subset, na.action,
method = pls.options()$mvralg,
scale = FALSE, validation = c("none", "cv", “L00"),
model = TRUE, x = FALSE, y = FALSE, ees)

Nonlinear Models

The regression models shown above all produced linear models. In this section, we’l|

look at some algorithms for fitting nonlinear models when you know the genera]
form of the model.

Generalized Linear Models

Generalized linear modeling is a technique developed by John Nelder and Robert
Wedderburn to compute many common types of models using a single framework.
You can use generalized linear models (GLMs) to fit linear regression models, logistic
regression models, Poisson regression models, and other types of models.

As the name implies, GLMs are a generalization of linear models. Like linear models,
there is a response variable y and a set of predictor variables x1, x,, ..., x,,. GLMs

introduce a new quantity called the linear predictor. The linear predictor takes the
following form:

n=c,x,+c,x,+ -+, x,

In a general linear model, the predicted value is a function of the linear predictor.
The relationship between the response and predictor variables does not have to be
linear. However, the relationship between the predictor variables and the linear pre-
dictor must be linear. Additionally, the only way that the predictor variables influ-
ence the predicted value is through the linear predictor.

In “Example: A Simple Linear Model” on page 373, we noted that a good way to
interpret the predicted value of a model is as the expected value (or mean) of the
response variable, given a set of predictor variables. This is also true in GLMs, and
the relationships between that mean and the linear predictor is what makes GLMs
so flexible. To be precise, there must be a smooth, invertible function m such that:

p=m(n),n=m"(u)=I(u)

The inverse of m (denoted by [above) is called the link function. You can use many
different function families with a GLM, each of which lets you predict a different
form of model. For GLMs, the underlying probability distribution needs to be part

392 | Chapter20: Regression Models

9]

: function plsr in the same package:
lg)

iction mvr:

ztion,

ey "L00"),

cea

ced linear models. In this section we
bl

“ models when you know the gene |

ral

:veloped by John Nelder and Robert

"; of'm.odels using a single framework
‘ofitlinear regression models, logistic-
and other types of models.

F’f, linear models. Like linear models
lictor variables X1 X2, oy X GLM;

" .
ictor. The linear predictor takes the

sa function of the linear predictor.
thor variables does not have to be
edictor variables and the linear pre-

y that the predictor variables influ-
adictor.

373, we noted that a good way to
‘€ expected value (or mean) of the
~€s. This is also true in GLMs and

ar predictor is what makes dLMs
‘3, vertible function m such that:

: lifzk function. You can use many
f/l.uch .Iets you predict a different
ility dlstrib‘ution needs to be part

of the exponential family of probability distributions. More precisely, distributions
that can be modeled by GLMs have the following form:

A

f(yiu;@)=exp E(J’?\(u)—w\(u))ﬂ(}':@)

As a simple example, if you use the identity function for m and assume a normal
distribution for the error term, then n = p and we just have an ordinary linear re-
gression model. However, you can specify some much more interesting forms of
models with GLMs. You can model functions with Gaussian, binomial, Poisson,
gamma, and other distributions, and use a variety of link functions, including iden-
tity, logit, probit, inverse, log, and other functions.

In R, you can model all of these different types of models using the glm function:

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart,
offset, control = glm.control(...), model = TRUE,
method = “glm.fit", x = FALSE, y = TRUE, contrasts = NULL,
ves)

Here are the arguments to gim.

formula A formula object that specifies the form of the model to fit.

family Describes the probability distribution of the disturbance term and the link gaussian
function for the model. (See below for information on different families.)

data A data frame, list, or environment (or an object that can be coerced to a data
frame) in which the variables in formula can be evaluated.

weights A numeric vector containing weights for each observation in data.

subset A vector specifying the observations indata toinclude in the model.

na.action Afunction that specifies what Imshould do if there are NAvaluesinthe data. getOption{“na.ac-
IENULL, Lmuses na.omit. tion”), which de-

faults to na.fail

start A numeric vector containing starting values for parameters in the linear NULL
predictor.

etastart A numeric vector containing starting values for the linear predictor.

mustart A numeric vector containing starting values for the vector of means.

offset A set of terms that are added to the linear term with a constant coefficient of
1.(Youcanuseanoffsettoforceavariable, ora setof variables, intothe model.)

control Alist of parameters for controlling the fitting process. Parameters include glm.control(...),

epsilon (which specifies the convergence tolerance), maxit (which sped- which, in tumn, has
fiesthe maximum number of iterations), and trace (whichspecifieswhether defaults epsi-

to output information on each iteration). See glm. control for more lon=1e-8,
information. maxit=25,
trace=FALSE
model Alogical value specifying whether the “model frame” should be retumed. TRUE

Nonlinear Models | 393

=
1)

=1
=
m
v
2,
=]
S

R

method Themethod touse forfitting. Onlymethod="glm. fit"fitsa model,though “gim.fit"
you can specify method="mode1 . frame" to return a model frame.

e

X Logical values specifying whether the “model matrix” should be returned. FALSE

y Alogical value specifying whether the “response vector” should be returned. TRUE

contrasts Alist of contrasts for factors in the mode!. NULL

Additional arguments passed to gim.controf.
NH

GLM fits a model using iteratively reweighted least squares (IWLS),

As noted above, you can model many different types of functions using GLM. The
following function families are available in R:

binomial(1link = “logit")

gaussian(link = “identity")

Gamma(link = “inverse")

inverse.gaussian(link = "1/mun2")

poisson(link = “log")

quasi(link = “identity", variance = “constant")
quasibinomial(link = “logit")

quasipoisson(link = "log")

You may specify an alternative link function for most of these function families. Here
is a list of the possible link functions for each family.

binomial “logit”, “probit”, “cauchit”, “log", and “cloglog” “logit”
gaussian “identity”, “log”, and “inverse” “identity”
Gamma “inverse", “identity”, and “log” “inverse”
inverse.gaussian ~ “1/mun2”, “inverse”, “identity”, and “log” “1mun”
poisson “log”, “identity”, and “sqrt” “log”
quasi “logit”, “probit”, “cloglog”, “identity”, “inverse”, “log”, “1/muA2”, and “identity”
“sqrt’, or use the power function to create a power link function

quasibinomial “logit”
quasipoisson

“log"

The quasi function also takes a variance argument (with default constant); see the
help file for quasi for more information.

If you are working with a large data set and have limited memory,
consider using the bigglm function in the biglm package.

As an example, let’s use the glm function to fit the same model that we used for 1m.

By default, glm assumes a Gaussian error distribution, so we expect the fitted model
to be identical to the one fitted above:

> runs.glm <- gim(
+ formula=runs"’singles+doubles+triples+homeruns+

394 | Chapter20: Regression Models

you may want to

- “gim.fit”
- oreturn a model frame.

natrix” should be returned. FALSE
sevector” should be returned. TRUE

NULL

least squares (IWLS).
t types of functions using GLM. The

tant”)

most of these function families. Here
umily.

“identity”

“inverse”

“Umun2”
“og”

“log”, "t/mun2",and “identity”
er link function

“logit”
g

nt (with default constant); see the

limited memory, you may want to
ackage.

¢ same model that we used for 1m.
ion, so we expect the fitted model

meruns+

walks+hitbypitch+sacrificeflies+

stolenbases+caughtstealing,
data=team.batting.00to08)

runs.glm

+
+
+
>

call: glm(formula = runs ~ singles + doubles + triples + homeruns +
walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
data = team.batting.00to08)

7z
Coefficients: S
(Intercept) singles doubles triples 2.
-507.16020 0.56705 0.69110 1.15836 =
homeruns walks hitbypitch sacrificeflies
1.47439 0.30118 0.37750 0.87218
stolenbases caughtstealing
0.04369 -0.01533

Degrees of Freedom: 269 Total (i.e. Null); 260 Residual

Null Deviance: 1637000

Residual Deviance: 140100 AIC: 2476
As expected, the fitted model is identical to the model from 1m. (Typically, it’s better
to use 1m rather than glm when fitting an ordinary linear regression model because
1m is more efficient.) Notice that glm provides slightly different information through
the printstatement, such as the degrees of freedom, null deviance, residual deviance,
and AIC. We'll revisit glm when talking about Jogistic regression models for classi-
fication; see “Logistic Regression” on page 435.

Nonlinear Least Squares

Sometimes, you know the form of a model, even if the model is extremely nonlinear.

To fit nonlinear models (minimizing least squares error), you can use the nls
function:

nls(formula, data, start, control, algorithm,
trace, subset, weights, na.action, model,
lower, upper, ...)

Here is a description of the arguinents to the nls function.

formula A formula object that specifies the form of the model to fit.

data A data frame in which formula can be evaluated.

start A named fist or named vector with starting estimates for the fit.

control Alist of arguments to pass to control the fitting process (see the help file for

nls.control for more information).

algorithm The afgorithm to use for fitting the model. Use algorithm="plinear" for
the Golub-Pereyra algorithm for partially linear least squares modelsand algo
rithm="port" for the ‘ni2sol’ algorithm from the Port library.

trace Alogical value specifying whether to print the progress of the algorithm while
nls is running.

Nonlinear Models | 395

subset

An optional vector specifying the set of rows to include.

weights An optional vector specifying weights for observations.

na.action Afunction that specifies how to treat NA values in the data.

model Alogical value specifying whetherto include the model frame as part of the
model object.

lower An optional vector specifying lower bounds for the parameters of the moge|,

upper An aptional vector specifying upper bounds for the parameters of the model,

~ Additional arguments (not Currently used). -

—————

The nls function is actually a wrapper for the nlm function. The nlm functionis similar
to nls, but takes an R function (not a formula) and list of starting parameters ag
arguments. It’s usually easier to use nls because nis allows you to specify models

using formulas and data frames, like other R modeling functions. For more infor-
mation about nlm, see the help file.

By the way, you can actually use nln to fit a linear model. Tt will work, but it will be
slow and inefficient.

Survival Models

Survival analysis is concerned with looking at the amount of time that elapses before
an event occurs. An obvious application is to look at mortality statistics (predicting
how long people live), but it can also be applied to mechanical systems (the time

before a failure occurs), marketing (the amount of time before a consumer cancels
an account), or other areas.

InR, there are a variety of functions in the survivallibrary for modeling survival data.

To estimate a survival curve for censored data, you can use the survfit function:

survfit(formula, data, weights, subset, na.action,
etype, id, ...)

This function accepts the following arguments.

2o ‘zg}‘ SEEE A

formula Destribes the relationship between the response value and the predictors, The
response value should be a Surv object.

data The data frame in which to evaluate formula.

weights Weights for observations. .

subset Subset of observation to use in fitting the model.

na.action Function to deal with missing values.

etype The variable giving the type of event,

id

The variable that identifies individual subjects.

396 | Chapter20: Regression Models

specifying the set of rows to include.
‘specifying weights for observations,
*<ifies how to treat NA values in the data,

" ifying whether to include the model frame as partofth
e

. pecifying lower bounds for the parameters of the model
pecifying upper bounds for the parameters of the model‘
ts (not currently used). .

T

enlmfunction. Thenlmfunctioniss; il

mula) and list of starting parameteml .
:cause nls allows you to specify m(fg :18
'R modeling functions. For more inf(:rS

 linear model. It will work, but it will be

- t the amount of time that elapses before
3 190k at mortality statistics (predictin
. plied to mechanical systems (the timg

nt of time before a consumer cancels

7ival library for modeling survival data.

ta, you can use the survfit function:
na.action,

U ts.

ip between the response value and the predictors. The
eaSurv object.

 toevaluate formula.

B .

- use in fitting the model.
- ssing values.

1pe of event.

s individual subjects.

Specifies the type of survival curve. Options include kaplan-meier",
"£leming-harrington”, and "fh2".

Spedfiesthetype oferror. Possiblevaluesare * greenwood” forthe Greenwood

r
e formula or "tsiatis" for the Tsiatis formula.

Confidence interval type. One of " none™, “plain”, "log" (the default), or

confype

) "log-log".

conflower A character string to specify modified fower limits to the curve, the upper limit
remains unchanged. Possible values are “usual” (unmodified), "peto", and
“modified".

starttime Numeric value specifying a time to start calculating survival information.

confint The level for a two-sided confidence interval on the survival curve(s).

sedfit Alogical value indicating whether standard errors should be computed.
Additional variables passed to internal functions.

/.:/ﬁﬁ#_,__ﬁw,.___ﬁ_,_____,.wﬁ_.._.__,____..#*_.._____.M__,,__,.._.___._,ﬁ_...,____#___.._#_,,_

As an example, let’s fit a survival curve for the GSE2034 data set. This data comes
from the Gene Expression Omnibus of the National Center for Biotechnology In-
formation (NCBD), which is accessible from hitp://www.ncbi.nlm.nih. gov/geol. The
experiment examined how the expression of certain genes affected breast cancer
relapse-free survival time. In particular, it tested estrogen receptor binding sites.
(We'll revisit this example in Chapter 24.) :

First, we need to create a Surv object within the data frame. A Surv object is an R
object for representing survival information, in particular, censored data. Censored
data occurs when the outcome of the experiment is not known for all observations.
In this case, the data is censored. There are three possible outcomes for each obser-
vation: the subject had a recurrence of the disease, the subject died without having
a recurrence of the disease, or the subject was still alive without a recurrence at the
time the data was reported. The last outcome—the subject was still alive without
recurrence—results in the censored values:

> library(survival)

> GSE2034.Surv <- transform(GSE2034,

surv=Surv(
time=GSE2034$months.to.relapse.or.last.-Followup,

event=GSE2034$relapse,
type="right"

PR

show the first 26 observations:

> GSE2034.Survsurv[1:26,]

[1] 101+ 118+ 9 106+ 37 125+ 109+ 14 99+ 137+ 34 32 128+
[14] 14 130+ 30 155+ 25 30 84+ 7 100+ 30 7 133+ 43

Now, let’s calculate the survival model. We'll just make ita function of the ER.status
flag (which stands for “estrogen receptor”):

> GSE2034.survfit <- survfit(
+ formula=surv~ER.Status,

Survival Models | 397

=
2]
=1
=
I3
w
=2
=]
=

+ data=GSE2034.Surv,
+)
The easiest way to view a survfit object is graphically. Let’s plot the mode]:

> plot(GSE2034.survfit,lty=1:2,log=T)
> 1egend(135,1,c("ER+","ER-"),lty=1:2,cex=0.5)

The plot is shown in Figure 20-3. Note the different curve shape for each cohort,

i —_
o | h. iy
o .
~ Ty
o T _H"
!
0 50 100 150
]

Figure 20-3. Survival curves for the GSE2034 data

To fit a parametric survival model, you can use the survreg function in the
survival package:

survreg(formula, data, weights, subset,
na.action, dist="weibull", init=NULL, scale=o0,
control,parms=NULL,mode1=FALSE, x=FALSE,
y=TRUE, robust=FALSE, score=FALSE, ...)

Here is a description of the arguments to survreg.

ks SR S

formula A formula that describes the form of the model; the response is usually a Surv
object (created by the Surv function).

data A data frame containing the training data for the model,

weights Avector of weights for observations in data.

subset An expression describing a subset of observations in data to use for fitting the

model.

na.action Afunction that describes how to treat NA values,

options()$na.action

dist A character value describing the form of the y variable (either "weibull", “weibull”
"exponential”, "gaussian®, "logistic", "lognormal®,or "loglo
gistic")oradistribution like the ones in survreg.distributions.

init Optional vector of initial parameters. NULL
scale Value specifying the scale of the estimates. Estimated if scale <= 0. 0
controf Alist of control values, usually produced by survreg. control.

parms Alist of fixed parameters for the distribution function. NULL

398 | Chapter20: Regression Models

raphically. Let’s plot the model:

2x=0.5)

. ifferent curve shape for each cohort

-— ER+
- - ER-

1
use the survreg function in the

JILL, scale=0,
FALSE,

er)

ponseis usually a Surv
. tato use for fitting the
g options()$na.action
ither "weibull", “weibull”
- gnormal®,or"loglo

Hstributions.
. NULL

cale <= o, 0

ontrol.

NULL

umet

“model, X, ¥ Logical values indicating whether to return the model frame, X matrix, or ¥ vector FALSE

{respectively) with the results.
robust Alogical value indicating whether to use #robust sandwich standard methods.” FALSE

score Alogical value indicating whether to return the score vector. FALSE

" You can compute the expected survival for a set of subjects (or individual expecta-

rions for each subject) with the function survexp:

jibrary(survival)

survexp(formula, data, weights, subset, na.action, times, cohort=TRUE,
conditional=FALSE, ratetable=survexp.us, scale=1, npoints,
se.fit, model=FALSE, x=FALSE, y=FALSE)

Here is a description of the arguments to survexp.

aver

formula Aformulacbjectdescribingtheformofthe model. The (optional) responseshould contatn
avector of follow-up times, and the predictors should contain grouping variables sep-
arated by + operators.
data A data frame containing source data on which to predict values.
weights A vector of weights for the cases.
subset - An expressionindicating which observationsindatashouldbeincludedinthe prediction.
na.action A function specifying how to deal with missing (NA) values in the data. options()
$na.action
times Avector of follow-up times at which the resulting survival curve is evaluated. (This may
also be included in the formula; see above.)
cohort Alogical value indicating whether to calculate the survival of the whole cohort TRUE
{cohort=TRUE) or individual observations (cohort=FALSE).
conditional A logical value indicating whether to calculate conditional expected survival. Specify FALSE
conditional=TRUE if the foflow-up times are times of death, and condi
tional=FALSE if the follow-up times are potential censoring times.
ratetable Afitted Cox model (from coxph) or a table of survival times. SUrvexp.us
scale A numeric value specifying how to scale the resuits. 1
npoints A numeric valueindicating the number of points at which to calcufate individual results.
sefit Alogical valueindicating whetherto include the standard error of the predicted survival.

model,x,y Specifies whetherto return the model frame, the X matrix, or the ¥ vector {respectively}) FALSE forall
three

in the resuits.

The Cox proportional hazard model is a nonparametric method for fitting survival
models. It is available in R through the coxph function in the survival library:

coxph(formula, data=, weights, subset,
na.action, init, control,

method=c("efron”, "breslow”, exact"),

Survival Models | 399

=
m
(=1
=
Il
w
2.
o
=

e ..

AT

singular.ok=TRUE, robust=FALSE,
model=FALSE, x=FALSE, y=TRUE, ...)

Here is a description of the arguments to coxph.

formula

data
weights
subset
fia.action
init

control
method
singular.ok

robust
model

X

y

Aformula that describes the form of the model; the fesponse must be a Surv object
{created by the Surv function).

Adata frame containing source data on which to predict values.

A vector of weights for the cases,

An expression indicating which observations in data should be fit.

A function specifying how to deal with missing (NA) values in the data.
Avector of initial parameter values for the fitting process.

Object of class coxph. control specifying the iteration limit and other control
options.

Acharactervaluespecifying the method forhandling ties. Choicesindude "efron”,
“"breslow”, and "exact",

Alogical value indicating whether to stop with an error if the X matrix js singular or
to simply skip variables that are finear combinations of other variables,

Alogical value indicating whether to return a robust variance estimate.
Alogicat value specifying whether to return the model frame.

Alogical value specifying whether to retum the X matrix.

Alogical value specifying whether to return the Y vector,

Additional arguments passed to coxph.control.

0 for all variables

coxph.control{...)
“efron”
TRUE

FALSE
FALSE
FALSE
TRUE

As an example, let’s fit 2 Cox proportional hazard model to the GSE2034 data:
> GSE2034.coxph <- coxph(

+
+
+

formula=surv~ER.Status,
data=GSE2034.Surv,

> GSE2034.coxph

Call:

coxph(formula = surv ~ ER.Status, data = GSE2034.Surv)

coef exp(coef) se(coef) z p

ER.StatusER+ -0.00378 0.996 0.223 -0.0170 0.99

Likelihood ratio test=0 on 1 df, p=0.986 n= 286

he summary method for coxph objects provides additional information about the

> summary(GSE2034. coxph)

Call:

coxph(formula = surv ~ ER.Status, data = GSE2034.Surv)

n= 286

| Chapter20: Regression Models

‘€sponse must bea Syry object

“adict valyes.

* should be fit.

faluesin the data,
“ess.

O for all variabfeg

tion limit and other controf Coxph.contol{,.)

s.Choicesindude "efron ", “efron”

B ifthexmatrix,issingularor TRUE

- other variables,
fiance estimate, FALSE
fame. FALSE
FALSE
TRUE
e

model to the GSE2034 data:

134. Surv)

z
.70 0.99

" 186

. litional information about the

}.Surv)

coef exp(coef) se(coef) z Pr(>|z})
,StatusER+ -0.00378 0.99623 0.22260 -0.017 0.986

. exp(coef) exp(-coef) lower .95 upper .95
ER.StatusER+ 0.9962 1.004 0.644 1.541

Rsquare= 0 (max possible= 0.983)

" Likelihood ratio test= 0 on 1 df, p=0.9865 Z
Wald test =0 on1df, p=0.9865 3
score (logrank) test = 0 on 1 df, p=0.9865 §

other useful function is cox. zph, which tests the proportional hazards assumption
r a Cox regression model fit:

> cox.zph(GSE2034.coxph)
rho chisq p
ER.StatusER+ 0.33 11.6 0.000655

There are additional methods available for viewing information abour coxph fits,
including residuals, predict, and survfit; see the help file for coxph.object for more
information.

' There are other functions in the survival package for fitting survival models, such
as cch which fits proportional hazard models to case-cohort data. See the help files
for more information.

Smoothing

This section describes a number of functions for fitting piecewise smooth curves to
data. Functions in this section are particularly useful for plotting charts; there are
even convenience functions for using these functions to show fitted values in some
graphics packages.

Splines

One method for fitting a function to source data is with splines. With a linear model,
a single line is fitted to all the data. With spline methods, a set of dlfferent polyno-
mials is fitted to different sections of the data.

You can compute simple cubic splines with the spline function in the stats package:

spline(x, y = NULL, n = 3*length(x), method = "fmm",
xmin = min(x), xmax = max(x), xout, ties = mean)

Here is a description of the arguments to smooth.spline.

X Avector specifying the predictor variable, or a two-column matrix specifying both the
predictor and the response variables.

y If x is a vector, then y is a vector containing the response variable, NULL

n If xout is not specified, interpolation is done at n equally spaced points between xmin 3*length(x)
and xmax.

Smoothing | 401

method Specifies the type of spline. Allowed valyes include

“fam", "natural”
odic", and "monoH, FC".

Xmin Lowest x value for interpolations. min(x)
Xmax Highest x value for interpolations, max{x)
xout An optional vector of valuies specifying where interpolation should be done.

ties Amethod for handiin

g ties. Either the string “ordered" ora function that returns 5 Mean

single numeric valye,

To return a function instead of a list of barameters, use the function splinefun:

splinefun(x, Yy = NULL, method = c("fmm", “periodic"”, “natural®,

ties = mean)

"monoH. F¢ ‘),

function:

smooth.spline(x, Y = NULL, w = NULL, df, spar = NULL,

: Cv = FALSE, all.knots = FALSE, nknots = NULL,
keep.data = TRUE, df.offset = 0, penalty = g1,
control.spar = list())

Hereis a description of the arguments to smooth. spline.

A vectorspedifyingthe predictor

variable,oratwo-columnmatn'xspecifyingboththepredictor
and the response variables,

y If xis a vector, then yisavector containing the response variable, NULL
w An (optional) numeric vector containing weights for the input data. NULL
df Degrees of freedom,
spar Numeric valye specifying the smoothing parameter, NULL
o A logicalvaluespecifying whethertouge ordinary cross-vafidation {cv=TRUE) orgeneralized FALSE
cross-validation (cv=FALSE).
all.knots Alogical value specifying whether to yse alf values in x as knots. FALSE
nknots An integer value specifying the number of knots to use when a11 . knots=FALSE, NULL
keep.data Alogical value indicating whether the input data should pe keptin the resylt. TRUE
df.offset A numeric valye spedfying how much to aljow the dfto be increased in cross-validation, 0
penalty The penalty for degrees of freedom during cross-validation, 1

control.spar Afist of Parameters describing how to compute spar (when not explicitly specified

). See list()
the help file for more information,

For example, we can calculate 2 smoothing spline on the Schiller home price index.
This data set contains one annual measurement through 2006, but then has frac-
tional measurements after 2006, making i slightly difficult to align with other data-

402 | Chapter20: Regression Models

, “natural”, "peri “fmm”
min{x)
max(x)

- olation should be done,
Ted" or a function that returns a mean
e ———

:ters, use the function splinefun:

"periodic”, “natural®, "monoH.FC"),

pplied data, use the smooth.spline

spar = NULL,
5E, nknots = NULL,
=0, penalty = 1,

h.spline.

i

i

T
5

s

- Imnmatrixspecifyingboththepredictor

-)nse variable, NULL
the input data. NULL
NULL

-~validation(cv=TRUE}orgeneralized FALSE

* xasknots. FALSE
~ewhenall.knots=FALSE. NULL
a fld be kept in the result. TRUE
“to be increased in cross-validation, 0
 dtion. 1

" (when not explicitly specified). See list()

- e on the Schiller home price index.
. through 2006, but then has frac-
y difficult to align with other data:

> schiller.index[schiller.index$Year>2006,]
Year Real.Home.Price.Index

118 2007.125 194.6713
119 2007.375 188.9270
120 2007.625 184.1683
121 2007.875 173.8622
122 2008.125 160.7639
123 2008.375 154.4993
124 2008.625 145.6642
125 2008.875 137.0083
126 2009.125 130.0611

We can use smoothing splines to find values for 2007 and 2008:

> library(nutshell)

> data(schiller.index)

> schiller.index.spl <- smooth.spline(schiller.index$Year,
+ schiller.index$Real.Home.Price.Index)

> predict(schiller.index.spl,x=c(2007,2008))

$x

[1] 2007 2008

$y
[1] 195.6682 168.8219

Fitting Polynomial Surfaces

You can fit a polynomial surface to data (by local fitting) using the loess function.
(This function is used in many graphics functions; for example, panel.loess uses
loess to fit a curve to data and plot the curve.)

loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian”, "symmetric"),
method = c(“loess", “model.frame"),
control = loess.control(...), ...)

Here is a description of the arguments to loess.

LA L Sibca S 5 i
formula Aformula specifying the relationship between the response and the predictor
variables.
data A data frame, list, or environment specifying the training data for the model
fit. {If none is specified, formula is evaluated in the calling environment.)
weights A vector of weights for the cases in the training data.
subset An optional expression specifying a subset of cases to include in the model.
na.action A function specifying how to treat missing values. getOption{“na.ac-
tion”)
modef A logical value indicating whether to return the model frame. FALSE
span A numeric value specifying the parameter a, which controls the degree of 075
smoothing.

Smoothing | 403

uoissaifiay

e

enp.target A numeric valye spedifying the

quivalent number of parameters to be ysed
(replaced span).

degree The degree of polynomials used.

2

parametric Avector specifying any terms that should be fit globally rather than locally. FALSE
(May be specified by name, number, or as a logical vector.)

drop.square Specifies whether to drop the quadratic term for some predictors. FALSE

normalize Alogical value specifying whether to normalize predictors to a common scale, TRUE

family Specifies how fitting s done. Specify family="gaussian" tofit byleast “gaussian”
squares, and family="symmetric" to fitwith Tukey's biweight function.

Specifies whether to fit the model or just return the model frame.

Control parameters for loess, typically generated by a call to
loess. control.

method “loess”
control

loess.control(...)

Additional arguments are passed to Loess . control.
- adonaia

Using the same example as above:

> schiller.index.loess <-
> predict(schiller.index.1
[1] 156.5490 158.8857

loess(Real.Home.Price. Index~Year,data=schiller.

ndex)
oess, newdata=data.frame(Year=c(2007,2008)))

Kernel Smoothing

To estimate a probabil

ity density function, regression function, or their derivatives
using polynomials, try

the function locpoly in the library KernSmooth:
library(KernSmooth)
locpoly(x, y, drv = OL, degree, kernel = “normal",

) bandwidth, gridsize = 401L, bwdisc = 25,

range.x, binned = FALSE, truncate = TRUE)

Here is a description of the arguments to locpoly.

A vector of x values (with no missing values).

y Avector of y values (with no missing values).
drv Order of derivative to estimate. oL
degree Degree of local polynomials. drv+1
kernel Kemel function to use, Currently ignored (“normal” is used). “normal”
bandwidth Asingle valueoranarrayoflength gridsizethatspecifiesthe kemelbandwidthsmoothing
parameter,
gridsize Specifies the number of equally spaced points over which the function is estimated, 401L
bwdisc Number of (logarithmically equally spaced) values on which bandwidth is discretized. 25
range.x A vector containing the minimurm and maximum values of x on which to compute the
estimate.

404 | Chapter20: Regression Models

at number of parameters to be used

2

dbe fit globally rather than locally. FALSE
_salogical vector.)

‘erm for some predictors. FALSE
_nalize predictorstoacommonscale, TRUE

ily="gaussian"tofitbyleast “gaussian”
; aussian
sfitwith Tukey's biweight function. ?

return the model frame. “loess”

1erated by a all to loess.control(...)

-s.control.

1.Home.Price.Index~Year,data=schiller, ind

lata=data. frame(Year=c(2007,2008))) ex)

., rggressign function, or their derivatives
“ly in the library KernSmooth:

el = “normal",
bwdisc = 25,
ncate = TRUE)

locpoly.

oL
v drv+1
' ‘mal” is used). “normal”
- hatspecifiesthekernelbandwidth smoothing
" aver which the function is estimated, 401L
" ueson which bandwidth s discretized. 25

m values of x on which to compute the

(asopposedtorawdata). FALSE

pinned Alogical valuespecifyingwhethertointerpretxandyasgrid counts

R also includes an implementation of local regression through the locfit function
in the 1ocfit library:

library(locfit)
Jocfit(formula, data=sys.frame(sys.parent()), weights=1, cens=0, base=0,
subset, geth=FALSE, ..., 1fproc=locfit.raw)

Machine Learning Algorithms for Regression

Most of the models above assumed that you knew the basic form of the model
equation and error function. In each of these cases, our goal was to find the coeffi-
cients of variables in a known function. However, sometimes you are presemed with
data where there are many predictive variables, and the relationships between the
predictors and response are very complicated.

Sratisticians have developed a variety of different techniques to help model more
complex relationships in data sets and to predict values for large, complicated data
sets. This section describes a variety of techniques for finding not only the coeffi-
cients of a model function but also the function itself.

In this section, I use the San Francisco home sales data set described in “More About
the San Francisco Real Estate Prices Data Set” on page 290. This is a pretty ugly data
set, with lots of nonlinear relationships. Real estate is all about location, and we have
several different variables in the data set that represent location. (The relationships
between these variables is ot linear, in case you were worried.)

Before modeling, we’ll split the data set into training and testing data sets. Splitting
data into training and testing data sets (and, often, validation data sets as well) is a
standard practice when fitting models. Statistical models have a tendency to “over-
fit” the training data; they do a better job predicting trends in the training data than
in other data.

1 chose this approach because it works with all of the modeling functions in this
section. There are other statistical techniques available for making sure that a model
doesn’t overfit the data, including cross-validation and bootstrapping. Functions for
cross-validation are available for some models (for example, xpred.rpart for rpart
trees); look at the detailed help files for a package (in this case, with the command
help(package="rpart")) to see if these functions are available fora specific modeling
tool. Bootstrap resampling is available through the boot library.

Because this section presents many different types of models, 1 decided to use 2
simple, standard approach for evaluating model fits. For each model, I estimated
the root mean square (RMS) error for the training and validation data sets. Don’t
interpret the results as authoritative: 1 didn’t try too hard to tune each model’s pa-
rameters and know that the models that worked best for this data set do not work

Machine Learning Algorithms for Regression | 405

uotssa1hay

best for all data sets. However, I thoug
ested in them (in good fun) and thou

Anyway,
function:

ht I'd include the results becau
ght readers would be as well.

se I was ingey.
I wrote the following function to evaluate the performance of each

calculate rms_error <- function(mdl, train, test, yval) {
train.yhat <- predict(object=mdl,newdata=train)
test.yhat <- predict(object=md1,newdata=test)

train.y <- with(train,get(yval))
test.y <- with(test,get(yval))
train.err

<- sqrt(mean((train.yhat - train.y)~2))

test.err «- sqrt(mean((test.yhat - test.y)"2))

c(train. err=train.err,test.err=test. err)
}

To create a random sam
training data. I saved th
derive the same sample later

saved the sample indices to make it easy to define the testing data set.

> nrow(sanfrancisco.home.sales) * 7

[1] 2296.7

> sanfrancisco.home.sales.training.indices <-

+ sample(l:nrow(sanfrancisco.home.sales),2296)

> sanfrancisco.home.sales.testing.indices <
+

+
>

setdiff(rownames(sanfrancisco. home.sales),
sanfrancisco.home.sales. training.indices)
sam‘rancisco.home.sales.training <-

sanfrancisco.home, sales[sanfrancisco.home. sales -training.indices, i
sanfrancisco.home.sales.testing <~

sanfrancisco.home. sales[sanfrancisco.home. sales
save(sanfrancisco. home. sales. training.indices,

sanfrancisco.home.sales -testing.indices,
sanfrancisco.home. sales,

file="~/Documents/book/ current/data/sanfrancisco. home. sales .RData")

-testing.indices,]

++ vy

Note that the sampling is random, so you will get a different subset each
ti

sanfrancisco.home.sales.testing.indices that I used in this section are included
in the nutshell package. (Use the command data(sanfrancisco.home.sales) to
access them. The data sets sanfrancisco.home.sales.training and

sanfrancisco.home. sales. testing are not included.) You can use the same training
and testing sets to re-create the results in this section, or you can pick your own
subsets.

Regression Tree Models

Most of the models that we have seen in this chapter are in the form of a single
equation. You can use the model to predict values by plugging new data values into
a single equation.

Tree models have a slightly different form. Inst

ead of a single, compact equation,
tree models represent data by a set of binary

decision rules. Instead of plugging

R

406 | Chapter20: Regression Models ‘

‘ “clude the results bec
- s would be as we]].

evaluate the Performance o cach
ac

1, test, yval) {
=train)
=test)

(2in.y)»2))
Ly)n2))

iction to pick 70% of values for g},
:tor for later reuse (so that | coulg

-se the same sample as wel]). | also
¢ the testing data set,

. 296)

)s

- -indices)
-sales. training, indices,]

: f.sales.testing.indices,]
es,

ancisco.home.sales. RData")

Il get a different subset each
me.sales -training. indices and
sed in this section are included
a(sanfrancisco.home.sales) to
:co.home.sales.training and
" You can use the same training
10m, or you can pick your own

€ are in the form of 3 single
plugging new data values into

fasingle, compact equation,
on rules. Instead of plugging

—_—

ause I Was iﬂter_

- Tree models are very easy to interpret, bur don’t usually predict values as
ately as other types of models. Tree models are particularly popular in medicine
‘biology, perhaps because they resemble the process that doctors use to make
isions. In this section, we’ll show how to use some popular tree methods for
ession in R.

Re rsive partitioning trees

of the most popular algorithms for building tree models is classification and
gression trees, or CART. CART uses a greedy algorithm to build a tree from the
fraining data. Here’s an explanation of how CART works:

1. Grow the tree using the following (recursive) method:

A. Start with a single set containing all the training data.

B. If the number of observations is less than the minimum required for a split,

stop splitting the tree. Output the average of all the y-values in the training
data as the predicted value for the terminal node.

C. Find a variable x; and value s that minimizes the RMS error when you split
the data into two sets.

D. Repeat the splitting process (starting at step B) on each of the two sets.
2. Prune the tree using the following (iterative) method:
A. Stop if there is only one node in the tree.

B. Measure the cost/complexity of the overall tree. (The cost/complexity
measurement is a measurement that takes into account the number of ob-

servations in each node, the RMS prediction error, and the number of nodes
in the tree.)

C. Try collapsing each internal node on the tree and measure which subtree
has the best cost/complexity.

D. Repeat the process (starting at step A) on the subtree with the best cost/
complexity.
3. Output the tree with the lowest cost/complexity.

R includes an implementation of classification and regression trees in the rpart
package. To fit a model, use the rpart function:

library(rpart)

rpart(formula, data, weights, subset, na.action = na.rpart, method,
model = FALSE, x = FALSE, y = TRUE, parms, control, cost, ced)

Here are the arguments to rpart.

formula Aformula desciibing the refationship between the response and the pre-

dictor variables.
data A data frame to use for fitting the model.
weights An optionial vector of weights to use for the training data.

Machine Learning Algorithms for Regression | 407

uoissasfay

subset An optional expression specifying which observations to use in fitting the
model.

na.action The function to call for missing values.

na.rpart

method A character value that specifies the fitting method. Must be one of “exp",

Ifyisasurvival object, thep
“poisson”, "class", or "anova".

method="exp", ifyhastwo
columns then
method="poisson”, ory if
afactor then
method="dlass", other-
wise method="anova"

model Alogical value specifying whether to keep the model frame in the results FALSE
X Alogical value specifying whether to return the x matrix in the results. FALSE
y Alogical value specifying whether to return the y matrix in the results. TRUE
parms Alist of parameters passed to the fitting function.

control Options that contro! details of the rpart algorithm; see rpart.con

trol for more information.

cost A numeric vector of costs, one for each variable in the model. 1for ali variables

Additional argument passed to rpart . control.

The CART algorithm handles missing values differently from many other modeling
algorithms. With an algorithm like linear regression, missing values need to be fil-
tered out in order for the math to work. However, CART takes advantage of the
rule-based model structure to handle missing values differently. When a value is
missing for an observation at a split, CART can instead split values using a surro-
gate variable. See the help files for rpart for more information on how to control the
process of finding and using surrogates.
As an example, let’s build a regression tree on the San Francisco home sales data set.
We'll start off naively, adding some redundant information and fields that could
lead to a model that overfits the data:
> library(rpart)
> st.price.model.rpart <- rpart(

+ price“bedrooms+squarefeet+lotsize+latitude+
+ longitudetneighborhood+month,
+ data=sanfrancisco.home.sales. training)

-

Let’s take a look at the model returned by this call to rpart. The simplest way to

examine the object is to use print. rpart to print it on the console. The output below
has been modified slightly to fit in this book:

> sf.price.model.rpart
n= 2296

node), split, n, deviance, yval
* denotes terminal node

1) root 2296 8.058726e+14 902088.0

408 | Chapter20: Regression Models

SR
' 1obsevations to use in fitting the

jmethod. Must be one of "exp" i
p*, Ifyisasurvivaloh
Object, thep

methﬂd:"ex

p”.if

coltmns then haste

methOd:"pOisso ”
0 o

afactor then o

m‘ethod=”dass", other-
Wise method="anqyg"
pthe model frame in theresults, ~ FALSE

1m the x matrix in the results. FALSE
1m the y matrix in the results. TRUE
function,

Igorithm; see rpart.con

riable in the model. 1 for all variables

ontrol.

- alues differently from many other model;
ar regression, missing values need to bz lfl'1 lg
: k: However, CART takes advantage of t}lx-
_nissing values differently. When a value 5
ART can instead split values using a surr)
for more information on how to control [;;

ie on the .San Francisco home sales data set
undant information and fields that could

. ze+latitude+
-, aining)

. _by tbis 'call to rpart. The simplest way to
0 q{nnt it on the console. The output below
ook:

2) neighborhood=Bayview,Bernal Heights,Chinatown,Crocker Amazon,

piamond Heights,Downtown,Excelsior,Inner Sunset, Lakeshore,

Mission,Nob Hill,Ocean View,Outer Mission,Outer Richmond,
parkside,Potrero Hill,South OF Market,

outer sunset,
yisitacion valley,Western Addition 1524 1.850806e+14 723301.8

squarefeet< 1772 1282 1.124418e+14 675471.1

hood=Bayview,Chinatown,Crocker Amazon,

d Heights,Downtown,Excelsior,Lakeshore,Ocean View,

Quter Mission,Visitacion Valley 444 1.408221e+13 539813.1 *
9) neighborhood=Berna1 Heights,Inner Sunset,Mission,Nob Hill,
Quter Richmond,Outer sunset,Parkside,Potrero Hill,
south 0f Market,Western Addition 838 8.585934e+13 747347.3 *
5) squarefeet>=1772 242 5.416861e+13 976686.0 *

3) neighborhood=Castro—Upper Market,Financial District,Glen Park,
Haight—Ashbury,Inner Richmond,Marina,Noe valley,North Beach,
pacific Heights,Presidio Heights,Russian Hill,Seacliff,

Twin Peaks,West Of Twin Peaks 772 4.759124e+14 1255028.0
6) squarefeet< 2119 591 1.962903e+14 1103036.0
12) neighborhood=Castro-Upper Market,Glen park,Haight-Ashbury,
Inner Richmond,Noe valley,North Beach,Pacific Heights,
Russian Hill,Twin Peaks,
West Of Twin Peaks 479 1.185669e+14 1032675.0
24) month=2008-02—o1,2008-03-01,2008—06—01,2008-07-01,
2008-08-01,2008-09-01,2008-10-01,2008-11-01,2008-12-01,
2009-01—01,2009-02-01,2009-03-01,2009-04-01,2009-05-01,
2009-06-01,2009-07-01 389 5.941085e+13 980348.3 *
25) month=2008-04-01,2008-05-01 90 5.348720e+13 1258844.0
50) longitude< -122.4142 81 1.550328e+13 1136562.0 *
51) longitude>=-122.4142 9 2.587193e+13 2359389.0 *
13) neighborhood=Financial District,Marina,Presidio Heights,
Seacliff 112 6.521045e+13 1403951.0 *
7) squarefeet>=2119 181 2.213886e+14 1751315.0
14) neighborhood=Castro-Upper Market,Glen park,Haight-Ashbury,
Inner Richmond,Marina,Noe valley,North Beach,Russian Hill,
Twin Peaks,West Of Twin Peaks 159 1.032114e+14 1574642.0
28) month=2008—04—01,2008-06-01,2008-07—01,2008—10-01,
2009-02-01,2009—03-01,2009-04-01,2009—05-01,

2009-06-01,2009-07-01 77 2.070744e+13 1310922.0 *

nth=2008-02-01,2008-03-01,2008-05*01,2008-08-01,

2008-09-01,2008-11-01,2008-12-01,

2009-01-01 82 7.212013e+13 1822280.0

58) lotsize< 3305.5 62 3.077240e+13 1598774.0 *
59) lotsize>=3305.5 20 2.864915e+13 2515150.0
118) neighborhood=Glen Park,Inner Richmond,Twin Peaks,
West Of Twin Peaks 13 1.254738e+13 1962769.0 *
119) neighborhood=Castro-Upper Market,Marina,
Russian Hill 7 4.768574e+12 3541000.0 *
15) neighborhood=Financia1 pistrict,Pacific Heights,
presidio Heights,Seacliff 22 7.734568e+13 3028182.0
30) lotsize< 3473 12 7.263123e+12 2299500.0 *
31) lotsize>=3473 10 5.606476e+13 3902600.0 *

Notice the key on the second line of the output. (Each line contains the node number,
description of the split, number of observations under thatnode in the tree, deviance,
and predicted value.) This tree model tells us some obvious things, like location and

g) neighbor
Diamon

29) mol

Machine Learning Algorithms for Regression | 409

=
)
=1
=
®
w
2.
=
=

size are good predictors of price. Reading a textual description of an rpart object js

somewhat confusing. The method plot.rpart will draw the tree structure i an
rpart object:

1

plot(x, uniform=FALSE, branch-1, compress=FALSE, nspace,
margin=0, minbranch=.3, ...)

You can label the tree using text.rpart:

text(x, splits=TRUE, label, FUN=text, all=FALSE,
pretty=NULL, digits=getOption("digits") - 3, use.n=FALSE,
fancy=FALSE, fwidth=0.8, fheight=0.8, eed)

For both functions, the argument x specifies the rpart object; the other options
control the way the output looks. See the help file for more information about these
parameters. As an example, let’s plot the tree we just created above:

> plot(sf.price.model.rpart,unifo_rm=TRUE,compress=TRUE,lty=3,branch=0.7)
> text(sf.price.model.rpart,all=TRUE,digits=7,use.n=TRUE,cex=0.4,xpd=TRUE,)

As you can see from Figure 20-4, it’s difficult to read a small picture of a big tree,
To keep the tree somewhat readable, we have abbreviated neighborhood names to
single letters (corresponding to their order in the factor). Sometimes, the function

draw. tree in the package maptree can produce prettier diagrams. See “Classification
Tree Models” on page 446 for more details.

neighborhood=abdefghmnpatuvwyzDFH

squarefegl< 1772 squareleet< 2119

1255028
n=772

neighborhokd=cjklorsBEG

75471, 976686
n=1282] n=242

1103036
n=581

1751315
n=181

month=abefghijkimnopgr month=cefimnopqr lotsiz< 3473

539813.1 747347.3
n=444 n=838

1032675 1574642

n=159

lotsizé 3306

1310922

2299500 3902600
n=77

n=12 n=10

1136562 2359389 1598774
n=81 nz=9 n=62

1962769 3541000
n=13 n=7

Figure 20-4. rpart tree for the San Francisco home sales model

410 | Chapter20: Regression Models

g a textual description of an
-rpart will draw the tree gt

.npress=FALSE, nspace,

5, all=FALSE,

'digits") - 3, use.n=
.n=F
1t=0.8, ..) ’ ALSE,

‘ l;lxﬁes .the rpart object; the other opti
- belp file for more information about thOI]s
tree we just created above: o

TRUE, compress=TRUE, 1t
UE, s1ty=3,branch=
,digits=7,use.n=TRUE, cex;0 .4, xpdg.{r;l);g)

cult to reaq a small picture of 3 big tree
1ave abbreviated neighborhood names ¢ .

_ 0
t in the factor). Sometimes, the function

uce pl‘ettier diagram “ l
S. See ifi t
s C aSSlflca 10n

-—_

1

uarelgst< 2119

1761315
n=181

2299500 3902600
n=12 n=10

n=62

1962769 3541000
n=13 n=7

- -
e sales model

Part objecy i
TuCture jp 5

- ose that we

opredicta value with a tree model, you would start at the top of the tree and follow
¢ tree oW, depending on the rules for a specific observation. For example, sup-
had a property in Pacific Heights with 2,500 square feet of living space
and a lot size of 5,000 square feet. We would traverse the tree starting at node 1,
then g0 O node 3, then node 7, then node 15, and, finally, land on node 31. The
d price of this property would be $3,902,600.

estimate

There are 2 number of other functions available in the rpart package for viewing (or E
manipulating) tree objects. To view the approximate r-square and relative error at 2
each split, use the function rsq.rpart. The graphical output is shown in Fig- §

are 20-5; here is the output on the R console:

> rsq.rpart(sf.price.model.rpart)

Regression tree:
rpart(formula = price ~ bedrooms + squarefeet + lotsize + latitude +

Jongitude + neighborhood + month, data = sanfrancisco.home.sales.training)

variables actually used in tree construction:
[1] longitude lotsize month neighborhood squarefeet

Root node error: 8.0587e+14/2296 = 3.5099e+11

n= 2296

(P nsplit rel error xerror xstd
1 0.179780 0 1.00000 1.00038 0.117779 ,
2 0.072261 1 0.82022 0.83652 0.105103
3 0.050667 2 0.74796 0.83211 0.096150
4 0.022919 3 0.69729 0.80729 0.094461 /
5 0.017395 4 0.67437 0.80907 0.096560 ‘
6 0.015527 5 0.65698 0.82365 0.097687
7 0.015511 6 0.64145 0.81720 0.097579
8 0.014321 7 0.62594 0.81461 0.097575
9 0.014063 9 0.59730 0.81204 0.097598
10 0.011032 10 0.58323 0.81559 0.097691
11 0.010000 12 0.56117 0.80271 0.096216

As you can probably tell, the initial tree was a bit complicated. You can remove
nodes where the cost/complexity trade-off isn’t great by using the prune function:

prune(tree, cp, ...)

The argument cp is a complexity parameter that controls how much to trim the tree.
To help choose a complexity parameter, try the function plotep:

plotcp(x, minline = TRUE, lty = 3, col =1,
upper = c("size", "splits”, “none"), ...)

Machine Learning Algorithms for Regression] 41

1.0

— Apparent
| --- XRelative

R-square

-@-9"9-0-00---6-0---9

00 02 04 06 08

I I [! I] |
0 2 4 6 8 10 12

Number of Splits

Figure 20-5. Plot from rsq.rpart(sf.price.model.rpart)

The plotcp function plots tree sizes and relative errors for different parameters of
the complexity parameter. For the example above, it looks like a value of .011 is a

good balance between complexity and performance. Here is the pruned model (see
also Figure 20-6):

> prune(sf.price.model.rpart,cp=0.11)
n= 2296 .

node), split, n, deviance, yval
* denotes terminal node

1) root 2296 8.058726e+14 902088.0

2) neighborhood=Bayview,Bernal Heights,Chinatown,Crocker Amazon,

Diamond Heights,Downtown,Excelsior,Inner Sunset, Lakeshore,Mission,
Nob Hill,Ocean View,Outer Mission,Outer Richmond,Outer Sunset,
Parkside,Potrero Hill,South Of Market,Visitacion Valley,

Western Addition 1524 1.850806e+14 723301.8 *

3) neighborhood=Castro-Upper Market,Financial District,Glen Park,
Haight-Ashbury, Inner Richmond,Marina,Noe Valley,North Beach,
Pacific Heights,Presidio Heights,Russian Hill,Seacliff,Twin Peaks,
West Of Twin Peaks 772 4.759124e+14 1255028.0 *

412 | Chapter20

: Regression Models

.nt
ive

o

>-0--0---0-0---9

I T 1
6 8 10 12

ser of Splits

art)

tive errors for different parameters of
ibove, it looks like a value of .011isa
‘mance. Here is the pruned model (see

hinatown,Crocker Amazon,

,Inner §unset,Lakeshore,Mission,
.0uter.R1chmond,0uter Sunset,
ket,Visitacion valley,

723301.8 *

?c1al District,Glen Park,
1na{Noe Valley,North Beach,
ussian Hill,Seacliff,Twin Peaks
4 1255028.0 * ’

size of tree

1234567810 13

I I T I B R

L

|

X-val Relative Error

06 07 0.8 09 10 1.1 1.2

inf 0.061 0.02 0.016 0.014 0.011

cp

Figure 20-6. Qutput of plotcp for the sf.prices.rpart model

And if you're curious, here is the error of this model on the training and test .

populations:
s calculate_rms_error(stf. price.model.rpart,
+ sanfrancisco.home.sales.training,
+ sanfrancisco.home.sales.testing,
+ “price")
train.err test.err
443806.8 564986.8

The units, incidentally, are dollars.

There is an alternative implementation of CART trees available with R through the
ables, one of the authors of [Vena-

tree package. It was written by W. N. Ven
bles2002]. He notes that tree can give more explicit output while running, but rec-

ommends rpart for most users.

Machine Learning AIgorithmsforRegression | 413

uo1ssaihaY

Patient rule induction method

Another technique for building rule-based models is the patient rule' inductiop
method (PRIM) algorithm. PRIM doesn’t actually build trees. Instead, it partitiong
the data into a set of “boxes” (in p dimensions). The algorithm starts with » box
containing all the data and then shrinks the box one side at a time, trying to maximigze
the average value in the box. After reaching a minimum number of observationg in
the box, the algorithm tries expanding the box again, as long as it can Increase the
average value in the box. When the algorithm finds the best initial box, it then repeats
the process on the remaining observations, until there are no observations left. The
algorithm leads to a set of rules that can be used to predict values.

To try out PRIM in R, there are functions in the library prim:

prim.box(x, y, box.init=NULL, peel.alpha=0.05, paste.alpha=0.01,
mass.min=0.05, threshold, pasting=TRUE, verbose=FALSE,
threshold. type=0)

prim.hdr(prim, threshold, threshold. type)
prim.combine(prim1, primz)

Bagging for regression

Bagging (or bootstrap aggregation) is a technique for building predictive models
based on other models (most commonly trees). The idea of bagging is to use boot-
strapping to build a number of different models and then average the results. The

weaker models essentially form a committee to vote for a result, which leads to more
accurate predictions.

To build regression bagging models in R, you can use the function bagging in the
ipred library:

library(ipred)

bagging(formula, data, subset, na.action=na.rpart, ...)

The formula, data, subset, and na.action arguments work the same way as in
most modeling functions. The additional arguments are passed on to the function
ipredbagg, which does all the work (but doesn’t have a method for formulas):

ipredbagg(y, X=NULL, nbagg=2s, control=rpart.control(xval=0),
comb=NULL, coob=FALSE, ns=length(y), keepX = TRUE, ...)

You can specify the number of trees to build by nbagg, control parameters for
rpart through control, a list of models to use for double-bagging through comb,
coob to indicate if an out-of-bag error rate should be computed, and ns to specify
the number of observations to draw from the learning sample.

Let’s try building a model on the pricing data using bagging. We’ll pick 100 rpart
trees (for fun):

> sf.price.model.bagging <- bagging(

+ price~bedrooms+squarefeet+lotsize+latitude+

+ longitude+neighborhood+month,

+ data=sanfrancisco.home.sales.training, nbagg=100)
> summary(sf.price.model.bagging)

414 | Chapter20: Regression Models

sed models is the patient rule
-t acftually build trees. Instead, i §
_:nsions). The algorithm start; w[i)th
ebox one sideatatime, trying to meuj‘l b'o i
ng a minimum number of observatiolrrln o
e qu again, as long as it can increg e
1m finds the best initial box, it then . o he
5, until there are no observations | fe e
“e used to predict values, o The

ductiop
artitions

in the library prim:

‘pha=0.05, paste.alpha=0.01
1g=TRUE, verbose=FALSE, ’

. ype)

-chnique for building predictive models

ees). The idea of bagging is to use boot-
- odels and then average the results, The
. 2tovote for a result, which leads to ;110re

rou can use the function bagging in the

sn=na.rpart, ...)

arguments work the same way as in
N 'gu,ments are passed on to the function
sn t have a method for formulas):
~rpart.control(xval=0),

- » ns=length(y), keepX = TRUE,)

- 1ild by nbagg, control parameters for

use for double-bagging through comb

hould be computed, and ns to specif);
: learning sample.

| a using bagging. We'll pick 100 rpart

titude+

g, nbagg=100)

Length Class Mode

y 1034 -none- numeric
7 data.frame list
mtrees 100 -none- list
008 1 -none- logical
comb 1 -none- logical
call 4 -none- call

Let’s take a quick look at how bagging worked on this data set:

> calculate_rms_error(sf.price.model.bagging,

uosssaihay

+ sanfrancisco.home.sales.training,
+ sanfrancisco.home.sales.testing,
+ ‘“price")

train.err test.err
491003.8 582056.5

Boosting for regression

Boosting is a technique that’s closely related to bagging. Unlike bagging, the indi-
vidual models don’t all have equal votes. Better models are given stronger votes.

You can find a variety of tools for computing boosting models in R in the package
mboost. The function blackboost builds boosting models from regression trees,
glmboost from general linear models, and gamboost for boosting based on additive
models. Here, we’ll just build a model using regression trees:

> library(mboost) |
Loading required package: modeltools :
Loading required package: stats4 :
Loading required package: party 1
Loading required package: grid ;
Loading required package: coin

Loading required package: mvtnorm

Loading required package: z0o0

> sf.price.model.blackboost <- blackboost(

+ price“bedrooms+squarefeet+1otsize+1atitude+

+ longitude+neighborhood+month,

+ data=sanfrancisco.home.sales.training)

Here is a summary of the model object:

> summary(sf.price.model.blackboost)

Length Class Mode
ensemble 100 -none- list
fit 2296 -none- numeric
offset 1 -none- numeric
ustart 2296 -none- numeric
risk 100 -none- numeric
control 8 boost_control list
family 1 boost_family S4
response 2296 -none- numeric
weights 2296 -none- numeric
update i -none- function
tree_controls 1 TreeControl S4
data 1 LearningSampleFormula S4

Machine Learning Algorithms for Regression | 415

predict 1 -none-

function
call 3 -none- call

And here is a quick evaluation of the performance of this model:

> calculate_rms_error(sf.price.model.blackboost,

+ sanfrancisco.home.sales.training,
+ sanfrancisco.home. sales.testing,
+ “price")

train.err test.err
1080520 1075810

Random forests for regression

Random forests are another technique for building predictive models using trees.
Like boosting and bagging, random forests work by combining a set of other tree
models. Unlike boosting and bagging, which use an existing algorithm like CART
to build a series of trees from a random sample of the observations in the test data,
random forests build trees from a random sample of the columns in the test data,

Here’s a description of how the random forest algorithm creates the underlying trees
(using variable names from the R implementation):
1. Take a sample of size sampsize from the training data.
2. Begin with a single node.
3. Run the following algorithm, starting with the starting node:
A. Stop if the number of observations is less than nodesize.
B. Select mtry variables (at random).
C. Find the variable and value that does the “best” job splitting the observa-

tions. (Specifically, the algorithm uses MSE [mean square error] to measure
regression error, and Gini to measure classification error.)

D. Split the observations into two nodes.
E. Call step A on each of these nodes.

Unlike trees generated by CART, trees generated by random forest aren’t pruned;
they’re just grown to a very deep level.

For regression problems, the estimated value is calculated by averaging the predic-
tion of all the trees in the forest. For classification problems, the prediction is made

by predicting the class using each tree in the forest and then outputting the choice
that received the most votes.

To build random forest models in R, use the randomForest function in the random

Forest package:

library(randomForest)

S3 method for class 'formula':

randomForest(formula, data=NULL, ..., subset, na.action=na.fail)

Default S3 method:

randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=if (1is.null(y) && lis.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),

416 | Chapter20: Regression Models

function
call
rformance of this model:

“21.blackboost,
ing,
ing,

or buildi -
si bulldling predictive models using
o bu tiv re
ork by combining a set of other trees .
e

hich use an existi
ing algorithm like C
ample of the observations in the test :il\ »
1 sample of the columns in the test data -
a.

" rest algorithm cr
- eates the u ;
- entation): nderlying trees

the training data.

- with the starting node:

ns is less than nodesize

"o “])
us: lt\l/'lxgE l[)est” job splitting the observa
mean square err :
[n or] tom
sure classification error.) s

wdes.
5.

erated by random forest aren’t pruned;
le is calculated by averaging the predic-

- cati
- f(l)(;n problems, the prediction is made
- est and then outputting the choice

. le .
randomForest function in the random

ubset, na.action=na.fail)

est=NULL, ntree=500,
s.factor(y))

Ise floor(sqrt(ncol(x))),

Unlike s :
. ith missing observations.

replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (tis.null(y) 88 lis.factor(y)) 5 else 1,
importance=FALSE, localImp=FALSE, nPerm=1,

proximity, oob.prox=proximity,

norm.votes=TRUE, do.trace=FALSE,

keep.forest=!is.null(y) 3% is.null(xtest), corr.bias=FALSE,

keep.inbag=FALSE, vel)

ome other functions we've seen so far, randomForest will fail if called on data
So, we'll set na.action=na.omit to omit NA values. Addi-

tionallys randomForest cannot handle categorical predictors with more than 32 levels,

e will cut out the neighborhood variable:
> sf.price.model.randomforest <- randomForest(
price”bedrooms+squarefeet+lotsize+latitude+

longitude+month,
data=sanfrancisco.home. sales.training,

na.action=na.omit)

=
™
<«
=
n
v
2.
=]
=

SO W

+ o+

The print method for randomforest objects returns some useful information about

the fit:

> sf.price.model.randomforest

Call:
randomForest(formula = price ~ bedrooms + squarefeet + lotsize +

1atitude + longitude + month,

data = sanfrancisco.home.sales.training,

na.action = na.omit)

Type of random forest: regression |
Number of trees: 500 4

No. of variables tried at each split: 2

Mean of squared residuals: 258521431697
% Var explained: 39.78

Here is how the model performed:

> calculate_rms_error(sf.price.model.randomforest,
+ na .omit(sanfrancisco.home. sales.training),
+ na .omit(sanfrancisco.home. sales.testing),

+ "price")

train.err test.err

241885.2 559461.0

As a point of comparison, here are the results of the rpart model, also with NA values
omitted:

> calculate_rms_error(sf.price.model.rpart,
na.omit(sanfrancisco. home.sales.training),

+
+ na.omit(sar{francisco.home.sales.testing),
+ "price")

train.err test.err
442839.6 589583.1

Machine Learning Algorithms for Regression | - 417

MARS

Another popular algorithm for machine learning is multivariate adaptive regression
splines, or MARS. MARS works by splitting input variables into multiple basis func-
tions and then fitting a linear regression model to those basis functions. The basig
functions used by MARS come in pairs: f(x) = {x - tif x > ¢, 0 otherwise} and gx)

={t-xifx<¢0 otherwise}. These functions are piecewise linear functions. The
value t is called a knot.

MARS is closely related to CART. Like CART, it begins by building a large mode]
and then prunes back unneeded terms until the best model is found. The MARS
algorithm works by gradually building up a model out of basis functions (or products

of basis functions) until it reaches a predetermined depth. This results in an over-

fitted, overly complex model. Then the algorithm deletes terms from the model, one
by one, until it has pared back eve

rything but a constant term. At each stage, the
algorithm uses generalized cross-validation (GCV) to measure how well each model
fits. Finally, the algorithm returns the model with the best cost/benefit ratio.
To fit a model using MARS in R, use the function earth in the package earth:
library(earth)
earth(formula = stop(*"no 'formula’ arg"),
data, weights = NULL, wp = NULL, scale.y = (NCOL(y)==1), subset = NULL,

na.action = na.fail, glm = NULL, trace = 0,

keepxy = FALSE, nfold=0, stratify=TRUE, ...) i

Arguments to earth include the following.

; S ?5"“‘?/\ B! ‘%‘

;’.%5 v tault, o
formula Aformula describing the relationship between the response and the predictor stop(“no ‘formufa’
variables. arg”)
data A data frame containing the training data,
weights An optional vector of weights to use for the fitting data. (Itis especially optional, ~ NULL

because it is not supported as of earth version 23-2)

wp Anumeric vector of response weights. Must include a value for eachcolumnofy. NULL
scale.y A numeric value specifying whether to scale y inthe forward pass. (See the help (NCOL(y)==1)
file for more information.) '
‘ subset Alogical vector specifying which observations from data to include. NuLL
na.action Afunction specifying how to treat missing vafues. Only na. fail is currently nafail
: supported.
glm Alist of arguments to glm, NULL
gk] trace Anumeric value spedifying whether to printa “trace” of the algorithm execution. ¢
keepxy Alogical value specifying whether to keep x and y (or data), subset, and weights FALSE
in the modef object. (Useful if you plan to use update to modify the model at a
later time.)
) nfold Anumeric value specifying the number of cross-validation folds. 0
T- stratify Alogical value spedifying whether to stratify the cross-validation folds. TRUE

418 | Chapter20: Regression Models

irning is multivariate ada
Jinput variables into my
odel to those basis func
={x-tifx>¢ 00th

) ' erwise} ap
lons are piecewise lineq 48

7 functions, The

. RT, it begins b ildi
il the beat model s . E° mode
_ 1od§1 out of basis functions'(or er d
‘rmined depth. This resulgs ini o
. ithm deletes terms from the modn IOVer-
Ut a constant term. At each sta o
G(?V) to measure how we]] eachgn? :jhe
-with the best cost/benefit ratio ocel

ction earth in the package earth:

(NCOL(y)==1), subset = NyLL

SRR

: respoj o v
ponse and th stop(“no “formula’

afg"}
12ta), (itis especially optional, NULL

. +value for each column of y. NULL
' forward pass. (See the help (NCOL(y)==1)

* atatoinclude, NULL
lyna.failis currently na.fail
NULL

£ fthe algorithm execution, 0

- fata), subset, and wei
hsubset, ghts FALSE
» to modify the model at a

ion folds. 0
salidation folds. TRUE

p'tlve regreSSion

Itiple basis fu

tio "
0s. The basis

Let's build an carth model on the San Francisco home sales data set. We'll add the

Additional options are passed to earth. fit. There are many, many options
available to tune the fitting process. See the help file for earth for more

The earth function is very flexible. By default, 1m is used to fit models. Note that

im can be used instead to allow finer control of the model. The function earth can’t
ctly with missing values in the data set. To deal with NA values, you need
tly deal with them in the input data. You could, for example, impute me-
dian values or model imputed values. In the example below, I picked the easy
solution and just used the na.omit function to filter them out.

N Cope dire

=
©
2
=
o
w
2,
=
=

trace=1 option to show some details of the computation:

s> sf.price.model.earth <- earth(

+ price”bedrooms+squarefeet+1atitude+

+ longitude+neighborhood+month,

+ data=na.omit(sanfrancisco.home.sales.training), trace=1)

X is a 957 by 54 matrix: 1=bedrooms, 2=squarefeet, 3=latitude,
4=longitude, s=neighborhoodBernalHeights, 6=neighborhoodCastro-UpperMarket,
7=neighborhoodChinatown, 8=neighborhoodCrockerAmazon,
9=neighborhoodDiamondHeights, 10=neighborhoodDowntown,
11=neighborhoodExcelsior, 12=neighborhoodFinancialDistrict,
13=neighborhoodGlenPark, 14=neighborhoodHaight-Ashbury,
15=neighborhoodInnerRichmond, 16=neighborhoodInnerSunset,
17=neighborhoodLakeshore, 18=neighborhoodMarina,
19=neighborhoodMission, 20=neighborhoodNobHill,
21=neighborhoodNoeValley, 22=neighborhoodNorthBeach,
23=neighborhoodOceanView, 24=neighborhood0uterMission,
25=neighborhoodOuterRichmond, 26=neighborhood0uter$unset,
27=neighborhoodPacificHeights, 28=neighborhoodParkside,
29=neighborhoodPotreroHill, 30=neighborhoodPresidioHeights,
31=neighborhoodRussianHill, 32=neighb0rhood5eacliff, '
33=neighborhoodSouthOfMarket, 34=neighborhoodTwinPeaks,
35=neighborhoodVisitacionValley, 36=neighborhoodWest0fTwinPeaks,
37=neighborhoodwesternAddition, 38=month2008-03-01, 39=month2008-04-01,
40=month2008-05-01, 41=month2008-06-01, 42=month2008-07-01,
43=month2008-08-01, 44=month2008-09-01, 45=month2008-10-01,
46=month2008-11-01, 47=month2008-12-01, 48=month2009-01-01,
49=morth2009-02-01, 50=month2009-03-01, 51=month2009-04-01,
52=month2009-05-01, 53=month2009-06-01, 54=month2009-07-01

y is a 957 by 1 matrix: 1=price

Forward pass term 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,

30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80

Reached delta RSq threshold (DeltaRSq 0.000861741 < 0.001)

After forward pass GRSq 0.4918 RSq 0.581

Prune method "backward” penalty 2 nprune 44: selected 36 of 44 terms, and 26
of 54 predictors

After backward pass GRSq 0.5021 RSq 0.5724

Machine Learning Algorithms for Regression | a19

The earth object has an informative
statistics about the model fit:

> sf.price.model.earth
Selected 31 of 41 terms, and 22 of s5 predictors

The summary method will show the basis fun
to information about the fit:

> summary(sf.price.model.earth)

longitude+neighborhood+month,

coefficients
(Intercept) 1452882
h(bedrooms-3) 130018
h(bedrooms-5) -186130
h(squarefeet-2690) 81
h(2690-squarefeet) -178
h(lotsize-2495) 183
h(lotsize-3672) -141
h(latitude-37.7775) -112301793
h(37.7775-1atitude) -7931270
h(latitude-37.7827) 420380414
h(latitud8~37.7888) -188726623
h(latitude-37.8015) ~356738902
h(longitude- -122.464) -6056771
h(-122.438-longitude) -6536227
neighborhoodCastro-tUpperMarket 338549
neighborhoodChinatown -1121365
neighborhoodInnerSunset -188192
neighborhoodMarina -2000574
neighborhoodNobHill -2176350
neighborhoodNoeValley 368772
neighborhoodNorthBeach -2395955
neighborhoodPacificHeights -1108284
neighborhoodPresidioHeights 1146964
neighborhoodRussianHill ~185%710
neighborhoodSeacliff 2422127
neighborhoodWesternAddition -442262
month2008-03-01 181640
month2008-04-01 297754
month2008-05-01 187684
month2008-07-01 -322801
month2008-10-01 115435
oy Selected 31 of 41 terms, and 22 of 55 predictors
i Importance: squarefeet, neighborhoodPresidioHeights,
neighborhoodSeacliff, neighborhoodNoeValley,

print method, showing the function ca] and

Importance: squarefeet, neighborhoodPresidioHeights,
latitude, neighborhoodSeacliff, neighborhoodNoevalley,
neighborhoodCastro-UpperMarket, neighborhoodNobHill,
lotsize, month2008-07-01, neighborhoodWesternAddition, .

Number of terms at each degree of interaction: 1 30 (additive model)
GCV 216647913449 RSS 1.817434e+14 GRSq 0.5162424

ctions for the fitted model in addition

Call: earth(formula=price”bedrooms+squarefeet+lotsize+1atitude+

data=na.omit(sanfrancisco.home.sales .training))

RSq 0.5750596

latitude,

420 | Chapter20: Regression Models

t method, showing the function) and

- predictors
residioHeights,
ghborhoodNoeValley,
' ghborhoodNobHill,
oodWesternAddition, ...
2raction: 1 30 (additive m

GRSq 0.5162424 RSq 0?25;3596

nctions for the fitted model in additio
n

arefeet+lotsize+latitude+
.sales.training))

ients
52882
130018
36130
81
T -178
133
-141
. 1793
10414
6623
3902
3771
3227
3549
.365
1192
574
350
© 772
955

=284

964
. .710
t27
"162
40
- '54
-84
o1
.35

dictors

dioHeights, latitude,
Lley,

neighborhoodCastro—UpperMarket, neighborhoodNobHill,

lotsize, month2008-07-01, neighborhoodwesternAddition, eer
Number of terms at each degree of interaction: 1 30 (additive model)
GCV 216647913449 RSS 1.817434e+14 GRSq 0.5162424 RSQ 0.5750596

The output of summary includes a short synopsis of variable importance in the model.
You can use the function evimp to return a matrix showing the relative importance

* of variables in the model:
evimp(obj, trim=TRUE, sqrt.=FALSE)

The argument obj specifies an earth object, trim specifies whether to delete rows in
the matrix for variables that don’t appear in the fitted model, and sqrt-specifies
whether to take the square root of the GCV and RSS importances before normalizing
them. For the example above, here is the output: '

> evimp(sf.price.model.earth)

col used nsubsets gev
squarefeet 2 1 30 100.00000000 1
neighborhoodPresidioHeights 31 1 29 62.71464260 1
latitude 4 1 28 45.85760472 1
neighborhoodSeacliff 33 1 27 33.94468201 1
neighborhoodNoevalley 22 1 25 ,22.55538880 1
neighborhoodCastro-UpperMarket 7 1 24 18.84206296 1
neighborhoodNobHill 21 1 23 14.79044745 1
lotsize 3 1 21 10.94876414 1
month2008-07-01 43 1 20 9.54292889 1
neighborhoodWesternAddition 38 1 19 7.47060804 1
longitude 5 1 18 6.37068263 1
neighborhoodNorthBeach 23 1 16 4.64098864 1
neighborhoodPacificHeights 28 1 14 3.21207679 1
neighborhoodMarina 19 1 13 3.25260354 0
neighborhoodRussianHill 32 1 12 3.02881439 1
month2008-04-01 40 1 10 2.22407575 1
bedrooms 1 1 8 1.20894174 1
neighborhoodInnerSunset 17 1 5 0.54773450 1
month2008-03-01 39 1 4 0.38402626 1
neighborhoodChinatown 8 1 3 0.24940165 1
month2008-10-01 46 1 2 0.15317304 1
month2008-05-01 41 i 1 0.09138073 1
1ss
squarefeet 100.0000000 1

neighborhoodPresidioHeights 65.9412651 1
latitude 50.3490370 1
neighborhoodSeacliff 39.2669043 1
neighborhoodNoeValley 28.3043535 1
neighborhoodCastro-UpperMarket 24.6223129 1
neighborhoodNobHill 20.6738425 1
lotsize 16.5523065 1
month2008-07-01 14.9572215 1
neighborhoodWesternAddition 12.8021914 1
longitude 11.4928253 1
neighborhoodNorthBeach 9.2983004 1
neighborhoodPacificHeights 7.3843377 1
neighborhoodMarina 7.0666997 1
neighborhoodRussianHill 6.5297824 1

Machine Learning Algorithms for Regression | 421

uoyssalbay

month2008-04-01 5.1687163 1

i bedrooms 3.6503604 1
} neighborhoodInnerSunset 2.1002700 1
| month2008-03-01 1.6337090 1
i neighborhoodChinatown 1.1922930 1
{ month2008-10-01 0.7831185 1
month2008-05-01 0.4026390 1

The function plot. earth will plot mode] selection, cumulative distribution of resid.

uals, residuals versus fitted values, and the residual Q-Q plot for an earth object:
> plot(sf.price. model. earth)

The output of this call is shown in Figure 20-7. There are many options for this
function that control the output; see the help file for more information, Another
useful function for looking at earth objects is plotmo:

> plotmo(sf.price.model.earth)

price: earth(formula:price~bedrooms+squar...

o Model Selection . Cumulative Distribution
S : . ._g.
%) o 3 «Q
g3 2 Pl -
T w3 £
gs =g 8¢ -
T o 5 S
03 N ol
© 32 i
S o § 2 TSN {
0 10 20 30 49 0e+00 26406 4e+06
Number of terms abs(Residuals)
Residuals vs Fitted Normal Q-Q
& v o
< oo a %
$ %’ &
o a
38 38
B F =
o @ Se
o o]
[7]
© []
? e
8 &
0e+00 2e+06 4e+06 a4

Fitted

.1687163 1
-6503604 1
.1002700 1
.6337090 1
11922930 1
7831185 1
4026390 1

selection, cumulati .

> ative distributi

he resi ution of resjq.
residual Q-Q plot for an earth Objecstl.d

e 20-7. There are Many options for this

+ help file for more j
I'e I I
ts is plotmo: nformation. Another

|ce~bedrooms+squar...

g]{%’f

0e+00 2e+06 de+06
abs(Residuals)

Normal Q-

5T S

Residual Quantiles
-20+06 18406 40406

-3 -1 123
Theoretical Quantiles

€l response when varying one or two

stant. Th.
ure 20-8 ,e output of plotmo for the San

earth(formula=price~bedroom...
1 bedrooms 2 squarefeet 3 lotsize
o o% / ‘ =
=3 =] 81—
S T =] =]
3 T T ST T T T T TT STTTTTT 71T
® g 5 10 15 v o 4000 10000 © o 6000 14000
4 latitude 5 longitude 6 neighborhood
8://\\ 8 2
[=pm; o Q
3 T T T g T TT 8
w 37.72 37.78 0_12250 -122.42 ‘Bayview Parkside
7 month
g u
Q
g
2%8-02-01 2009-05-01

S

Figure 20-8. Output of plotmo

For the fun of it, let’s look at the predictions from earth:

> calculate_rms_error(sf.price.model.earth,

+ na.omit(sanfrancisco.home.sales.training),
+ na.omit(sanfrancisco.home.sales.testing),
+ "price")

train.exr test.err

435786.1 535941.5

Neural Networks

Neural networks are a very popular ty
originally designed to approximate ho

pe of statistical model. Neural networks were
w neurons work in the human brain; much of

the original research on neural networks came from artificial intelligence researchers.
Neural networks are very flexible and can be used to model a large number of dif-
ferent problems. By changing the structure of neural networks, it's possible to model
some very complicated nonlinear relationships. Neural networks are so popular that
there are entire academic journals devoted to them (such as Neural Networks, pub-

lished by Elsevier).

The base distribution of R includes an implementatio
of neural networks: single-hidden-layer neural networks. Even this simple form of
neural network can be used to model some very complicated relationships in data
sets. Figure 20-9 is a graphical representation of what these neural networks look
like. As you can see, each input value feeds into each “hidden layer” node. The
output of each hidden-layer node feeds into each output node. What the modeling

n of one of the simplest types

Machine Learning Algotithms for Regression | 423

=
2
=]
=
]
ol

=z,
=
=

A

function actually does is to esti
node and output node.

mate the weights for each input into each hiddey,

Figure 20-9. Single-hidden-layer, feed-forward neural nerwork

» skipping over
re included in the R implementation.

In equation form, here is the formula for neural network models:

i=m i=p
Ve = 8o & +Zwi,k’gi Q; +zwj,ixj
i=1 =

The function & used for the hidden nodes is the sigmoid function: o(x) =
€¥). The function used for the out

gression, and the softmax functi
function in “Neural Networks” on

/(1 +
put nodes is usually the identity function for re-

one output node.

424 | Chapter20: Regression Models

sights for each inpur ;

, ut . . .
put into each hldde'n gt neural network models, use the function nnet in the package nnet:

» 1ibrary(nnet)

S3 method for class *formula’:

nnet(formula, data, weights, ...,
subset, na.action, contrasts = NULL)

Default 53 method:

nnet(x, ¥> weights, size, Wts, mask, =
finout = FALSE, entropy = FALSE, softmax = FALSE, g
censored = FALSE, skip = FALSE, rang = 0.7, decay = 0, 2.
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000, =1
abstol = 1.0e-4, reltol = 1.0e-8, ...)
Arguments t0 nnet include the following.
formula Aformula describing the relationship between the response and the
predictor variables.
data A data frame containing the training data.
weights An optional vector of weights to use for the training data.
Additional arguments passed to other functions (such as the
nnet . default if using the nnet method, of optim).
subset An optional vector specifying the subset of observations to use in fiitting
ol network the model.
na.action Afunction specifying how to treat missing values.
. skip layer connect Ab contrasts Alist of factors to use for factors that appear in the model. NULL
ctors, 1 s
1be mixed into each unit g]z: ulmt s size Number of units in the hidden layer.
: . . 1 ave.
ixedinto the outputs, skippjnpg oze: Wis Initial parameter vector. Randomly chosen,
luded in the R implementation, if not specified
network models: mask Alogical vector indicating which parameters should be optimized. i parameters
linout Uselinout:FALSEforlogisticoutputunits,linout=TRUEf0r|inear FALSE
units.
entropy Alogical value spedifying whetherto use entropy/maximum conditional FALSE
likelihood fitting.
- 2 sigmoid . softmax Alogical value specifying whether to use a softmax/log-linear model FALSE
: Sua%ly t}ll _antlon: o(x) = /(1 + and maximum conditional likefihood fitting.
€ 1denti ;
. ation. (We’ll rét_lty function for re- censored Alogical value speifying whether to treat the input data as censored FALSE
or classificati iscuss the softmax data. (By default, a response variable value of ¢(1, 0, 1) means “both
or IFatlon models, there are dasses 1and 3.” If we treat the data as censored, then ¢(1,0, 1}is
_Or regression models, there is only interpreted to mean “not 2, but possibly Tor3."
skip A logical value specifying whether to add skip-fayer connections from FALSE
input to output.
rang Anumericvaluespecifyingtherangeforinitialrandomweights.Weights 0.7
are chosen between -rang and rang.
decay A numeric parameter for weight decay. 0 ,
-
Machine Learning Algorithms for Regression | 425

maxit

Hess

Maximum number of iterations.

Alogical value specifying whether to return the Hessian of fit.

FALSE
trace Alogical value specifying whether to print out a “trace” as nnet is TRUE
Tunning.
maxNWts A numeric value specifying the maximum number of weights. 1000
abstol A numeric value specifying absolute tolerance. (Fitting process haltsif ~ 1.0e-4
the fit criterion falls below abstol.)
reltol Anumeric value specifying relative tolerance. (Fitting process halts if 1.0e-8

the algorithm can’t reduce the error by reltol in each step.)

There is no simple, closed-form solution for finding the optimal weights for a neura]
network model. So, the nnet function uses the Broyden-Fletcher-Goldfarb-Shanng
(BFGS) optimization method of the optim function to fit the model.

Let’s try nnet on the San Francisco home sales data set. I had to play with the pa-
rameters 2 little bit to get a decent fit. I settled on 12 hidden units, linear outputs
(which is appropriate for regression), skip connections, and a decay of 0.025:

> sf.price.model.nnet <- nnet(

+ price~bedrooms+squarefeet+lotsize+latitude+

+ longitude+neighborhood+month,

+ data=sanfrancisco.home.sales.training, size=12,

+ skip=TRUE, linout=TRUE, decay=0.025, na.action=na.omit)

weights: 740

initial value 1387941951981143.500000
iter 10 value 292963198488371.437500
iter 20 value 235738652534232.968750
iter 30 value 215547308140618. 656250
iter 40 value 212019186628667.375000
iter 50 value 210632523063203.562500
iter 60 value 208381505485842.656250
iter 70 value 207265136422489.750000
iter 80 value 207023188781434.906250
iter 90 value 206897724524820.937500
iter 100 value 206849625163830.156250

final value 206849625163830.156250
stopped after 100 iterations

To view the model, you can use the print or summary methods. Neither is particularly
informative, though the summary method will show weights for all the units. Here is
a small portion of the output for summary (the omitted portion is replaced with an

ellipsis):

> summary(sf.price.model.nnet)
a 55-12-1 network with 740 weights

options were - skip-layer connections linear output units decay=0.025

b->h1 i1->h1 i2->h1 i3->h1 i4->h1
12.59 9.83 21398.35 29597.88 478.93
i6->h1 i7->h1 ig8->h1 i9->h1 110->h1
-0.15 -0.27 0.34 -0.05 -0.31

is->h1
-1553.28
if1->h1
0.16

426 | Chapter20: Regression Models

’s how this model performed:

> calculate_rms_error(sf.price.model.nnet,
na.omit(sanfrancisco.home.sales .training),

erto return the Hessian of fit. FALSE + o L " PP
arto print out 3 “trace” . + na.omit(sanfrancisco.home.sales.testing),
p a“trace” as nnet is TRUE . wprice")
. train.err test.erx
«aximum number of weights, 1000 447567.2 566056.4

ttetolerance. (Fitting process haltsif 1.4 For more complex neural networks (such as networks with multiple hidden layers),

=
©
=]
=
@
wv
7,
=]
=

1.
1) see the packages ANORE, neural, and neuralnet.
e tolerance. (Fitting process halts if 1.0e-8 :
| orby reltol in each step.) 'v PI'OjeCt PurSUit Regressmn
or finding the opti . Projection pursuit regression is another very general model for representing nomn-
g ptimal weights for a neura] Jinear relationships. Projection pursuit models have the form:

s the Broyden-Fletcher—Goldfarb—Shanno

function to fit the model. M
T

)sallecsi data set. I'had to play with the pa- f(X)—r; gnlenX)
_,Zt ed on 12 hidden units, linear outputs

onnecti
' ctions, and a decay of 0.025: The functions g, are called ridge functions. The project pursuit algorithm tries to
Lot optimize parameters for the parameters @y, by trying to minimize the sum of the

atitude+ residuals. In equation form:
1ng, size=12, N M
25, na.action=na.omit

) min, Z }’i_z gm(w;rnxi)
i=1 m—1

R

Project pursuit regression is closely related to the neural network models that we
saw above. (Note the similar form of the equations.) If we were to use the sigmoid
function for the ridge functions gm; projection pursuit would be identical to a neural
network. In practice, projection pursuit regression is usually used with some type
of smoothing method for the ridge functions. The default in R is to use Friedman’s
supersmoother function. (This function is actually pretty complicated and chooses
the best of three relationships to pick the best smoothing function. See the help file
for supsmu for more details. Note that this function finds the best smoother for the
input data, not the smoother that leads to the best model.)

) f
ummary methods. Neither is particularly To use projection pursuit regression in R, use the function ppr:

show weights for all the units. Here is ## S3 method for class 'formula’:

€ omitted ion i . i .acti
portion s replaced with an PP e den ~ FALSE)
=) e =

Default S3 method:
ppr{X, ¥, weights = rep(1,n),

. ;Eiar output units .decay=o.oz5 ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
. .88 14->h1 i5->h1 sm.method = c("supsmu", "spline”, "gcvspline”},
hi 478.93 -1553.28 bass = 0, span = 0, df = 5, gcvpen = 1, ...)
110->h1 i11->ht
-05 -0.31 0.16

Machine Learning Algorithms for Regression | 427

=

E i

TR

Arguments to ppr include the following.

formula/data/subset/

Spedifies the data to use for modeling,

depending on the form of the function,

Ra.action, x/y
weights Avector of weights for each case,
contrasts Alist specifying the contrasts to use for factors. NULL
model Alogical valye indicating whether to retyrn the model frame, FALSE
ww Avector of weights for each response. rep(1, q)
nterms Number of terms to include in the final modet,
max.terms Maximum number of terms to choose from when building the mode}, nterms
optleve An integer value between 0 and 3, which determines how optimization is done. 2
See the help file for more information.
sm.method A character valye specifying the method used forsmoothing the fidge functions, “supsmy”
Spedify sm. method="supsmu" for Friedman’s supersmoother,
sm.method="spline" to yse the code from smooth, spline, or
sm.method="gcvspline" to choose the smoothing method with gev.
bass When sm., method="supsmu" a numeric value specifying the “hass” tone 0
control for the supersmoother algorithm,
span When sm, method="supsmu”, a numeric value specifying the “span” control ¢
for the supersmoother.
df When sm.method="spline", specifies the degrees of freedom for the spline 5
function,
gevpen When sm.method=" gevspline®, anumericvalue spedifying the penaltyfor 1
each degree of freedom,

Let’s try projection pursuit regression on the home sales data:

> sf.price.model.ppr <= ppr(
+ price"bedrooms+squarefeet+lotsize+1atitude+
+ longitude+neighborhood+month,
+ data=sanfrancisc
> sf.price.model.ppr
Call:
ppr(formula = price ~ bedrooms + s
longitude + neighborhood + month
data = sanfrancisco. home.
nterms = 20)

3
sales. training,

Goodness»of fit:
20 terms
1.532615e+13

428 | Chapter29: Regression Models

o.home.sales.training, nterms=20)

quarefeet + Iotsize + latitude +

>

\ 1 k to sa
i {S Of ridge terms; I ha (o Omltted the Output from the bOO \
1en

BN F?Coefﬁc
‘ : .v i i lot
" i o : i i del using the plot function. To p
g *% 1 plot the ridge functions froma ppr mode gmfml:c o ot them
cau ptthe same time, I used the graphical parameter s
hemalid

i i d.
th 4x4 grid (I also narrowed the margins to make them easier to read.)
na T x :

par(mfcol=c(4,4), mar=c(2.5,2.5,1.5,1.5))

i g, depending on the form of the function.

z
=2
‘or factors Ny Plot(sf'Price'mOdd'ppr) iables g
h' del fr L ' - 1oe functions are shown in Figure 20-10. I picked 12 explanato.ry. varéz:1 ta)',)
e e motelfane sk - Theridge d to do best on the validation data (though not on the training :
rep(l, which seeme ice.model.ppr
| model calculate_rms_error(sf.price.model.ppr,)
al model. > na'oait(sanfrancisco.home.sales.trau}ln% s
~from when building the model. nterms : na_omit(sanfrancism-home.sales.testlng s
tich determines how optimization is done. >2 + "price”)
P train.err test.err
194884.8 585613.9
sdused for smoothing the ridge functions. “Supsmuy”
Friedman's supersmoother,
‘ode from smooth. spline, or
.1se the smoothing method with gev. ©] ©
<
meric value specifying the “bass” tone 0 ® < - <
. m < — o
.) (=)
nericvalue specifying the “span” control 0 o e
) -1.4 -1.0
039 243 2.0 -12 98 -9.0 1
fies the degrees of freedom for the spline 5)
numeric value specifying the penaltyfor 1 © T
¥l
¥ ? !
_ 98 -9.2
r0me sales data: 270 276 -138 130
titude+ o N
< (\|l ©
-1, nterms=20) i © <
© ! :
: i
. _ -10.6
cet + lotsize + latitude + 378 386 -80 -72 116 -10
ng,
o - N
G .)
2 b <
ul) ‘-l. i
28 36 _36.8 -36.2 -11.4 -10.8
n enormous amount of information, : ’ ’
urement, projection pursuit vectors, . . I
Figure 20-10. Ridge functions from projection pursiuit mode
Machine Learning Algorithms for Regression | 429

Generalized Additive Models

Generalized additive models are another regression model technique for modelip
complicated relationships in high-dimensionality data sets. Generalized additive
models have the following form:

Y=o<+i fi(X) +e

Notice that each predictor variable x; is first processed by a function fjand is thep
used in a linear model. The generalized additive model algorithm finds the form of
the functions f. These functions are often called basis functions.

The simplest way to fit generalized additive models in R is through the functioy
gam in the library gam:

gam(formula, family = gaussian, data, weights, subset, na.action,
start, etastart, mustart, control = gam.control(...),
model=FALSE, method, x=FALSE, y=TRUE, ...)

This implementation is similar to the version from S and includes support for both
local linear regression and smoothing spline basis functions. The gam package cur-
rently includes two different types of basis functions: smoothing splines and local
regression. The gam function uses a back-fitting method to estimate parameters for
the basis functions, and also estimates weights for the different terms in the mode]
using penalized residual sum of squares.

When using the gam function to specify a model, you need to specify which type of
basis function to use for which term. For example, suppose that you wanted to fit a
model where the response variable was y, and the predictors were u, v, w, and x. To
specify a model with smoothing functions for u and v, a local regression term for w,
and an identity basis functions for x, you would specify the formula as y~s(u)+s(v)
+1lo{w)+x.

Here is a detailed description of the arguments to gam.

formula A GAM formula specifying the form of the model. (See the help files
for s and 1o for more information on how to specify options for the
basis functions.)
family Afarnily object specifying the distribution and link function. See gaussian()
“Generalized Linear Models” on page 392 for a list of families. '
“
data A data frame containing the data to use for fitting. fist
weights An (optional) numeric vector of weights for the input data. NULL
subset An optional vector specifying the subset of observations to use in NULL
fitting the model.
na.action Afunction that indicates how to deal with missing values. options(“na.action”), which is
na.omit by default

430 | Chapter20: Regression Models

- regression model technique for modej;
“ nsionality data sets. Generalized add?:in
ve

_irst processed by a function fiandi
dditive model algorithm ﬁnds{ the f:)sr:r}:ﬂ;
called basis functions. °

ive models in R is through the functiop

, weights, subset, na.action,
:rol = gam.control(...),
© y=TRUE, ...)

“ion from S and includes support for both
ne basis functions. The gam package cur-

- 5 functions: smoothing splines and local
- tting method to estimate parameters for
ghts for the different terms in the model

10del, you need to specify which type of
. tample, suppose that you wanted to fit a
nd the predictors were u, v, w, and x. To
for u and v, a local regression term forw
ould specify the formula as y~s (u)+s(v)’

:nts to gam.

. el(See the help files

secify options for the
- ink function. See gaussian()
‘ ist of families.)
. list
. input data. NULL

rvations to use in NULL

1 values. options(“na.action”), which is
na.omit by default

A numeric value specifying an a priori known component to include
in the additive predictor during fitting.

Starting values for the parameters in the additive predictors.

etastart Starting values for the additive predictors.

Starting values for the vector of means.

‘ mustart

control Alistofparametersforcontrolling thefitting process. Usethefunction gam.control()
gam. control to generatea suitable fist (and see the help file for
that function to get the tuning parameters).

model Alogical value indicating whether the model frame should beindu- FALSE
ded in the returned object.

method A character value specifying the method that should be used to fit NULL
the parametric part of the model. The only allowed values are
method="glm.fit" (which uses iteratively reweighted least
squares)orme thod="model . frame" (whichdoesnothingexcept
return the model frame).

X A logical value specifying whether to return the X matrix {the pre- FALSE
dictors) with the model frame.

y Alogicalvaluespecifyingwhethe'rtoretumtheYveaor(theresponse) TRUE

with the model frame.

Additional parameters passed to other methods (particularly,
gam. fit).

InR, there is an alternative implementation of generalized additive models available
through the function gam in the package mgev:
library(mgcv)
gam(formula,'Family=gaussian() ,data=list(),weights=NUiL, subset=NULL,
na.action,offset=NULL,me’chod="GCV.Cp",
optimizer=c("outer","newton"),control=gam. control(),scale=0,
select=FALSE,knots=NULL,sp=NULL,min. sp=NULL,H=NULL , gamma=1,
£it=TRUE, paraPen=NULL,G=NULL, in.out, ...)

This function allows a variety of different basis functions to be used: thin-plate re-
gression splines (the default), cubic regression splines, and p-splines. The alternative
gan function will estimate parameters for the basis functions as part of the fitting
process using penalized likelihood maximization. The gam function in the mgev pack-
age has many more options than the gam function in the gam package, but it is also a
lot more complicated. See the help files in themgcv package for more on the technical
differences between the two packages.

Support Vector Machines

Support vector machines (SVMs) are a fairly recent algorithm for nonlinear models.
They are a lot more difficult to explain to nonmathematicians than most statistical
modeling algorithms. Explaining how SVMs work in detail is beyond the scope of
this book, but here’s a quick synopsis:

Machine Learning Algorithms for Regression | 431.

uolssasbay

Sgpnmremco

R T

#Incidentally, th

classifiers, and some other
“veryusefulstatisticalfunctions, ”

432 | Chapter20: Regression Models

* SVMs don’t rely on all of the underlying data to train the mode
observations (called the Support vectors) are used. This makes SVM
resistant to outliers (like robust regression techniques) when use
sion. (It’s also possible to use SVMs in the opposite way: to dete

in the data.) You can control the range of values considered through the

insensitive-loss function parameter epsilon.

I. Only sOme

S SOI‘newhat
d for re: Tes.

SVMs use a nonlinear transformation of the in
in additive models or kernels
kernel used in SVMs through
* The final SVM model is fi
lihood estimates.

put data (like the basis functjong
in kernel methods). You can contirol the type of
the parameter kernel.

tted using a standard regression, with maximup, like-

library(eio71)

S3 method for class "formula':
svm(formula, data = NULL,
na.omit, scale = TRUE)

Default S3 method:
svm(x, y = NULL, scale = TRUE, type = NULL, kernel =
“radial”, degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),
coefo = 0, cost = 1, nu = 0.5,

class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,

shrinking = TRUE, cross = o, probability = FALSE, fitted = TRUE,
.-+, subset, na.action = na.omit)

-+«, Subset, na.action =

Other implementations are available through the ksvm and ssvm functions in the
kernlab library, svmlight in the k1ar library, and svmpath in the svmpath library.

Let’s try building an svm model for the home sales data:

> sf.price.model.svm <- svm(

+ price“’bedrooms+square-Feet+lotsize+latitude+
+ longitude+neighborhood+month,

+ data=sanfrancisco.home.sales.training)

s

this is, by far, the worst named
given by the Department of Statistics, TU Wi
functions: SVM classifiers,

package available on CRAN. It’s named for 2 class
fen. The package contains a number of very useful
algorithms for tuning other modeling functions, naive Bayes

useful functions. It really should be called something like

g data to train the model].
-are used. This makes Sy
".on techniques) when use
~he opposite way: to dete

ze of values considered
lon.

Only some
S SOmewhg,
d for regres.
Ct anomaﬁes
through ¢he

~he input data (like the bas;

S functigns
1ethods). You can control the type of
“ter kernel.

wdard regression, with maximum like.

* learn anything about 2 problem by
“nodel. However, SVMs have become
1at SVMs perform well in real-world
Ms are included as part of the Oracle
_-ithms are not.)

. through the function svm:

~,action =

.., kernel =
~x(x)) 1 else 1/ ncol(x),

- rance = 0.001, epsilon = 0.1,
FALSE, fitted = TRUE,

l he ksvm and 1ssvm functions in the
U svmpath in the svmpath library.

s data:

ude+

iilable on CRAN. It’s named for a class
ckage contains a number of very useful
1er modeling functions, naive Bayes
ly should be called something like

2 is how the model performed:

i odel.svm,

r ate_rms_error(sf.price.m o
; Cakuia o—n_lit(sanfrancisco.home.sales.tralr.un%),
: na.omit(sanfrancisco.home.sales.testmg ,
+ . "

it *price")

{train.err test.err

518647.9 641039.5

uoissaibay

Machine Learning Algorithms for Regression | 433

‘lable in R:

le through the agnes function in the

ilable through the diana function in the
nly binary variables are used),

-2e fanny function in the cluster package
“ough the batchSOM and SOM functions in

23

Time Series Analysis

Time series are a little different from other types of data. Time series data often has
long-term trends or periodic patterns that traditional summary statistics don’t cap-
ture. To find these patterns, you need to use different types of analyses. As an ex-
ample of a time series, we will revisit the turkey price data that we first saw in “Time
Series” on page 89.

Autocorrelation Functions

One important property of a time series is the autocorrelation function. You can
estimate the autocorrelation function for time series using R’s acf function:

acf(x, lag.max = NULL,
type = c(“correlation”, “"covariance", "partial”),
plot = TRUE, na.action = na.fail, demean = TRUE, ...}

The function pacf is an alias for acf, except with the default type of "partial”:
pacf(x, lag.max, plot, na.action, ...)
By default, this function plots the results. (An example plot is shown in “Plotting

Time Series” on page 218.) As an example, let’s show the autocorrelation function
of the turkey price data:

> library(nutshell)
> data(turkey.price.ts)
> acf(turkey.price.ts,plot=FALSE)

Autocorrelations of series ‘turkey.price.ts’, by lag

0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500
1.000 0.465 -0.019 -0.165 -0.145 -0.219 ~0.215 -0.122 -0.436 -0.200
0.8333 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833
-0.016 0.368 0.723 0.403 -0.013 -0.187 -0.141 -0.180 -0.226 -0.130

> pacf(turkey.price.ts,plot=FALSE)

463

Partial autocorrelations of series ‘turkey.price.ts’, by lag

0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333
0.465 -0.300 -0.020 -0.060 -0.218 -0.054 -0.061 -0.211 -0.180 0.098
0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833

0.299 0.571 -0.122 -0.077 -0.075 0.119 0.064 -0.149 -0.061

The function ccf plots the cross-correlation function for two time series:

cef(x, y, lag.max = NULL, type = c(“correlation”, “covariance"),
plot = TRUE, na.action = na.fail, ...)

By default, this function will plot the results. You can suppress the plot (to jus£ View
the function) with the argument plot=FALSE.

As an example of cross-correlations, we can use average ham prices in the Uniteg
States. These are included in the nutshell package as ham.price. ts:

> library(nutshell)

> data(ham.price.ts)

> ccf(turkey.price.ts, ham.price.ts, plot=FALSE)

Autocorrelations of series ‘X’, by lag

-1.0833 -1.0000 -0.9167 -0.8333 -0.7500 -0.6667 -0.5833 -0.5000 -0.4167
0.147 0.168 -0.188 -0.259 -0.234 -0.098 -0.004 0.010 0.231
-0.3333 -0.2500 -0.1667 -0.0833 0.0000 0.0833 0.1667 0.2500 0.3333
0.228 0.059 -0.038 0.379 0.124 -0.207 -0.315 -0.160 -0.084
0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 0.9167 1.0000 1.0833
-0.047 -0.005 0.229 0.223 -0.056 -0.099 0.189 0.039 -0.108

You can apply filters to a time series with the filter function or convolutions (using
fast Fourier transforms [FFTs]) with the convolve function.

Time Series Models

Time series models are a little different from other models that we’ve seen in R. With
most other models, the goal is to predict a value (the response variable) from a set
of other variables (the predictor variables). Usually, we explicitly assume that there
is no autocorrelation: that the sequence of observations does not matter.

With time series, we assume the opposite: we assume that previous observations
help predict future observations (see Figure 23-1).

To fit an autoregressive model to a time series, use the function ar:

ar(x, aic = TRUE, order.max = NULL,
method=c("yule-walker", "burg", “ols", “mle", "yw"),
na.action, series, ...)

464 | Chapter23: Time Series Analysis

s ‘turkey.price.ts’, by lag

My HOBBY: EXTRAPOLATING

7 0.5000 0.5833 0.6
. .6667 0
. ¢ <7500 o,
: 10.054 0.061 -0.211 -0.180 008333
% -3333 1.4167 1.5000 1.5833 %8

0.
119 0.064 -0.149 -0.061 RS You CAN SEE, BY LATE

NEXTMONTH YOU'LL HAVE
OVER FOUR DOZEN HUSBANDS.
J BEMERGETA
BULK RATE ON
b WEDDING CAKE.

ition function for two time series:

L]
("correlation”, * .
) cov "
l.l, .._) ’ arlance’)’

'ults. You can su
' T .
ALSE. ppress the plot (10 just viey,

can use average h .
am prices in t .
1 Package as ham.price.ts: he Umted

. plot=
plot=FALSE) J
ag — ‘
Figure 23-1. Extrapolating times series
» ;’:gz ‘0(-)65’3; ~0.5833 -0.5000 -0.4167 Here is a description of the arguments to ar.
~0. -0.004 0.010 B
3 . 0.2 }
ng ?6053; 0.1667 0.2500 0.333; 2
N . -0.315 -0.160 -g RN
’ ;gg ?683393 0.9167 1.0000 1_62;3; X A time series.
0-189 0.039 -0.108 alic Alogical value that specifies whether the Akaike information criterion is used to TRUE

choose the order of the model.

1€ filter functi
1on or convolut
A numeric value specifying the maximum order of the model to fit.

NULL

SaL135 AW}

1ons (using

. nvolve function. order.max
method A character value that specifies the method to use for fitting the model. Specify (“yule-walker”,
method="yw" (or method="yule-walker")forthe Yule-Walker method, “burg”, “ols”,
method="burg" for the Burg method, method="0ls" for ordinary least “mie”, "yw")

: otlher models that we’ve seen in R With squares, or method="mLe" for maximum likelirood estimation.
value :)
Usuall(the response variable) from a ser
b Y, we explicitly assume that there seies
servations does not matte
I. demean

na.action A function that specifies how to handle missing values.

A character vector of names for the sexies.
A logical value specifying if a mean should be estimated during fitting.

' we assume :
that previous observations varmethod Specifies the method used to estimate the innovations variance when

23-1).

es, use the function ar:

, "mle", ,,yw"))

method="ar.burg".

Additional arguments, depending on method. -

nctions, depending on the fit

The ar function actually calls one of four other fu
method chosen: ar.yw, ar.burg, ar.ols, or ar.mle.
autoregressive model to the turkey price data:

> library(nutshell)

> data(turkey.price.ts)

> turkey.price.ts.ar <- ar(turkey.price.ts)

> turkey.price.ts.ar

Call:
ar(x = turkey.price.ts)

As an example, let’s fit an

Time Series Models | 465

!

Coefficients:
1 2 3 4 5 6 7
0.3353 -0.1868 -0.0024 0.0571 -0.1554 -0.0208 0.0914
8 9 10 11 12

-0.0658 -0.0952 0.0649 0.0099 0.5714
Order selected 12 sigma”2 estimated as 0.05182

You can use the model to predict future values. To do this, use the predict function
Here is the method for ar objects:

predict(object, newdata, n.ahead = 1, se.fit = TRUE, ved)
The argument object specifies the model object to use for prediction. You can uge

newdata to specify new data to use for prediction, or n.ahead to specify a number of

periods ahead to predict. The argument se. fit specifies whether to return standard
errors of the prediction error.

Here is a forecast for the next 12 months for turkey prices:

> predict(turkey.price.ts.ar,n.ahead=12)

$pred

Jan Feb Mar Apr May Jun
2008 1.8827277 1.7209182
2009 1.5439290 1.6971933 1.5849406 1.7800358

Jul Aug Sep Oct Nov Dec
2008 1.7715016 1.9416776 1.7791961 1.4822070 0.9894343 1.1588863
2009
$se

Jan Feb Mar Apr May Jun
2008 0.2276439 0.2400967
2009 0.2450732 0.2470678 0.2470864 0.2480176

Jul Aug Sep Oct Nov Dec
2008 0.2406938 0.2415644 0.2417360 0.2429339 0.2444610 0.2449850
2009

To take a look at a forecast from an autoregressive model, you can use the function
ts.plot. This function plots multiple time series on a single chart, even if the times
are not overlapping. You can specify colors, line types, or other characteristics of

each series as vectors; the ith place in the vector determines the property for the ith
series.

Here is how to plot the turkey price time series as a solid line, and a projection 24
months into the future as a dashed line:

ts.plot(turkey.price.ts,

predict(turkey.price.ts.ar,n.ahead=24)$pred,
lty=c(1:2))

The plot is shown in Figure 23-2. You can also fit autoregressive integrated moving
average (ARIMA) models in R using the arima function:

arima(x, order = c(o0, 0, 0),

seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE,

466 | Chapter23: Time Series Analysis

5 6 7
-0.1554 -0.0208 0.0914
12
0.5714

'd as 0.05182

al I (o] dO thls, use the pI edlct Ct)
ues. fun 10]
.

..‘l, se.fit = TRUE, ...)

 obi -
o g-ect to use for prediction. You can
B f.xton, or n.ahead to specify a numbeuse
2. fit specifies whether to return stand;(;f
r

for turkey prices:

=12)
Apr May Jun
‘ 1.8827277 1.
7800358 7 1.7209182
Oct Nov Dec

4822070 0.9894343 1.1588863

Apr May Jun
, 0.2276439 0.
2480176 9 02400967

Oct Nov Dec

1429339 0.2444610 0.2449850

?re'sswe model, you can use the functio

series on a single chart, even if the timen
.s, line types, or other characteristics o;
ctor determines the property for the ith

i .
_ies as a solid line, and a projection 24

- lead=24)$pred,

so fit autoregressive i
essive integrated i
1a function: g moving

), period = NA),

transform.pars = TRUE,
fFixed = NULL, init = NULL,

method = c("CSS-ML", "ML", “css™y,
n.cond, optim.method = "BFGS",
optim.control = 1list(), kappa = 1e6)

0.5

Figure 23-2. F

orecast of turkey prices using an autoregressive mo

a | T | T

0002 2004 2006 2008 2010

Time

del

Here is a description of the arguments to arima.

X

order

seasonal

xreg

include.mean

tranform.pars

fixed

init

Time Series Models | 467

A time series.

A numericvector (p, @, q),wherep is the AR order, d is the degree of
differencing, and q is the MA order.

Alistspecifying the seasonal partofthe model. The list contains two parts: the

order and the period.
An {optional) vector or matrix of external regressors (with the same number
of rows as x).

Alogical value specifying whetherthe model should includea mean/intercept

term.
Alogical value specifying whether the AR parameters should be transformed
to ensure that they remain in the region of stationarity.

An optional numeric vector specifying fixed values for parameters. (Only NA

values are varied.}
A numeric vector of initial parameter values.

(0,0,0)

list{order = (0,0,
0), period = NA)
NULL

TRUE

TRUE

NULL

NULL

=l
E
o
v
b
=
]
2

AT

e,
T s

3

EREE

A character valye speci
method="CSS-ML" yses conditional sum of s
then maximym likelihood, Specify method=
only, or method="csg" for conditional sum

n.cond A numeric valye indicating the number of initi
for conditional sum of squares),
optim.method A character value that is passed to optimasmethod.
optim.control Alist of values that is passed to optimas control.
kappa

_____________________________ help file for more information,

fying the fitting method to use. Th

quares to find starting values,
"ML" for maximum likelihood
of squares only.

al values to ignore (only used

The prior variance for the past observations in 3 differenced model, See the

ERR

"CSS-ML”

I
“Css7)

“BFGS”
list()

Exhibit D

| Home l Screenshots Download Docs Support Development Blog

Introducing RStudio

RStudio™ is a new integrated development environment (IDE) for R. RStudio combines an intuitive
user interface with powerful coding tools to help you get the most out of R.

e Productive

fon Gee ves Wetges et Sy
= RStudio brings together everything you need to be

e ——— T —— — -
Lol R - e : productive with R in a single, customizable

[y pea—" o — Ve s o 30 s ien . . L. i

o e 08 - . environment. Its intuitive interface and powerful
protEge— e L T Lo coding tools help you get work done faster.

e I

Runs Everywhere

RStudio is available for all major platforms
including Windows, Mac OS X, and Linux. It can
even run alongside R on a server, enabling
multiple users to access the RStudio IDE using a
web browser.

Free & Open

Like R, RStudio is available under a free software

license that guarantees the freedom to share and
change the software, and to make sure it remains
free software for all its users.

‘ Download RStudio™

News
RStudio v0.93 Available (4/11/2011)

RStudio v0.93 is now available. This release includes source editor enhancements, options for customizing pane layout
and appearance, an interactive plotting package, improved handling of Unicode characters, and many more small
enhancements and bug fixes. All of the details on the new release can be found in our release notes

Announcing RStudio (2/28/2011)

We are pleased to announce availability of the beta version of RStudio! RStudio is a new open-source IDE for R that runs
either on your desktop or on a server (where it is accessed using a browser). We invite everyone to check out the
screenshots for more details; download the product to try it out, and follow its ongoing development on github.

© 2011 RStudio, Inc. About | Contact | t Follow on Twitter | FAQ | License (AGPL) | Trademark

1 of 51
http://rstudio.org/ 4/18/11 8:28 PM

Screenshots

RStudio Screenshots

Download

Docs Support Development Blog

RStudio runs on all major platforms, and can even be run on a server and accessed remotely
using a web browser:

o -_t—m

Wi e e, s s T
-uw-mnc = Whawe_bastiiise = 51}

]
 Srivbloriin, Sirohe $eis » Pasbaks whormbirty. sl =

T e— ——- =
el I L e L .'|
|
o — I e o L e et -
—
. ey
Wty At 4] |
|
P e Petan -
™ Fima Biwer e e 5

[

|

T Setesms Wy D
B L I el L L y

P e 3

——ce) =
Ry Sy i s
Sy s age | Serwrne-{n1]
B e 1]
Dl 1
enige o et s St |
| P R Pakaem e -]
oo ua® o o |
N g e, o B g
: ods B ® Dt
i
Subsetting Viectors, Matrices and
Data Frames

Windows

- e My -
e]

\-ﬂ-—b B basas | e Bt + o U

L T
AR e o B v

wan |
I

g < alsen mtite e
b g et e Pl e e Pusege Sy -
[Py {
B v Pt =1
ot D e L d |
g P e
et - e e el L L
- e e)
-m!'“:: Lreeas e ey, b 8
» Tikoary lplge)
- Uibryattasss e
o Tibewy platin e Fra B Gt s Py
ey febared fuiam il .
Lty el e Cradte Cm by e e B o Ty
* Wiapert et sat
elata = Sead halWtete dne”) L) Sot Gutia Wiared By Wedm L AL WAL
trtalimesy = D4 cwtatal D10 W e, e
- ke e gt o of o Lot o Ly
Wlow fema wat
Wihen e peameritats | catntal @ W P B s g
s g e
Jomma msemnees
Ubuntu

| e —
- b -u-l B T e, o 51
e

|

| . e
i et JE) B "
e (LS
L] L bl
o "
[vige o migmiling I »
|o\lﬂ1-w.-.c.m!ml,

o i l“'.‘l.
allesioe be

pn o Bac{vige * (Law - U
oy o L~ L
8 i) bt e ang - 1) i sy

o W e LS
U et bas Vih e e F DRI WS
O et B e E L

o wnlipan b o i O, 0, F, vige, Cawp,)

W oo Liglarnd o (r 0 B9 * signd) * (0 amp - 1)
l—- l-»tmn'h-n e
. g * (L

Lol
|o-u-¢-u|-} e -'nuv) * g

- .

e — 1 " |
Over the Web

RStudio integrates all of the tools you use while working with R into a single customizable

environment:

http://rstudio.org/screenshots/

2 of 51

4/18/11 8:32 PM

¥t s G et T St — nben s Flweea s spbens Blewmbs owess g Tl Wetams Sy »3|

Bl L S e QL8 S b ad | s] P v e L] :u COrmmtas & £ o S et Il O] Hites b s
i o e - # i denlpnis L pem—s en
O i o wt e g i vl it LR i B et Rl
4D - =
: = .:“_ Pt ' b b A
iy s | Ctmasrnd ¥ wwan |
s Oescrae i) el ! e i
. . Rt o < AN wraelh | wtintarme, rasdai © e
. . -
e e e e ™ it 5 o ;"‘W
whten o et ettt L et T bt v —
e JQ“:“MN'} 1
s it Nenaiamary o e 1] +
Enatvtuts, “aiion s 1) e e = Al e, semieiie o W) _:,!
W wns | e | Pie | Patogs | By ~e (¥ [l dvne v i i T —;
B P Bt hem Oew e] e s i c———— L |
Sy bt ke Tata, Y Ive - | ateta Wirentoie @ tuwe [lewen Qe Wi
e bt | kT, e W] OB mae _Iﬂ
W e, g, oW - e, A L ¥ Bnen o mtien ary ik t 1
- - iy b ol Ve » e e T O rwean e]
% . . ¥ <
[P ¢ R L ¢ C #) pest RAER e, T, b
= -3 e R A e L V)
] “wrviee® “wuma® opring” ril al
" -, |--|-m_-" . ‘»
1 e [NSS—— -t
£ bl v Wby i) s
* Vil av o n»n
Ny natn pas w1 e | B it 2
L L L] R e
BAannPaRADUN o g)
* Sl bt gt e £ M) e Ben e Sefas S b e
BEANEESO"~D e M eE BN uE Ve
Aruniregronns v enrelmtioe, “um v 5
* whevims, s, (WL o i, Sms - aeeg, wes I] |
w37 ey by Age o T’) + aptelpien Vitie o T
et spst{piee = EH)] . -] %
. . .]
. faan »
J 5
Source, Console, Workspace, and Plots Tabbed Source Editor

L e e e il = T Swh— — a0 ST ek Sy a0
et e | T oy - e e -.el
/=, 'I).LQ o8 G g ® Pl O Pl B e Oawsh]
Price Lattice
-
- - oo
A W i s
;t - - e o |
. .- - -
|8 pigem - wtmiting A L B - - - = |
A P = =
e o inll i i 5 - - --.1
S - At (1, 5, 00 L 7, S - _,1
o laginl o (¥ * viged) * .] &] * T -
b reir e M e~ i . w s
e R G :Iﬂlﬂ:"“ﬂlﬂlﬂ, : d] d :
) e e Thoap = 10} * praeiil segd w='--“"u=_ - L T 2 4
P o gt aviee e ;--: e bk]
A b o R (4, 8, b, 1, 0, vigu) -. -n-;- - mm
o aolarin dndh, 5, o, %, %, Vi) - - - A .
.o Bratopl vt ey - 0) T » . e -
— LT -
el o Ao (1, B, 6 W, 1, 0, Vg MY - 00D ety ! " =+ 2 . w
§ s 0 — W) — .
PR - 8 — o 4 o . e
uﬂ-'n—\-u e t--_:ﬂlﬂ-anﬂnm ::":M - " S .
:!lwl - 0w A e “U‘-?‘“-'"‘ 2:“"“’:“.‘“ L - . -
- AT e— .
B i e, 5. Lo 4o St} oy B
R L R] L = Py ."'g:.w i I v T T T
__,_.g_._.n".‘-.._'. s, R S p——" ':[r-:ﬁ::-".'m.... i, BT - 0 ’ i ’ 3 i
| a2 iy —ais 3 e vegn
Customized for Coding Customized for Plotting

RStudio includes a variety of powerful coding tools designed to enhance your productivity:

3 of 51
http://rstudio.org/screenshots/ 4/18/11 8:32 PM

[ST e -]

T e A e [= [Ny S =

e o P e

-
s

|
()
-
«
Caante - -
- v l -
e A we A we .
Dot) 4 FU0 G G AT Bat G . -
e e B
- AT e AP e e -
Bl AW S b3 B =
- me e e S
g B cn .
e G e e b S
R T . -
whemleriie, caret, deta Famed] i Sl i 3 i
> hoatorian Surhe 0 o Shamsdhe SHker = cloriny, Wieb o | L hepestrag g b T a—
i) v .

Searchable History Code Completion

L e Y S L=l R T] T et — - |
e e A R e I T R i L L] A e s Rns o D b]
¥ e Suiprias b i w S
1 [om wm——— 4 i i e 23 . L
s Y e i AN i 3 . -
i v~ L]
" B
o "
. »
Fem b
| e bal, 8, 5, Ve, § e, 1)
e of | i
e giie b o St (6, 8, F, sigem, §oaep, 1)
g e Saginiu) s (0 s BN gt d) ¥ e 0D
dpm o f gyt (L
- Ay e A it (e 1Y
p Bl e R T T -
— J s s 4 o b e y Wrmtvmr © o e @ 5
s e D0 e o
: O tem Fevhors b (pntites T 3
B =2 - SR . O mamans W e, RIL B0
P ¥ o At R e, 0% ittt o L T B
» o ey e - U e B e IR L
:E%, [- -
(. 1 —
Ly e et B e vtk g o § r
Biadng feiered pahag @il Basd Gwm Tred by wh. | VAl VR .
In:ln-v::l“-u- e T -
w8 e
ghopes o 4 s spmnr o B Latetar if (rapias
P e] Te § Lnpt P e - o8
Wi * L
4 Clam o g 8 s St oo S s T RRan . R et s ¢ * e - 0 et
Al s et o e sttt k:] ‘
. mtrage by St . i 5
Execute From Source Code Transformations

RStudio supports authoring TeX and Sweave documents:

4 of 51
http://rstudio.org/screenshots/ 4/18/11 8:32 PM

LA Y DR S T ks — "nl Bt s bt e T et — ==

R A Rl R R L i L L] N R A el SOSeimen s e | O inate u--'.n—n— o O w
Priin el Pl Lty WA r Land Dbl e Conate o WP B
B uml Lol b dabie aoie =] 1 (- iat e dadie mtoie
- S et et DI | ot e dnbls sris 3] (e o
o W et ean fming]IV .] jP——
l__. - i 'gm | et iinimet, 14l o Prioe LTLe", e o)
B) M, v e R, Vieiget e 30, Peine 1) e e -
i . o s g
Rl S e
i Cnm § - on
1 e i | | o)
= - 8 Gt v 1
- ool Chm 1, R, et st
L i I S T L t iy e | Mt | Wy -
S oot Lemrin I —— T —
R Y I erwis i gty | [S o e @ s
L e] - |
R e LT o9 NI et L RIr
HASE e LA @ | O et b L e
PPN e h PRI AT Pl D e—tom MAGE e R PIR
IO e AL E e e B] A eI
A st L bt U W puvmengeel 4 AIG Ll
HA e ML FEER B e e]
.l R e] A e L
'lnmﬂd
e i
ey e File bowmliention e
B heew v (Labelnte Dhurn §)
3 teee vl (Lielelute Ouea 1)
'II- e tem Soe {label e (e 1) j
| .
| .

Syntax Highlighting Editor One-Click PDF

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

5 of 51
http://rstudio.org/screenshots/ 4/18/11 8:32 PM

Home Screenshots Download | Docs Support Development Blog

Download RStudio v0.93

If you run R on your desktop:

R ; Download RStudio Desktop

OR

If you run R on a Linux server and want to
enable users to remotely access RStudio
using a web browser:

‘ Download RStudio Server

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

6 of 51

http://rstudio.org/download/ 4/18/11 8:33 PM

RStudio Documentation

Using RStudio Advanced Topics

L] Working in the Console L] Interactive Plotting with Manipulate
] Editing and Executing Code L] Using Different Versions of R

L1 Using Command History L1 Character Encoding

] Working Directories and Workspaces] Optimizing your Browser for RStudio
] Customizing RStudio] Uploading and Downloading Files

] Keyboard Shortcuts

RStudio Server More

__] Getting Started] About RStudio

] Configuring the Server] Release Notes

L1 Managing the Server L1 Frequently Asked Questions
] Running with a Proxy __] Getting Help with R

© 2011 RStudio, Inc.

7 of 51
http://rstudio.org/docs/ 4/18/11 8:34 PM

Home Screenshots Download | Docs | Support Development Blog

Working in the Console

Overview

The RStudio console includes a variety of features intended to make working with R more productive and
straightforward. This article reviews these features. Learning to use these features along with the related features
available in the Source and History panes can have a substantial payoff in your overall productivity with R.

Code Completion

RStudio supports the automatic completion of code using the Tab key. For example, if you have an object named
pollResults in your workspace you can type poll and then Tab and RStudio will automatically complete the full name
of the object.

The code completion feature also provides inline help for functions whenever possible. For example, if you typed sub
then pressed Tab you would see:

Console -~/ =]

sub {base} subset(x, ...)

T Return subsets of vectors, matrices or data frames which meet
subset.data.frame [base} conditions.

subset.default {base}
subset.matrix {base}

substitute {base} ¥
substituteDirect {methods} ¥ Press F1 for additional help

> subl v

Code completion also works for function arguments, so if you typed subset(and then pressed Tab you'd see the

following:
Console ~/ =] H
B = x
: = object to be subsetted.
> subset=
> select=
v drop=
>
>
> Press F1 for additional help
> subset(] "H

Retrieving Previous Commands

As you work with R you'll often want to re-execute a command which you previously entered. As with the standard R
console, the RStudio console supports the ability to recall previous commands using the arrow keys:
e Up — Recall previous command(s)

e Down — Reverse of Up

If you wish to review a list of your recent commands and then select a command from this list you can use Ctrl+Up to
review the list (note that on the Mac you can also use Command-Up):

Console -~/ =]

~ .

8 of 51
http://rstudio.org/docs/using/console 4/18/11 8:37 PM

[.a 00]

example <- read.csv("example.csv")
names(example)
head(example)

MMM M MY Y Y

|
A
v

> |

You can also use this same keyboard shortcut to quickly search for commands that match a given prefix. For example,
to search for previous instances of the plot function simply type plot and then Ctrl+Up:

Console -~/ =]

> I~

> \

>

: gplot(carat, data = diamonds)

5 aplot(price, data = diamonds)

3 gplot(price, carat, data = diamonds)

i B b

> gplot(] 4
v

Console Title Bar

This screenshot illustrates a few additional capabilities provided by the Console title bar:

e Display of the current working directory.

e The ability to interrupt R during a long computation.

e Minimizing and maximizing the Console in relation to the Source pane (using the buttons at the top-right or by
double-clicking the title bar).

Console ~ /reports/analysis/ . =]

>

Keyboard Shortcuts
Beyond the history and code-completion oriented keyboard shortcuts described above, there are a wide variety of other
shortcuts available. Some of the more useful shortcuts include:

e Ctrl+1 — Move focus to the Source Editor

e Ctrl+2 — Move focus to the Console

e Ctrl+L — Clear the Console

e Esc — Interrupt R

You can find a list of all shortcuts in the Keyboard Shortcuts article.

Related Topics
e Editing and Executing Code
e Using Command History

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark
9 of 51

http://rstudio.org/docs/using/console 4/18/11 8:37 PM

Home Screenshots Download Docs Support Development Blog

Editing and Executing Code

Overview

RStudio's source editor includes a variety of productivity enhancing features including syntax highlighting, code
completion, multiple-file editing, and find/replace.

RStudio also enables you to flexibly execute R code directly from the source editor. For many R developers this
represents their preferred way of working with R. By executing commands from within the source editor rather than the
console it is much easier to reproduce sequences of commands as well as package them for re-use as a function. These
features are described in the Executing Code section below.

Managing Files

RStudio supports syntax highlighting and other specialized code-editing features for the following types of files:

e R scripts
e Sweave documents

e TeX documents

To create a new file you use the File -> New menu:

@ m Edit ~ View ~ Workspace ~ Plots ~ Help -

'i ?7 R Script 08N 2|
ﬂ’ Open File... 3@0! |9 Text File —5 |
> Open Recent ¥ @y gyeave Document ‘
=l Save xsi &) TeX Document
Save As...
& Print...

To open an existing file you use either the File -> Open menu or the Open Recent menu to select from recently opened
files.

If you open several files within RStudio they are all available as tabs to facilitate quick switching between open
documents. If you have a large number of open documents you can also navigate between them using the >> icon on
the tab bar or the View -> Switch to Tab) menu item:

@ 7analysisR * |rawdatz 3> ==["| Workspace History

[~ Run Line(s) | < | @ || [Save~ | _#*Import Dataset
@7 portfolio.R
@7 portfolioStats.R 53940 obs. of 10 var
Q1Report.Rnw integer[10]
?7 analysis.R
~| rawdata

—

Code Completion

RStudio supports the automatic completion of code using the Tab key. For example, if you have an object named
pollResults in your workspace you can type poll and then Tab and RStudio will automatically complete the full name
of the object.

10 of 51

http://rstudio.org/docs/using/source 4/18/11 8:38 PM

e @ portfolioR % (7 analysis.R* _ _
E O sourceonsave Q /7~ = ~#% Run Line(s) = Run All

if (rows > 1000)
{
subl

sub {base} subset(x, ...)

S = Return subsets of vectors, matrices or data frames which meet
subset.data.frame {base} conditions.

subset.default {basel
subset.matrix {basel

substitute {base} ¥
substituteDirect {methods} ¥ Press F1 for additional help

]

Code completion also works in the console, and more details on using it can be found the console Code Completion
documentation.

Find and Replace

RStudio supports finding and replacing text within source documents:

37 portfolio.R @7 bs.options.R* » P |
i B0 Source on Save Q. /:_‘7' ! .;’ _ :,*an Line(s) = Run All !
t.exp | Find | (] Match case | Replace || All | ®
Black Scholes w

Option Pricing Model

price of call option

callprice.bs <- function (s, x, t.exp, t, r, sigma)

{
d.pos <- log(s/x) + (r + 0.5 * sigmar2) * (t.exp - t)
d.pos <- d.pos/(sigma * (t.exp - £)A0.5)
d.neg <- d.pos - sigma * (t.exp - t)A0.5

Tl

Find and replace can be opened using the Ctrl+F shortcut key, or from the Edit -> Find and Replace menu item.

Extract Function

RStudio can analyze a selection of code from within the source editor and automatically convert it into a re-usable
function. Any "free" variables within the selection (objects that are referenced but not created within the selection) are
converted into function arguments:

[=h| portfolioR * = @7 bs.options.R* » =]
[O sourceonsave | QA /v = =% Run Line(s) [Run All
Black Scholes Extract Function %F 0

Option Pricing Model
Comment/Uncomment Lines 3/

price of call option

d.pos <- log(s/x) + (r + 0.5 * sigmaA2) * (t.exp - t)
d.pos <- d.pos/(sigma * (t.exp - £)A0.5)
d.neg <- d.pos - sigma * (t.exp - £)A0.5
s * pnorm(d.pos) - x * exp(- r * (t.exp - £)) * pnorm(d.neg) ¥

Comment/Uncomment

You can comment and uncomment entire selections of code using the Edit -> Comment/Uncomment Lines menu item

11 of 51
http://rstudio.org/docs/using/source 4/18/11 8:38 PM

(you can also do this using the Ctrl+/ keyboard shortcut):

@7 homePrice.R* »]
[[sourceonsave QA /7~ = % Run Line(s) = RunAll |
x <- sample(1:1000, 5¢ Extract Function #F

y <- sample(1:1000, 5¢

xyplot(x ~ y) Comment/Uncomment Lines 3/

X <- rnorm(500, 500, 250)
y <- rnorm(500, 500, 250)
xyplot(x ~ y)

Executing Code

RStudio supports the direct execution of code from within the source editor (the executed commands are inserted into
the console where their output also appears).

Executing a Single Line

To execute the line of source code where the cursor currently resides you press the Ctrl+Enter key (or use the Run
Line(s) toolbar button):

@7 homePrice.R* » =]
[O sourceonsave Q@ A~ = ‘_@.ﬁtun Line(s) = RunAll |
homes <- read.csv("homePriceData.csv") -
names(homes) Run the current line

or selection in the R
summary(homes) | console (3£+°) ‘

After executing the line of code, RStudio automatically advances the cursor to the next line. This enables you to
single-step through a sequence of lines.

Executing Multiple Lines
There are two ways to execute multiple lines from within the editor:

e Select the lines and press the Ctrl+Enter key (or use the Run Line(s) toolbar button); or

e To run the entire document press the Ctrl+Shift+Enter key (or use the Run All toolbar button).

@7 homePrice.R* » =]
[O sourceonsave Q@ A~ = % Run Line(s) {‘T?Run All
homes <- read.csv("homePriceData.csv") Runihecodetnithe m
names(homes) current source tab b
summary(homes) (£3%e) 4|
price <- homesSprice v
Console -~/ =]

> source("~/.active.document")
> |

The difference between running lines from a selection and invoking Run All is that when running a selection all lines
are inserted directly into the console whereas for Run All the file is saved to a temporary location and then sourced into

12 of 51
http://rstudio.org/docs/using/source 4/18/11 8:38 PM

the console from there (thereby creating less clutter in the console).
Source on Save

When editing re-usable functions (as opposed to freestanding lines of R) you may wish to set the Source on Save option
for the document (available on the toolbar next to the Save icon). Enabling this option will cause the file to
automatically be sourced into the global environment every time it is saved:

37 portfolio.R » | @7 bs.options.R* % —]

=] ™ Source on Save Q ,(' = = Run Line(s) = Run All \
Black Scholes ‘
Option Pricing Model m

price of call option
callprice.bs <- function (s, x, t.exp, t, r, sigma)
{
d.pos <- log(s/x) + (r + 0.5 * sigmar2) * (t.exp - t)
d.pos <- d.pos/(sigma * (t.exp - t)40.5)
d.neg <- d.pos - sigma * (t.exp - t)10.5
s * pnorm(d.pos) - x * exp(- r * (t.exp - t)) * pnorm{d.neg)
} v

S

Setting Source on Save ensures that the copy of a function within the global environment is always in sync with its
source, and also provides a good way to arrange for frequent syntax checking as you develop a function.

Keyboard Shortcuts

Beyond the keyboard shortcuts described above, there are a wide variety of other shortcuts available. Some of the more
useful ones include:

e Ctrl+Shift+N — New document

e Ctrl+O — Open document

e Ctrl+S — Save active document

e Ctrl+1 — Move focus to the Source Editor

e Ctrl+2 — Move focus to the Console

You can find a list of all shortcuts in the Keyboard Shortcuts article.

Related Topics
e Working in the Console

e Using Command History

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

13 of 51
http://rstudio.org/docs/using/source 4/18/11 8:38 PM

Home Screenshots Download | Docs | Support Development Blog

Using Command History

RStudio maintains a database of all commands which you have ever entered into the Console. You can browse and
search this database using the History pane.

Browsing History

Commands you have previously entered in the RStudio console can be browsed from the History tab. The commands
are displayed in order (most recent at the bottom) and grouped by block of time:

Workspace History =]
"% Send to Console = =@ Insert into Source Q 9
hamzasam ' r
library(ggplot2)
summary(diamonds)

gplot(price, carat, data = diamonds)

1/4/11 9:42 AM
model.1 <- lm(mpg ~ am, data = mtcars)

summary(model.1) 0
1/4/11 2:03 PM a
View(EuStockMarkets) v

Searching History

Executing a Search

You can use the search box at the top right of the history tab to search for all instances of a previous command (e.g.
plot). The search can be further refined by adding additional words separated by spaces (e.g. the name of particular

dataset):
Workspace History -]
@ Send to Console = —@ Insert into Source O, plot %)
Search results: plot | Done |
plot.window(xlim=c(-10, 10), ylim=c(-10, 10)) 1/5/11 12:03 PM > i
plot.new() 1/5/11 12:03 PM > |
plot(dist ~ speed, data = cars) 1/4/11 10:16 AM > m
plot(mpg ~ disp, data = mtcars) 1/3/11 1.41 PM >
plot(x ~ y + 2) 1/3/11 8:50 AM s> (2
plot(x ~ y) 1/3/11 8:47 AM >l

Showing Command Context

After searching for a command within your history you may wish to view the other commands that were executed in
proximity to it. By clicking the arrow in the right margin of the search results you can view the command within its
context:

Workspace History =t |
@ Send to Console = =@ Insert into Source C, plot)
| = Back | Showing command in context | Done |
1/3/11 1:41 PM =
head(mtcars)
- summary(mtcars) !
m

LT Y

14 of 51

http://rstudio.org/docs/using/history 4/18/11 9:30 PM

-I, view mtours)
}plot(npg ~ disp, data = mtcars)

im/n 402 PM
X <= rnorm(50, 100, 5)

Using Commands
Commands selected within the History pane can be used in two fashions (corresponding to the two buttons on the left
side of the History toolbar):
e Send to Console— Sends the selected command(s) to the Console. Note that the commands are inserted into the
Console however they are not executed until you press Enter.
e Insert into Source— Inserts the selected command(s) into the currently active Source document. If there isn't
currently a Source document available then a new untitled one will be created.

Within the history list you can select a single command or multiple commands:

Workspace History | —r=
& Send to Console = —@ Insertinto Sougp 1 plot |
- i
- B&(k il — DO
| | | Showing command in context i | Done |

S

plot(mpg ~ data = mtcars)
11/3/11 4:02 PM |4
'x <- rnorm(50, 100, 5) v

Related Topics
e Working in the Console

e Editing and Executing Code

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

15 of 51
http://rstudio.org/docs/using/history 4/18/11 9:30 PM

Home Screenshots Download Docs | Support Development Blog

Working Directories and Workspaces

The default behavior of R for the handling of .RData files and workspaces encourages and facillitates a model of
breaking work contexts into distinct working directories. This article describes the various features of RStudio which
support this workflow.

Default Working Directory

As with the standard R GUI, RStudio employs the notion of a global default working directory. Normally this is the user
home directory (typically referenced using ~ in R). When RStudio starts up it does the following:

e Executes the .Rprofile (if any) from the default working directory.
e Loads the .RData file (if any) from the default working directory into the workspace.

e Performs the other actions described in R Startup.

When RStudio exits and there are changes to the workspace, a prompt asks whether these changes should be saved to
the .RData file in the current working directory.

This default behavior can be customized in the following ways using the RStudio Options dialog:

e Change the default working directory
e Enable/disable the loading of .RData from the default working directory at startup

e Specify whether .RData is always saved, never saved, or prompted for save at exit.

Changing the Working Directory

The current working directory is displayed by RStudio within the title region of the Console. There are a number of ways
to change the current working directory:

e Use the setwd R function
e Use the Tools | Change Working Dir... menu. This will also change directory location of the Files pane.

e From within the Files pane, use the More | Set As Working Directory menu. (Navigation within the Files pane
alone will not change the working directory.)

Be careful to consider the side effects of changing your working directory:

o Relative file references in your code (for datasets, source files, etc) will become invalid when you change working
directories.

e The location where .RData is saved at exit will be changed to the new directory.

Because these side effects can cause confusion and errors, it's usually best to start within the working directory
associated with your project and remain there for the duration of your session. The section below describes how to set
RStudio's initial working directory.

Starting in Other Working Directories

If all of the files related to a project are contained within a single directory then you'll likely want to start RStudio within
that directory. There are a number of ways (which vary by platform) to do this.

File Associations

On all platforms RStudio registers itself as a handler for .RData, .R, and other R related file types. This means that the
system file browser's context-menu will show RStudio as an Open With choice for these files.

You can also optionally create a default association between RStudio and the .RData and/or .R file types.
When launched through a file association, RStudio automatically sets the working directory to the directory of the
opened file. Note that RStudio can also open files via associations when it is already running—in this case RStudio
16 of 51
http://rstudio.org/docs/using/workspaces 4/18/11 9:31 PM

simply opens the file and does not change the working directory.

Shortcuts (Windows)

On Windows, you can create a shortcut to RStudio and customize the "Start in" field. When launched through this
shortcut RStudio will startup within the specified working directory.

Drag and Drop (Mac)

On Mac, dragging and dropping a folder from the Finder on the RStudio Dock icon will cause RStudio to startup with the
dropped folder as the current working directory.

Run from Terminal (Mac and Linux)

On Mac and Linux systems you can run RStudio from a terminal and specify which working directory to startup within.
Additionally, on Linux systems if you run RStudio from a terminal and specify no command line argument then RStudio
will startup using the current working directory of the terminal.

For example, on the Mac you could use the following commands to open RStudio (respectively) in the '~/projects/foo’
directory or the current working directory:

$ open -a RStudio ~/projects/foo
$ open -a RStudio .

On Linux you would use the following commands (note that no "." is necessary in the second invocation):

$ rstudio ~/projects/foo
$ rstudio

Handling of .Rprofile

When starting RStudio in an alternate working directory the .Rprofile file located within that directory is sourced. If
(and only if) there is not an .Rprofile file in the alternate directory then the global default profile (e.g. ~/.Rprofile)
is sourced instead.

Loading and Saving Workspaces

If you want to save or load a workspace during an RStudio session you can use the following commands to save to or
load from the .RData file in the current working directory:

> save.image()
> load(".RData")

Note that the Load function appends (and overwrites) objects within the current workspace rather than replacing it
entirely. Prior to loading you may therefore wish to clear all objects currently within the workspace. You can do so using
the following command:

> rm(list=1s())

Note that since loading is handled at startup and saving is handled at exit, in many cases you won't require these
commands. If however you change working directories within a session you may need them in order to sync your
workspace with the directory you have chanaged to.

The RStudio Workspace menu also includes items that execute the above described commands, as well as enables you
to load or save specific .RData files.

Handling of .Rhistory

The .Rhistory file determines which commands are available by pressing the up arrow key within the console. RStudio
handles the .Rhistory file differently than the standard R GUI. This is because in addition to the .Rhistory file RStudio
also includes a searchable history database (accessible via the History tab). For the sake of simplicity RStudio attempts
to keep these two history contexts in sync.

17 of 51
http://rstudio.org/docs/using/workspaces 4/18/11 9:31 PM

e Load and save .Rhistory within the current working directory

e Only save the .Rhistory file when the user chooses to save the .RData file
Whereas the RStudio handling of .Rhistory files is:

e Load and save a single global .Rhistory file (located in the default working directory)

e Always save the .Rhistory file (even if the .RData file is not saved)

As a result, the contents of the History pane always match the up arrow history within the console.

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

18 of 51
http://rstudio.org/docs/using/workspaces 4/18/11 9:31 PM

Home Screenshots Download | Docs l Support Development Blog

Customizing RStudio

Overview
RStudio options are accessible from the Options dialog Tools : Options menu and include the following categories:

e General R Options — Default CRAN mirror, initial working directory, workspace save and restore behavior.

e Source Code Editing — Enable/disable line numbers, line highlighting, soft-wrapping for R files, and right margin
display; configure tab spacing; set default text encoding.

e Apperance and Themes — Specify font size and visual theme for the console and source editor.

e Pane Layout — Locations of console, source editor, and tab panes; set which tabs are included in each pane.

Details on the various settings are provided in the sections below.

General R Options

Options
Default CRAN mirror:
R [USA (IA) - lowa State University, Ames, IA | | Change... |
General
/ Initial working directory: _ _

| |~ ‘ | Browse...

Editing '

g ™ Restore .RData into workspace at startup

Appearance Save workspace to .RData on exit: | Ask E

=
o i

4L b

Pane Layout

| oK l Cancel | | Apply |

e Default CRAN mirror — Set the CRAN mirror used for installing packages (can be overridden using the repos
argument to install.packages).

e |nitial working directory — Startup directory for RStudio. The initial .RData and .Rprofile files (if any) will be read
from this directory. The current working directory and Files pane will also be set to this directory. Note that this
setting can be overridden when launching RStudio using a file assocation or a terminal with a command line
parameter indicating the initial working directory.

19 of 51

http://rstudio.org/docs/using/customizing 4/18/11 9:31 PM

e Restore .RData into workspace at startup — Load the .RData file (if any) found in the initial working directory
into the R workspace (global environment) at startup. If you have a very large .RData file then unchecking this
option will improve startup time considerably.

e Save workspace to .RData on exit — Ask whether to save .RData on exit, always save it, or never save it. Note
that if the workspace is not dirty (no changes made) at the end of a session then no prompt to save occurs even if
Ask is specified.

Source Code Editing

Options

r-) | O Highlight selected line

Show line numbers

General
/ ™ Insert spaces for tab
et Tab width 2
Editing
- | ™ Show margin
1 Margin column 80
Appearance
(] soft-wrap R source files
Pane Layout Default text encoding:

UTF-8 || change...

| OK Cancel Apply

e Highlight selected line — Add a background highlight effect to the currently selected line of code.
e Show line numbers — Show or hide line numbers within the left margin.

e Insert spaces for tab — Determine whether the tab key inserts multiple spaces rather than a tab character (soft
tabs). Configure the number of spaces per soft-tab.

e Show margin — Display a margin guide on the right-hand side of the source editor at the specified column.

e Soft-wrap R source files — Wrap lines of R source code which exceed the width of the editor onto the next line.
Note that this does not insert a line-break at the point of wrapping, it simply displays the code on multiple lines
in the editor.

e Default text encoding — Specify the default text encoding for source files. Note that source files which don't
match the default encoding can still be opened correctly using the File : Reopen with Encoding menu command.

Appearance and Themes

Options

| Fotsize: [# plotting of R objects
20 of 51
http://rstudio.org/docs/using/customizing 4/18/11 9:31 PM

9 s plot <- function (x, ¥, ...)

General : h) if (is.function(x) &&
Editor theme: - is.null(attr(x, “"class")
7 TextMate {
-' Eclipse Cif (mi
it Cobalt ”
EdRng Idle Fingers y
_-jj] Twilight
' lall(is.na(
SRR pmatch(names(list(...)]
uylabu 3 ’!
if Chasylab(.
Pane Layout

plot. function(
X, ¥,
ylab = paste(
deparse(substitute(x)),
" EX) s

| OK || Cancel Apply

e Font size — Set the font size (in points) for panes which display code (Console, Source, History, and Workspace).

e Editor theme — Specify the visual theme for the Console and Source panes. You can preview the theme using the
inline preview or by pressing the Apply button.

Pane Layout

Options
= Choose the layout of the panes in RStudio by selecting from the controls in
L 4 each guadrant.
General Source _ﬂ Workspace, History _ﬂ
/O
rd ™ workspace
Editing Lg! History
! Files
i 'i ! Plots
= | Packages
Appearance] Help
' ' Console ?] Files, Plots, Packages, Help _:]
Pane Layout
| Workspace
__ History
™ Files
@ Plots
E Packages
Lv_j Help

21 of 51
http://rstudio.org/docs/using/customizing 4/18/11 9:31 PM

[oK]‘ Cancel | | Apply |

e Specify the location and tab sets of panes within RStudio.

e Each of the 4 panes is always displayed (it isn't currently possible to hide a pane).

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

22 of 51
http://rstudio.org/docs/using/customizing 4/18/11 9:31 PM

Home Screenshots

Download Docs

Keyboard Shortcuts

Console

Description

Move cursor to Console

Clear console

Move cursor to beginning of line
Move cursor to end of line
Navigate command history
Popup command history

Interrupt currently executing
command

Yank line up to cursor
Yank line after cursor
Insert currently yanked text

Insert assignment operator

Source

Description
Move cursor to Source Editor

New document (except on
Chrome/Windows)

Open document

Save active document

Close active document
Compile PDF (TeX and Sweave)
Run current line/selection

Run current document

Switch to tab

Previous tab

Next tab

First tab

Last tab

Extract function from selection

Comment/uncomment current
line/selection

Insert assignment operator
Transpose Letters

Jump to Word

http://rstudio.org/docs/using/keyboard_shortcuts

Windows & Linux
Ctrl+2

Ctrl+L

Home

End

Up/Down

Ctrl+Up

Esc

Ctrl+U
Ctrl+K
Ctrl+Y
Alt+-

Windows & Linux
Ctrl+1
Ctrl+Shift+N

Ctrl+O

Ctrl+S

Ctrl+Shift+L
Ctrl+Shift+P
Ctrl+Enter
Ctrl+Shift+Enter
Ctrl+Alt+Down
Ctrl+Alt+Left
Ctrl+Alt+Right
Ctrl+Shift+Alt+Left
Ctrl+Shift+Alt+Right
Ctrl+Shift+F

Ctrl+/

Alt+-

Ctrl+Left/Right

4/18/11 9:32 PM

Support

Development

Mac

Ctrl+2
Command+L
Command+Left
Command+Right
Up/Down
Command+Up

Esc

Command+U
Command+K
Command+Y

Option+-

Mac
Ctrl+1

Command+Shift+N

Command+0
Command+S
Command+Shift+L
Command+Shift+P
Command+Enter
Command+Shift+Enter
Ctrl+Option+Down
Ctrl+Option+Left
Ctrl+Option+Right
Ctrl+Shift+Option+Left
Ctrl+Shift+Option+Right
Command+Shift+F

Command+/

Option+-
Ctrl+T
Option+Left/Right

Blog

Jump to Start/End

Delete Line

Move Lines Up/Down
Copy Lines Up/Down
Select

Select Word

Select to Line Start
Select to Line End
Select Page Up/Down
Select to Start/End

Delete Word Left

Delete Word Right
Delete to Line End
Delete to Line Start
Indent

Outdent

Editing (Console and Source)

Description
Undo

Redo

Cut

Copy

Paste

Select All

Ctrl+Home/End or Ctrl+Up/Down

Ctrl+D

Alt+Up/Down
Ctrl+Alt+Up/Down
Shift+[Arrow]
Ctrl+Shift+Left/Right
Shift+Home

Shift+End
Shift+PageUp/PageDown

Ctrl+Shift+Home/End or
Shift+Alt+Up/Down

Ctrl+Backspace

Tab (at beginning of line)
Shift+Tab

Windows & Linux
Ctrl+Z
Ctrl+Shift+Z
Ctrl+X

Ctrl+C

Ctrl+V

Ctrl+A

Completions (Console and Source)

Description
Attempt completion
Navigate candidates

Accept selected candidate

Show help for selected candidate

Dismiss completion popup

Views

Description

Move cursor to Source Editor
Move cursor to Console
Show workspace

Show data

http://rstudio.org/docs/using/keyboard_shortcuts

Windows & Linux
Tab or Ctrl+Space
Up/Down

Enter, Tab, or Right
F1

Esc

Windows & Linux
Ctrl+1
Ctrl+2
Ctrl+3
Ctrl+4

4/18/11 9:32 PM

Command+Home/End or
Command+Up/Down

Command+D
Option+Up/Down
Command+Option+Up/Down
Shift+[Arrow]
Option+Shift+Left/Right

Command+Shift+Left or Shift+Home

Command+Shift+Right or Shift+End

Shift+PageUp/Down
Command+Shift+Up/Down

Option+Backspace or
Ctrl+Option+Backspace

Option+Delete

Ctrl+K
Option+Backspace

Tab (at beginning of line)
Shift+Tab

Mac

Command+Z
Command+Shift+Z
Command+X
Command+C
Command+V

Command+A

Mac

Tab or Command+Space
Up/Down

Enter, Tab, or Right

F1

Esc

Mac

Ctrl+1
Ctrl+2
Ctrl+3
Ctrl+4

24 of 51

Show files Ctrl+6 : Ctrl+6

Show plots Ctrl+7 Ctrl+7

Show packages Ctrl+8 Ctrl+8

Show help Ctrl+9 Ctrl+9

Plots

Description Windows & Linux Mac

Previous plot Ctrl+PageUp Command+PageUp
Next plot Ctrl+PageDown Command+PageDown

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

25 of 51
http://rstudio.org/docs/using/keyboard_shortcuts 4/18/11 9:32 PM

Home Screenshots Download Docs | Support Development Blog

Interactive Plotting with Manipulate

RStudio includes a manipulate package that enables the addition of interactive capabilities to standard R plots. This is
accomplished by binding plot inputs to custom controls rather than static hard-coded values.

Basic Usage

The manipulate function accepts a plotting expression and a set of controls (e.g. slider, picker, or checkbox) which are
used to dynamically change values within the expression. When a value is changed using its corresponding control the
expression is automatically re-executed and the plot is redrawn.

For example, to create a plot that enables manipulation of a parameter using a slider control you could use syntax like
this:

library(manipulate)
manipulate(plot(1l:x), x = slider(l, 100))

After this code is executed the plot is drawn using an initial value of 1 for x. A manipulator panel is also opened
adjacent to the plot which contains a slider control used to change the value of x from 1 to 100.

Slider Control

The slider control enables manipulation of plot variables along a numeric range. For example:
manipulate(
plot(cars, xlim=c(@,x.max)),

x.max=slider(15,25))

Results in this plot and manipulator:

Files Plots Packages Help =]
2 2oom E|Export T POF 3 ClearAll (&)
Manipulate L2
x.max: 15
15 25
A | | | | g -
=) e
4 S -
7 =
© °o
o _| [0}
=< o o0
o 00 @ cog
= (o) Co0
O o]
o - o o
T | I 1
0 5 10 15
speed

Slider controls also support custom labels and step increments.
26 of 51
http://rstudio.org/docs/advanced/manipulate 4/18/11 9:32 PM

P

The picker control enables manipulation of plot variables based on a set of fixed choices. For example:

manipulate(
barplot(as.matrix(longley[,factor]),
beside = TRUE, main = factor),
factor = picker("GNP", "Unemployed", "Employed"))

Results in this plot and manipulator:

Files Plots Packages Help =] !
@ 0 P zoom | Hexport T POF o ClearAll (&

GNP

400
!

200
|

Picker controls support arbitrary value types, and can also include custom user-readable labels for each choice.

Checkbox Control

The checkbox control enables manipulation of logical plot variables. For example:

manipulate(
boxplot(Freq ~ Class, data = Titanic, outline = outline),
outline = checkbox(FALSE, "Show outliers"))

Results in this plot and manipulator:

Files Plots Packages Help =] |
& o P Zoom | Hexport T POF | 3 ClearAll (&
| Manipulate » £k
() Show outliers
e
o i
‘n (]
o — :
o " '
=} .
=

[| ! [|
27 of 51
http://rstudio.org/docs/advanced/manipulate 4/18/11 9:32 PM

50

1st 2nd 3rd Crew

The manipulate package documentation contains additional details on all of the options available for the various
control types.

Combining Controls

Multiple controls can be combined within a single manipulator. For example:

manipulate(
plot(cars, xlim = c(@, x.max), type = type, ann = label),
x.max = slider(10, 25, step=5, initial = 25),
type = picker("Points" = "p", "Line" = "1", "Step" = "s"),
label = checkbox(TRUE, "Draw Labels™"))

Results in this plot and manipulator:

Files Plots Packages Help (]
& 2 Zoom FExport T PDF 3 Clear All 'ffj
| Manipulate » X
il x.max: 25 |
10 25
| ub ‘ﬁ_ — o]

. type: |Points +) N 6 O %

80
o

| z % o ©
Draw Labels o o ° g o
=T o 00 00 00
r o OOEOOS
_ o 00
fo) (o]
o - o_O

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

28 of 51
http://rstudio.org/docs/advanced/manipulate 4/18/11 9:32 PM

Home Screenshots Download | Docs] Support Development Blog

Using Different Versions of R

RStudio requires R version 2.11.1 or higher. Since R versions can be installed side-by-side on a system, RStudio needs
to select which version of R to run against. The way this occurs varies between platforms—this article covers how
version selection is handled on each platform.

Windows

On Windows, RStudio uses the system's current version of R by default. When R is installed on Windows it writes the
version being installed to the Registry as the "current” version of R (the specific registry keys written are described
here). This is the version of R which RStudio runs against by default.

You can override which version of R is used via General panel of the RStudio Options dialog. This dialog allows you to
specify that RStudio should always bind to the default 32 or 64-bit version of R, or to specify a different version
altogether:

€) Choose R Installation S

RStudio requires an existing installation of R in order to work. Please select
the version of R to use.

() Use your machine's default version of R64 (64-bit)
) Use your machine's default version of R (32-bit)
@ Choose a spedific version of R:

[64-bit] C:\Program Files\R\R-2.13.0dev
[32-bit] C:\Program Files\R\R-2.13.0dev
[64-bit] C:\Program Files\R\R-2.12.2
[32-bit] C:\Program Files\R\R-2.12.2

Note that by holding down the Control key during the launch of RStudio you can cause the R version selection dialog to
display at startup.

Mac OS X

R from CRAN

On Mac OS X if the only version of R you have installed is the standard R distribution from CRAN then RStudio will by
default run against the current version of R.Framework. You can list all of the versions of R.Framework on your system
and determine which one is considered the current one by executing the following command:

1s -1 /Library/Frameworks/R.framework/Versions/

To change the current version of R.Framework you can either:

e Run the installer from CRAN for the R version you want to be current

29 of 51
http://rstudio.org/docs/advanced/versions_of_r 4/18/11 9:33 PM

e Use the RSwitch utility available at: http://r.research.att.com/

e Update the R. framework/Versions/Current directory alias directly using In -s

R from source (including MacPorts and Homebrew)

When R is installed from CRAN on OS X the R executable is installed at /usr/bin/R. However, if R is installed directly
from source or via a package manager like MacPorts or Homebrew, then the R executable is installed to either
/usr/local/bin/R (Homebrew) or /opt/local/bin/R (MacPorts). In order to support these variations, RStudio scans
for the R executable in the following sequence:

1. /opt/local/bin/R
2. /usr/bin/R
3. /usr/local/bin/R

This order is based on the conventional ordering of the OS X PATH environment variable, and therefore should normally
yield the same version that is run when R is executed from a terminal.

If you want to override the version of R selected by RStudio's default behavior then you can set the RSTUDIO_WHICH_R
environment variable to the R executable that you want to run against. For example, to force RStudio to use the R
executable located at /usr/local/bin:

export RSTUDIO_WHICH_R=/usr/local/bin/R

Note that in order for RStudio to see this environment variable it needs to be added to the OS X environment.plist
file. Instructions for editing this file are availiable here.

Linux

On Linux, RStudio uses the version of R pointed to by the output of the following command:
which R

The which command performs a search for the R executable using the system PATH. RStudio will therefore by default
bind to the same version that is run when R is executed from a terminal.

For versions of R installed by system package managers (e.g. r-base on Ubuntu) this will be /usr/bin/R. For versions
of R installed from source this will typically (but not always) be /usr/local/bin/R.

If you want to override which version of R is used then you can set the RSTUDIO_WHICH_R environment variable to the R
executable that you want to run against. For example:

export RSTUDIO_WHICH_R=/usr/local/bin/R

Not that in order for RStudio to see this environment variable when launched from the Ubuntu desktop Applications
menu (as opposed to from a terminal) it must be defined in the ~/.profile file.

Web

If you are running RStudio within a web browser then the version of R is determined by whatever version of R is running
alongside RStudio Server. The version currently in use on the server can be be printed using the following command:

> R.version.string

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

30 of 51
http://rstudio.org/docs/advanced/versions_of_r 4/18/11 9:33 PM

Home Screenshots Download Docs Support Development Blog

Character Encoding

Starting with version 0.93, RStudio supports non-ASCII characters for input and output.

Console

Unicode characters can be used for both input and output in the console.

Source Editor

The RStudio source editor natively supports Unicode characters. It will allow you to type or paste characters from any
language, even ones that are not part of the document's character set. RStudio will allow you to save such documents,
but will print a warning to the R console that not all characters could be encoded. If you close the document without
re-saving in a more suitable encoding, those characters will be lost.

If in doubt about which encoding to use, use UTF-8, as it can encode any Unicode character.
Reading and Writing Files
The RStudio source editor can read and write files using any character encoding that is available on your system:

e You can choose the encoding for reading with File : Reopen with Encoding, which will re-read the current file
from disk with the new encoding.

e You can also save an open file using a different encoding with File : Save with Encoding.

The Reopen and Save with Encoding commands both display the following dialog:

~ Choose Encoding

UTF-8 (System default)
ASCII

BIGS

:GB1B030
GB2312
HZ-GB-2312
ISO-2022-JP
I1SO-2022-KR
ISO-8859-1
ISO-8859-2
ISO-8859-7
MACROMAN
SHIFT-JIS
WINDOWS-1252

[_J Show all encodings
[[] Set as default encoding for source files

([ok || cancel

Setting the Default Encoding

If you frequently use the character set, check "Set as default encoding for source files". You can view or change this
default in the Tools : Options (for Windows & Linux) or Preferences (for Mac) dialog, in the Editing section.

If you don't set a default encoding, files will be opened using UTF-8 (on Mac desktop, Linux desktop, and server) or the
system's default encoding (on Windows). When saving a previously unsaved file, RStudio will ask you to choose an
encoding if non-ASCIl characters are present.
31 of 51
http://rstudio.org/docs/advanced/encoding 4/18/11 9:33 PM

e If you call Sys.setlocale with "LC_CTYPE" or "LC_ALL" to change the system locale while RStudio is running,
you may run into some minor issues as RStudio assumes the system encoding doesn't change. If you are on
Windows, we recommend you only call Sys.setlocale in .Rprofile. If you are on Mac or Linux and want to
change the system locale, please visit the support forum and let us know your scenario.

e On Windows, R's source function does not work with files that include characters that aren't part of the current
system encoding. You may have trouble with RStudio's Run All and Source on Save commands, as they rely on

source.

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

32 of 51

http://rstudio.org/docs/advanced/encoding 4/18/11 9:33 PM

Home Screenshots Download Docs | Support Development Blog

Optimizing your Browser for RStudio

NOTE: This article is only applicable if you are using the RStudio IDE within a web browser (as opposed to using RStudio
as a standalone desktop application).

Run a Recent Browser Version

RStudio makes use of a number of advanced web browser features and as a result benefits from running within more
up-to-date browser versions. The following are the recommend minimum versions for various browsers:

e Firefox 3.5
e Safari 4.0
e Google Chrome 5.0

Note that RStudio can also be run from within Internet Explorer using the Google Chrome Frame browser plugin.

Disable Pop-Up Blockers

There are a number of instances where RStudio needs to show a new external popup window (e.g to display a PDF file).
We therefore recommend that you disable pop-up blocking for the RStudio domain. Most browsers will prompt you
regarding whether you want to enable popups for RStudio the first time one is blocked. Some browsers (such as Safari)
may require you to globally enable and disable popups.

Safari and Chrome: Disable Browser Spell Checking

If you are using Safari or Chrome, you may find it desirable to disable "Check Spelling While Typing" (available from the
Edit menu) since many of the words you enter in the Source and Console will not be in the built-in dictionary and thus
will show up with a red underline when entered.

Firefox for Mac: Install Inline PDF Extension

Firefox for the Mac does not display PDFs inline by default (rather they are downloaded like any other file). RStudio uses
PDFs for both printing plots as well as for Sweave/LaTex documents and having them display inline is much preferred.
To enable this you should install the following Firefox extension: http://code.google.com/p/firefox-mac-pdf/

© 2011 RStudio, Inc. About | Contact | t Follow on Twitter | FAQ | License (AGPL) | Trademark

33 of 51
http://rstudio.org/docs/advanced/optimizing_browser 4/18/11 9:34 PM

Home Screenshots Download Docs | Support Development Blog

Uploading and Downloading Files

NOTE: This article is only applicable if you are using the RStudio IDE within a web browser (as opposed to using RStudio
as a standalone desktop application).

Uploading Files
To upload datasets, scripts, or other files to RStudio Server you should take the following steps:

1. Switch to the Files pane

2. Navigate to the directory you wish to upload files into
3. Click the Upload toolbar button

4, Choose the file you wish to upload and press OK

Note that if you wish to upload several files or even an entire folder, you should first compress your files or folder into
a zip file and then upload the zip file (when RStudio receives an uploaded zip file it automatically uncompresses it).

Downloading Files

To download files from RStudio Server you should take the following steps:

1. Switch to directory you want to download files from within the Files pane
2. Select the file(s) and/or folder(s) you want to download

3. Click More -> Export on the toolbar
4

. You'll then be prompted with a default file name for the download. Either accept the default or specify a custom
name then press OK.

Note that if you select multiple files or folders for download then RStudio compresses all of the files into a single zip
archive for downloading.

© 2011 RStudio, Inc. About | Contact | t Follow on Twitter | FAQ | License (AGPL) | Trademark

34 of 51
http://rstudio.org/docs/advanced/uploading_and_downloading_files 4/18/11 9:34 PM

Home Screenshots Download Docs | Support Development Blog

RStudio Server: Getting Started

Overview

RStudio Server enables you to provide a browser based interface (the RStudio IDE) to a version of R running on a remote
Linux server. Deploying R and RStudio on a server has a number of benefits, including:

e The ability to access your R workspace from any computer in any location;
e Easy sharing of code, data, and other files with colleagues;

e Allowing multiple users to share access to the more powerful compute resources (memory, processors, etc.)
available on a well equipped server; and

e Centralized installation and configuration of R, R packages, TeX, and other supporting libraries.

RStudio Server works with recent versions of popular Linux distributions including Red Hat and Ubuntu. RStudio Server
can also be built and installed from source on other platforms (see notes on this below).

Download and Install

RStudio Server binary packages are available for recent versions of popular Linux distributions including Ubuntu
(version 10.04 or higher) and RedHat/CentOS (version 5.4 or higher). For other platforms it is also possible to build and
install from source.

Instructions for downloading and installing RStudio Server can be found on the server downloads page.

Accessing the Server

By default RStudio Server runs on port 8787 and accepts connections from all remote clients. After installation you
should therefore be able to navigate a web browser to the following address to access the server:

http://<server-ip>:8787

RStudio will prompt for a username and password, and will authenticate the user by checking the server's username
and password database. Note that user credentials are encrypted using RSA as they travel over the network.

Configuration and Management

RStudio Server has a variety of configuration options (including the ability to change what port the server listens on) as
well as a utility for managing the lifetime of the server and remote user sessions. You can find out more about these
capabilities in the following articles:

e Configuring the Server

e Managing the Server

If you are running RStudio on a public network you may wish deploy RStudio behind another server (e.g. Nginx or
Apache) which acts as a reverse proxy to it. You can find out more about doing this in the following article:

e Running with a Proxy

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

35 of 51
http://rstudio.org/docs/server/getting_started 4/18/11 9:35 PM

Home Screenshots Download Docs | Support Development Blog

RStudio Server: Configuring the Server

Overview

RStudio is configured by adding entries to two configuration files (note that these files do not exist by default so you
will need to create them if you wish to specify custom settings):

/etc/rstudio/rserver. conf
/etc/rstudio/rsession.conf

After editing configuration files you should perform a check to ensure that the entries you specified are valid. This can
be accomplished by executing the following command:

$ sudo rstudio-server test-config

Note that this command is also automatically executed when starting or restarting the server (those commands will fail
if the configuration is not valid).

Network Port and Address

After initial installation RStudio accepts connections on port 8787. If you wish to change to another port you should
create an /etc/rstudio/rserver. conf file (if one doesn't already exist) and add a waw-port entry
corresponding to the port you want RStudio to listen on. For example:

www-port=80

By default RStudio binds to address 0.0.0.0 (accepting connections from any remote IP). You can modify this behavior
using the www-address entry. For example:

www-address=127.0.0.1

Note that after editing the /etc/rstudio/rserver.conf file you should always restart the server to apply your
changes (and validate that your configuration entries were valid). You can do this by entering the following command:

$ sudo rstudio-server restart

Specifying R Version

By default RStudio Server runs against the version of R which is found on the system PATH (using which R). You can
override which version of R is used via the rsession-which-r setting. For example, if you have two versions of R
installed on the server and want to make sure the one at /usr/local/bin/R is used by RStudio then you would use:

rsession-which-r=/usr/local/bin/R

Note again that the server must be restarted for this setting to take effect.

Setting User Limits

There are a number of settings which place limits on which users can access RStudio and the amount of resources they
can consume. This file does not exist by default so if you wish to specify any of the settings below you should create
the file.

To limit the users who can login to RStudio to the members of a specific group, you use the auth-required-
user-group setting. For example:

36 of 51
http://rstudio.org/docs/server/configuration 4/18/11 9:36 PM

auth-required-user-group=rstudio_users

You can also limit the total memory, stack size, and number of simultaneous child processes for users using settings
like the following:

rsession-memory-1limit-mb=4000
rsession-stack-limit-mb=10
rsession-process-1imit=100

Additional Settings

There is a separate /etc/rstudio/rsession.conf configuration file that enables you to control various aspects
of R sessions (note that as with rserver. conf this file does not exist by default). These settings are especially useful if
you have a large number of potential users and want to make sure that resources are balanced appropriately.

By default if a user hasn't issued a command for 2 hours RStudio will suspend that user's R session to disk so they are
no longer consuming server resources (the next time the user attempts to access the server their session will be
restored). You can change the timeout (including disabling it by specifying a value of 0) using the session-timeout-
minutes setting. For example:

session-timeout-minutes=30

Note that a user's session will never be suspended while it is running code (only sessions which are idle will be
suspended).

You can limit the size of file uploads using the limit-file-upload-size-mb setting. For example:
limit-file-upload-size-mb=100

If you are using the XFS filesystem and you have disk quotas enabled you can have RStudio notify the user when they
are close to their soft and/or hard quota by specifying the 1imit-xfs-disk-quota setting. For example:

limit-xfs-disk-quota=1

Finally, you can set the default CRAN repository for the server using the r-cran-repos setting. For example:
r-cran-repos=http://cran.case.edu/

Note again that the above settings should be specified in the /etc/rstudio/rsession. conf file (rather than the

aforementioned rserver. conf file).

Related Topics
e Getting Started
e Managing the Server

e Running with a Proxy

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

37 of 51
http://rstudio.org/docs/server/configuration 4/18/11 9:36 PM

Home Screenshots Download Docs | Support Development Blog

RStudio Server: Managing the Server

Overview

RStudio server management tasks are performed using the rstudio-server utility (installed under /usr/sbin in
binary distributions). This utility enables the stopping, starting, and restarting of the server, enumeration and
suspension of user sessions, taking the server offline, as well as the ability to hot upgrade a running version of the
server.

Stopping and Starting

If you installed RStudio using a package manager binary (e.g. a Debian package or RPM) then RStudio is automatically
registred as a deamon which starts along with the rest of the system. On Ubuntu this registration is performed using an
Upstart script at /etc/init/rstudio-server.conf. On other systems an init.d script is installed at /etc/init.d
/rstudio-server.

To manually stop, start, and restart the server you use the following commands:

$ sudo rstudio-server stop
$ sudo rstudio-server start
$ sudo rstudio-server restart

Managing Active Sessions

There are a number of administrative commands which allow you to see what sessions are active and request
suspension of running sessions (note that session data is not lost during a suspend).

To list all currently active sessions:

$ sudo rstudio-server active-sessions
To suspend an individual session:

$ sudo rstudio-server suspend-session <pid>
To suspend all running sessions:

$ sudo rstudio-server suspend-all

The suspend commands also have a "force" variation which will send an interrupt to to the session to request the
termination of any running R command:

$ sudo rstudio-server force-suspend-session <pid>
$ sudo rstudio-server force-suspend-all

The force-suspend-all command should be issued immediately prior to any reboot so as to preserve the data and state
of active R sessions accross the restart.

Taking the Server Offline

If you need to perform system maintenance and want users to receive a friendly message indicating the server is offline
you can issue the following command:

$ sudo rstudio-server offline

When the server is once again available you should issue this command:

38 of 51
http://rstudio.org/docs/server/management 4/18/11 9:36 PM

$ sudo rstudio-server online

Upgrading to a New Version

If you install RStudio using a package manager binary (e.g. a Debian package or RPM) and a version of RStudio Server is
currently running on the system, then the current running version is automatically upgraded. This includes the

following behavior:
e Running R sessions are suspended so that future interactions with the server automatically launch the updated R

session binary
e Currently connected browser clients are notified that a new version is available and automatically refresh

themselves.
e The core server binary is restarted

Related Topics

e (Getting Started
e Configuring the Server

e Running with a Proxy

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

39 of 51

http://rstudio.org/docs/server/management 4/18/11 9:36 PM

Home Screenshots Download Docs | Support Development Blog

RStudio Server: Running with a Proxy

Overview

If you are running RStudio on a public network it is strongly recommended that you deploy RStudio behind another web
server (e.g. Nginx or Apache) which acts as a reverse proxy to it. Doing this allows you to benefit from the the robust
HTTP protocol handling built into the web server. This has both performance (e.g. keep-alive) and security (e.g.
rejection of maliciously malformed requests) benefits.

Nginx Configuration

On Ubuntu a version of Nginx that supports reverse-proxying can be installed using the following command:
sudo apt-get install nginx

To enable an instance of Nginx running on the same server to act as a front-end proxy to RStudio you would add
commands like the following to your nginx. conf file:

location / {
proxy_pass http://localhost:8787;
proxy_redirect http://localhost:8787/ $scheme://$host/;

After adding this entry you'll then need to restart Nginx so that the proxy settings take effect:

sudo /etc/init.d/nginx restart

Apache Configuration

To enable an instance of Apache running on the same server to act as a front-end proxy to RStudio you need to use the
mod_proxy. The steps for enabling this module vary across operating systems so you should consult your distribution's
Apache documentation for details.

On Ubuntu systems Apache can be installed with mod_proxy using the following commands:

sudo apt-get install apache2
sudo apt-get install libapache2-mod-proxy-html
sudo apt-get install libxml2-dev

Then, to update the Apache configuration files to activate mod_proxy you execute the following commands:

sudo aZ2enmod proxy
sudo a2enmod proxy_http

Once you have enabled mod_proxy in your Apache installation you need to add the required proxy commands to your
VirtualHost definition. For example:

<VirtualHost *:80>

<Proxy *>
Allow from localhost
</Proxy>
ProxyPass / http://localhost:8787/

40 of 51

http://rstudio.org/docs/server/running_with_proxy 4/18/11 9:36 PM

ProxyPassReverse / http://localhost:8787/

</VirtualHost>

Note that if you want to serve RStudio from a custom path (e.g. /rstudio) you would replace the ProxyPass directives
described above to:

ProxyPass /rstudio/ http://localhost:8787/
ProxyPassReverse /rstudio/ http://localhost:8787/
RedirectMatch permanent A/rstudio$ /rstudio/

Finally, after you've completed all of the above steps you'll then need to restart Apache so that the proxy settings take
effect:

sudo /etc/init.d/apache2 restart

RStudio Configuration

Once you are successfully proxying requests from Nginx or Apache to RStudio you should change the port RStudio
listens on from 0.0.0.0 (all remote clients) to 127.0.0.1 (only the localhost). This ensures that the only way to connect
to RStudio is through the proxy server. You can do this by adding the waw-address entry to the /etc/rstudio
/rserver . conf file as follows:

www-address=127.0.0.1

Note that this config file does not exist by default so you may need to create it if it doesn't already exist.

Related Topics
e Getting Started

e Configuring the Server

e Managing the Server

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

41 of 51
http://rstudio.org/docs/server/running_with_proxy 4/18/11 9:36 PM

Home Screenshots Download Docs Support Development Blog

About RStudio

The RStudio Project

We started the RStudio project because we were excited and inspired by R. The creators of R provided a flexible and
powerful foundation for statistical computing; then made it free and open so that it could be improved collaboratively
and its benefits could be shared by the widest possible audience.

It's better for everyone if the tools used for research and science are free and open. Reproducibility, widespread sharing
of knowledge and techniques, and the leveling of the playing field by eliminating cost barriers are but a few of the
shared benefits of free software in science.

RStudio is an integrated development environment (IDE) for R which works with the standard version of R available from
CRAN. Like R, RStudio is available under a free software license. Our goal is to develop a powerful tool that supports the
practices and techniques required for creating trustworthy, high quality analysis. At the same time, we want RStudio to
be as straightforward and intuitive as possible to provide a friendly environment for new and experienced R users alike.
RStudio is also a company, and we plan to sell services (support, training, consulting, hosting) related to the
open-source software we distribute.

We're looking forward to joining the R community, learning from users, growing the product, and hopefully making a
meaningful contribution to the practice of research and science.

Our Team

JJ Allaire

J) Allaire is a software engineer and entrepreneur who
has created a wide variety of products including
ColdFusion, Windows Live Writer, Lose It!, and
RStudio.

Joe Cheng

Joe Cheng is a software engineer who has worked at a
number of startups including Allaire, Upromise, and
Onfolio. Most recently, he worked at Microsoft as the
development lead for Windows Live Writer.

Josh Paulson

Josh Paulson is a product manager who has been
working with R for over 4 years, focusing principally
on data visualization and financial modeling
applications.

Paul DiCristina

Paul DiCristina is a designer with broad experience
including consumer, enterprise, mobile, and web.
Paul's design portfolio includes RStudio, Lose It! and
many other apps and sites.

Contact Us

Support: http://support.rstudio.org
Feedback: feedback@rstudio.org
Inquiries: info@rstudio.org

42 of 51
http://rstudio.org/docs/about 4/18/11 9:37 PM

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

43 of 51
http://rstudio.org/docs/about 4/18/11 9:37 PM

Home Screenshots Download Docs Support Development Blog

RStudio v0.93 — Release Notes

April 11th, 2011

New Features

Source editor enhancements

We've added some new features & options to the source editor. We've also received lots of feedback on more advanced
capabilities users want in the editor and we will definitely address this in upcoming releases. New stuff in the editor
includes:

e Highlight all instances of selected text

e Insert spaces for tabs (soft-tabs)

e Customizable print margin line

Selected line highlight

Toggle line numbers on/off

e Optional soft-wrapping for R source files

The docs on source code editing options include more details.

Customizable layout and appearance

One of the most frequently requested features we've have is the ability to put the Console and Source views
side-by-side. This configuration (and others) are now possible. New appearance and layout options include:

e Customize locations of panes and tabs
e Change default font size for code views

e Select from various editor themes including TextMate, Eclipse, and others.

For more details see the docs on appearance and layout options.

Interactive plotting (manipulate)

This release includes a package called manipulate that can be use to create interactive plots within RStudio. Manipulate
is very flexible and includes the following capabilities:

e Generate plots with inputs bound to custom controls (rather than being hard-coded to a single value)
e Variety of control types including slider, picker, and checkbox.

e Controls appear next to the plot and can be easily shown and hidden

More details as well as screenshots with examples can be found in the manipulate documentation.

Works with R installed from source

The first beta of RStudio was compatible with the binary version of R distributed from CRAN. The current release works
with any version of R, including:

e R built and installed from source using make install

e MacPorts or Homebrew versions of R on MacOS X

The docs on using different versions of R describe how RStudio determines which R to run against on each platform.

Character encoding
In this release we've significantly improved handling of non-ASClI characters, this includes:
e Unicode characters can be used for input and output in the console.
44 of 51
http://rstudio.org/docs/release_notes_v0.93 4/18/11 9:37 PM

e The source editor supports Unicode characters and can open/save files using any character encoding.

e A product-wide default encoding can be set, and can be overridden on a per-document basis.

See the character encoding documentation for more details.

Improved management of working directories

We've added a number of new features to make it easier to switch between working contexts located in different
directories. These include:

e Option to specify a default initial working directory

e Tools | Change Working Dir menu command to change both the working directory and Files pane.

e Optional file associations for .RData and .R that initialize RStudio within the opened file's directory

e Windows: Startup in working directory specified for shortcuts

e Mac: Startup in folder dragged and dropped on RStudio Dock icon

e Linux: Startup in terminal working directory when run from the command line

The docs on working directories and workspaces go into more depth on these features.

Other Enhancements

Console

e Recognize \r character in console so that txtProgressBar works as expected
o Lift restrictions on size of console input which can be sent to R (was 4K total, is now 4K per line)

e Jump to next non-blank line in source after executing via Ctrl-Enter

Source Editing

e Improved size and legibility of default fonts on Windows & Linux

o New keyboard shortcuts:

e Alt- for inserting assignment ("<-") operator.
e Ctrl+Shift+Home/End for select to start/end
o Ctrl+Shift+P for Compile PDF
e Add "return” to list of symbols syntax highlighted as a keyword

Compatibility
e Compatible with R 2.11.1 on Mac (previously required R 2.12)
e Added CFBundleSignature to Mac version
e Correctly initialize memory.limit to available physical memory on 64-bit Windows
e Ensure that R uses Internet2 on Windows for interoperability with proxy servers.
e Compatibility with changes to the R 2.13 internal web server (pass headers to custom handlers).
e Allow RStudio desktop to run under root account

e Improved support for openSUSE (still requires install from source):

e Added install-dependencies-zypper script

e Added init.d script for daemon management

Packaging and Installation

e Added RStudio.version function to show current version of RStudio

e Changed name of RStudio binary from rdesktop to rstudio (avoid conflict with existing rdesktop binary)
Added /usr/bin/rstudio soft-link

Change DEB and RPM dependency on base R package to "recommends" rather than "depends"

Made it more straightforward to install from source:
e Eliminated git pull requirement (can now build directly from tarball)

45 of 51
http://rstudio.org/docs/release_notes_v0.93 4/18/11 9:37 PM

e Optionally use system package manager installed versions of Qt4 & Boost

Miscellaneous

Added Tools menu with Interrupt R, Change Working Dir, and Options commands.

Add support for loading .rda files into Workspace.

Improved file icons including new custom icons for Rnw and Rd files.

Respect both R_USER and HOME environment variables for determining location of R home directory
Render plot changes on calls to Sys.sleep (enables animated plots)

Workaround Ubuntu TeX ~ substitution bug by using pdflatex rather than texi2dvi

Bug Fixes

Console

Workspace restored message prints at startup even if no workspace was restored
Numeric keypad Enter and navigation keys not correctly interpreted by console

Esc key not always correctly interpreted when attempting to exit from incomplete command.

Source Editing

Source pane can become fully selected and impossible to unselect.
Control-Enter to execute sometimes results in selection not updating properly
Jump to Word (Ctrl+Right) doesn't navigate past '[' character.

Ctrl+Backspace doesn't delete previous word on Windows

Characters illegible when Lucida Grande is installed on Mac systems

Active tab in source mode sometimes hidden or partially obscured

Control+S repeats last Undo/Redo on Firefox 3.6

Print from source view not working in Firefox 4

Eliminate key binding conflicts for international keyboard layouts

Incorrect shortcut key displayed in tooltip for Run from source commands

"o

Variables with dots (".") in their names not highlighting on double-click.

Plotting

Graphics device not reselected after closing other device (e.g. pdf or png device)

X11 device and rgl package not working properly on on Mac.

Save as PNG command not working on Linux

Re-entrant plot rendering routine causes crash for plots which take a long time to be rendered.
plotmath expressions not rendered correctly

Plot history can grow arbitrarily large and cause disk/memory problems.

Compatibility

rJava package not working on Linux due to incomplete LD_LIBRARY_PATH
Not always correctly detecting whether TeX is installed
Dependency on psmisc package not specified for RStudio Server

Incorrect file association for download of RPM on Fedora

Miscellaneous

Failed to start when running behind some proxy server configurations.
Unable to initialize from .Rhistory file that is owned by root
Exit delay of 2-3 seconds in Mac version

Crash when custom gtk theme contains missing or invalid images for standard icons

46 of 51

http://rstudio.org/docs/release_notes_v0.93 4/18/11 9:37 PM

° nriicti O Instances runnin aral 1 S EE Xecutable pa

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

47 of 51
http://rstudio.org/docs/release_notes_v0.93 4/18/11 9:37 PM

Home Screenshots Download Docs Support Development Blog

Frequently Asked Questions

What is RStudio?

RStudio is an integrated development environment (IDE) for R which works with the standard version of R available from
CRAN. RStudio includes a wide range of productivity enhancing features and runs on all major platforms. RStudio can
optionally also be run as server which enables you to provide a browser based interface to a version of R running on a
remote system.

What versions of R is RStudio compatible with?

In order to run RStudio you need to have already installed R 2.11.1 or higher. You can download the most recent
version of R for your environment from CRAN.

What is the best way to get started with R and RStudio?

To get started with R there are a wide variety of learning and reference materials available online. We recommend you
check out the Getting Help with R article to find the appropriate resources.

To get started using RStudio check out the Product Overview as well as the other articles linked to from the
documentation.

What is the difference between RStudio Desktop and RStudio Server?

RStudio Desktop is an R IDE that works with the version of R you have installed on your local Windows, Mac OS X, or
Linux workstation. RStudio Desktop is a standalone desktop application that in no way requires or connects to RStudio
Server.

RStudio Server is a Linux server application that provides a web browser based interface to the version of R running on
the server. For more on why you might want to deploy an RStudio Server see the server documentation.

Will RStudio be providing a hosted version of RStudio Server?

Yes, we do plan to provide a hosted version of RStudio Server so that customers can use RStudio over the web without
having to deploy their own servers. We haven't announced a specific timeframe for this service yet, however if you are
interested in testing it when the beta version becomes available please contact us at info@rstudio.org.

What license is RStudio available under?

RStudio is available under the GNU Affero General Public License v3. The AGPL v3 is an open-source license that
guarantees the freedom to share and change the software, and to make sure it remains free software for all its users.

Where can | find the latest updates and news about RStudio?
To keep up with the latest RStudio developments you can subscribe to our blog or follow us on Twitter.
Where can | get support for using RStudio?

Our support web site includes a knowledge base and discussion forum for reporting problems, asking questions, and
discussing new ideas and features. Our team and others in the community actively participates in the forum so it is a
great place to go for help or answers.

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

48 of 51
http://rstudio.org/docs/faq 4/18/11 9:38 PM

Home Screenshots Download Docs Support Development Blog

Getting Help with R

There are a number of good resources available on the web for both learning R and seeking answers to questions about
how to accomplish various tasks. This article summarizes a few of the more helpful ones.

Learning R
If you are just learning R there are a number of good places to start:

e This basic R tutorial takes you step-by-step through the core functions of R.

e The CRAN Introduction to R provides a more complete and detailed overview of the entire R language.

This article provides a nice introduction to R for those coming from other languages.

The R Reference Card provides a useful quick reference for how to perform common tasks in R.

The Carnegie Mellon Open Learning Initiative has a free online Introduction to Statistics course has an option to
do the exercises and labs using R.

If you have some familiarity with R and want to learn about the system or particular features in more depth these
resources might be helpful.

e This Stack Overflow question provides some pointers to good books for learning the R language.

e The CRAN Contributed Documentation page lists other manuals, tutorials, etc. provided by users of R.

e Once you've gained some familiarity with R, The R Inferno provides an entertaining roadmap to some of the
deeper subtleties of the language and how to work with it most effectively.

e The Google R Style Guide provides some guidelines for writing readable and maintainable R code.

Asking Questions

A great place to start for any question about R is the RSeek meta search engine, which provides a unified interface for
searching the various sources of online R information. If there is an answer to question already available there is a good
chance that RSeek can locate it.

If you aren't able to locate an answer using RSeek, the following are good places to find an answer or ask a question:
e The R-help mailing list is a very active list with questions and answers about problems and solutions using R.
Before posting to the list you can also search the list archives to see if an answer already exists.
e Stack Overflow is also becoming an increasingly important resource for seeking answers to questions about R.

e |f you a have question that is more about statistical methodology there are also plenty of R users active on the
the CrossValidated Q&A community.

Finding Packages
There are thousands of R packages available from CRAN but navigating them all can be a challenge. The following
resources can help find the packages most appropriate for your tasks:
e CRAN Task Views provides comprehensive summaries of the packages most commonly used in various
disciplines.

e crantastic is a community site for R packages where you can search for, review, and tag CRAN packages.

News and Information

The R community is growing rapidly and there are lots of new things happening all the time. If you want to stay on top
of what's happening we recommend keeping up with the following sites:

e R-bloggers is a news site that combines posts from over 140 R bloggers. Almost everything that happens in the R
community is mentioned and discussed on R-bloggers.

e Users in the R community also frequently record videos of presentations, seminars, and user-groups. The R
Videos channel run by Drew Conway is a great way to keep up with all of the available videos.

49 of 51
http://rstudio.org/docs/help_with_r 4/18/11 9:38 PM

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

50 of 51
http://rstudio.org/docs/help_with_r 4/18/11 9:38 PM

Home Screenshots Download Docs Support Development Blog

RStudio™ Trademark

The RStudio Integrated Development Environment (IDE), under the terms of the Affero General Public License, version 3,
may be redistributed or modified. However, the name RStudio™ is a trademark of RStudio, Inc. and all rights in the
RStudio™ trademark are exclusive to RStudio, Inc.

The RStudio™ trademark may be displayed on any deployment of the RStudio IDE for its use in the unmodified form
supplied by RStudio, Inc. For example, individuals, businesses or organizations may deploy and use the unmodified
RStudio IDE bearing the RStudio™ trademark on individual workstations or on public or private networks. In addition,
the RStudio™ trademark may be used to indicate or refer to the unmodified RStudio IDE, provided that any such use is
accompanied by the following notice: "RStudio is a trademark of RStudio, Inc."

Anyone wishing to use the RStudio™ trademark for any reason other than those listed above, including but not limited
to advertising, on hardware, or on software derivative of the RStudio IDE, must obtain the express, written permission
of RStudio, Inc. in advance. To request permission to use the RStudio™ trademark or report suspected, unauthorized
use please contact us at info@rstudio.org.

© 2011 RStudio, Inc. About | Contact | & Follow on Twitter | FAQ | License (AGPL) | Trademark

51 of 51
http://rstudio.org/trademark 4/18/11 9:50 PM

