Under the Paperwork Reduction Act of 1995 no persons are required to respond to a collection of information unless it displays a valid OMB control number.
OMB No. 0651-0050 (Exp 09/20/2020)

## Request for Reconsideration after Final Action

The table below presents the data as entered.


| CONVERTED PDF FILE(S) (4 pages) | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0017.JPG }}$ |
| :---: | :---: |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \ R F R 0018 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \ R F R 0019 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0020 . J P G ~}$ |
| ORIGINAL PDF FILE | evi_241215541-20181109154202087181_._EXH_B_PART_1_Nov_9_2018.pdf |
| CONVERTED PDF FILE(S) (85 pages) | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0021.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0022 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0023 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \backslash R F R 0024 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0025.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0026 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \backslash R F R 0027 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \ R F R 0028 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0029 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0030 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \ R F R 0031 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0032 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0033.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0034 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0035 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0036 . J P G ~}$ |
|  |  |
| TICRS EXPPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0037.JPG $^{\text {a }}$ |  |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0038 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0039 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0040.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0041.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \ R F R 0042 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0043 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0044.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0045 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0046 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0047 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0048.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0049 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0050.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0051 . J P G ~}$ |

【ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0052．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0053．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0054．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0055．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0056．JPG【TITCRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0057．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0058．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0059．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0060．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0061．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0062．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0063．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0064．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0065．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0066．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0067．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0068．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0069．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0070．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0071．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0072．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0073．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0074．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0075．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0076．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0077．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0078．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0079．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0080．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0081．JPG【TICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0082．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0083．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0084．JPG【TICRS\EXPORT17\IMAGEOUT17\8719943\87194361\xml14\RFR0085．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0086．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0087．JPG

【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0088．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0089．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0090．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0091．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0092．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0093．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0094．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0095．JPG IITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0096．JPG【ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0097．JPG【ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0098．JPG【ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0099．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0100．JPG【ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0101．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0102．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0103．JPG【TICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0104．JPG【TICRS\EXPORT17\IMAGEOUT17\8719943\87194361\xml14\RFR0105．JPG evi＿241215541－20181109154202087181＿．＿EXH＿B＿PART＿2＿Nov＿9＿2018．pdf【【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0106．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0107．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0108．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0109．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0110．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0111．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0112．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0113．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0114．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0115．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0116．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0117．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0118．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0119．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0120．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0121．JPG【ITICRS\EXPORT17\IMAGEOUT17\8719943\87194361\xml14\RFR0122．JPG

【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0123．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0124．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0125．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0126．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0127．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0128．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0129．JPG \ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0130．JPG IITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0131．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0132．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0133．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0134．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0135．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0136．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0137．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0138．JPG IITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0139．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0140．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0141．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0142．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0143．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0144．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0145．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0146．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0147．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0148．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0149．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0150．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0151．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0152．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0153．JPG IITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0154．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0155．JPG evi＿241215541－20181109154202087181＿．＿EXH＿B＿PART＿3＿Nov＿9＿2018．pdf【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0156．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0157．JPG

ORIGINAL PDF FILE
CONVERTED PDF FILE（S）
（58 pages）

【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0158．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0159．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0160．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0161．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0162．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0163．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0164．JPG \ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0165．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0166．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0167．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0168．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0169．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0170．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0171．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0172．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0173．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0174．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0175．JPG【TTICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0176．JPG【TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0177．JPG \ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0178．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0179．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0180．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0181．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0182．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0183．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0184．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0185．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0186．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0187．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0188．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0189．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0190．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0191．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0192．JPG【ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0193．JPG IITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0194．JPG

|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0195.JPG }}$ |
| :---: | :---: |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0196 . J P G ~}$ |
|  |  |
| TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0197.JPG |  |
|  | $\underline{\text { \TICRS } \ \text { EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0198.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0199.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0200.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0201 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \ x m l 14 \ R F R 0202 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0203 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0204.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0205.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0206.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0207.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \ R F R 0208 . J P G ~}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0209 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0210.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0211.JPG }}$ |
|  | $\underline{\text { \TTICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m 114 \backslash R F R 0212 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0213.JPG }}$ |
| ORIGINAL PDF FILE | evi_241215541-20181109154202087181..EXH_C_Nov_9_2018.pdf |
| CONVERTED PDF FILE(S) (33 pages) | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0214.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0215.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0216.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0217.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0218.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0219.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0220.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0221.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0222.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0223.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0224.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0225.JPG }}$ |
|  | $\underline{\text { \TICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m l 14 \backslash R F R 0226 . J P G ~}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0227.JPG }}$ |
|  | $\underline{\text { \TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0228.JPG }}$ |
|  | $\underline{\text { \TTICRS } \ E X P O R T 17 \backslash I M A G E O U T 17 \backslash 871 \backslash 943 \backslash 87194361 \backslash x m 114 \backslash R F R 0229 . J P G ~}$ |


|  | \TTICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0230.JPG |
| :---: | :---: |
|  | \ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0231.JPG |
|  | \TTICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0232.JPG |
|  | \TTICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0233.JPG |
|  | \TTICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0234.JPG |
|  | \ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0235.JPG |
|  | \ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0236.JPG |
|  | \1TICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0237.JPG |
|  | \ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0238.JPG |
|  | \TTICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0239.JPG |
|  | \TTICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0240.JPG |
|  | \ITICRS\EXPORT17\IMAGEOUT17\8711943\87194361\xml14\RFR0241.JPG |
|  | \ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0242.JPG |
|  | \ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0243.JPG |
|  | \ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0244.JPG |
|  | \ITICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0245.JPG |
|  | \TTICRS\EXPORT17\IMAGEOUT17\871\943\87194361\xml14\RFR0246.JPG |
| DESCRIPTION OF EVIDENCE FILE | pdf files containing response to final office action including request for reconsideration and exhibits |
| GOODS AND/OR SERVICES SECTION (005)(current) |  |
| INTERNATIONAL CLASS | 005 |
| DESCRIPTION |  |
| Dietary supplemental drinks; Liquid nutritional supplement; all of the foregoing comprised of cannabidiol |  |
| FILING BASIS | Section 1(b) |
| GOODS AND/OR SERVICES SECTION (005)(proposed) |  |
| INTERNATIONAL CLASS | 005 |
| TRACKED TEXT DESCRIPTION |  |
| Dietary supplemental drinks; Liquid nutritional supplement; all of the foregoing eomprised of eannabidiol; all of the foregoing comprised of cannabidiol, and all of the foregoing being lawful under state and federal laws |  |
| FINAL DESCRIPTION |  |
| Dietary supplemental drinks; Liquid nutritional supplement; all of the foregoing comprised of cannabidiol, and all of the foregoing being lawful under state and federal laws |  |
| FILING BASIS | Section 1(b) |
| GOODS AND/OR SERVICES SECTION (032)(current) |  |
| INTERNATIONAL CLASS | 032 |
| DESCRIPTION |  |
| Bottled drinking water containing CBD; Bottled water comprised of CBD; Flavored bottled water containing CBD; Flavored waters containing CBD; Soda water comprised of CBD; Sparkling water comprised of CBD |  |
| FILING BASIS | Section 1(b) |


| GOODS AND/OR SERVICES SECTION (032)(proposed) |  |
| :---: | :---: |
| INTERNATIONAL CLASS | 032 |
| TRACKED TEXT DESCRIPTION |  |
| Bottled drinking water containing CBD; Bottled water comprised of CBD; Flavored bottled water containing CBD; Flavored waters containing CBD; Soda water comprised of CBD; Sparkling water comprised of CBD; Sparkling water comprised of CBD, all of the foregoing being lawful under state and federal laws |  |
| FINAL DESCRIPTION |  |
| Bottled drinking water containing CBD; Bottled water comprised of CBD; Flavored bottled water containing CBD; Flavored waters containing CBD; Soda water comprised of CBD; Sparkling water comprised of CBD, all of the foregoing being lawful under state and federal laws |  |
| FILING BASIS | Section 1(b) |
| GOODS AND/OR SERVICES SECTION (035)(current) |  |
| International class | 035 |
| DESCRIPTION |  |
| Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations |  |
| FILING BASIS | Section 1(b) |
| GOODS AND/OR SERVICES SECTION (035)(proposed) |  |
| INTERNATIONAL CLASS | 035 |
| TRACKED TEXT DESCRIPTION |  |
| Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations; Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations, all of the foregoing being lawful under state and federal laws |  |
| FINAL DESCRIPTION |  |
| Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations, all of the foregoing being lawful under state and federal laws |  |
| FILING BASIS | Section 1(b) |
| SIGNATURE SECTION |  |
| RESPONSE SIGNATURE | /Jane S. Berman/ |
| SIGNATORY'S NAME | Jane S. Berman |
| SIGNATORY'S POSITION | Attorney of Record, Illinois Bar Member |
| SIGNATORY'S PHONE NUMBER | 3128404333 |
| DATE SIGNED | 11/09/2018 |
| AUTHORIZED SIGNATORY | YES |
| CONCURRENT APPEAL NOTICE FILED | YES |
| FILING INFORMATION SECTION |  |
| SUBMIT DATE | Fri Nov 09 15:53:48 EST 2018 |
| TEAS STAMP | USPTO/RFR-XX.XX.XXX.XX-20 181109155348764315-871943 61-610d0b5635f821c6df0ca7 eb64fe4c4b2f60a1a70a92ea1 faa8461dceb0c7fe8-N/A-N/A -20181109154202087181 |

Under the Paperwork Reduction Act of 1995 no persons are required to respond to a collection of information unless it displays a valid OMB control number.
PTO Form 1960 (Rev 10/2011)
OMB No. 0651-0050 (Exp 09/20/2020)

## Request for Reconsideration after Final Action

## To the Commissioner for Trademarks:

Application serial no. 87194361 CBDWATER(Standard Characters, see https://tmng-al.uspto.gov/resting2/api/img/87194361/large) has been amended as follows:

## ARGUMENT(S)

In response to the substantive refusal(s), please note the following:
Please see the actual argument text attached within the Evidence section.

## EVIDENCE

Evidence in the nature of pdf files containing response to final office action including request for reconsideration and exhibits has been attached. Original PDF file:
evi_241215541-20181109154202087181_. Response87194361_Nov_9_2018.pdf
Converted PDF file(s) ( 15 pages)
Evidence-1
Evidence-2
Evidence-3
Evidence-4
Evidence-5
Evidence-6
Evidence-7
Evidence-8
Evidence-9
Evidence-10
Evidence-11
Evidence-12
Evidence-13
Evidence-14
Evidence-15
Original PDF file:
evi_241215541-20181109154202087181_._EXH_A_Nov_9_2018.pdf
Converted PDF file(s) ( 4 pages)
Evidence-1
Evidence-2
Evidence-3
Evidence-4
Original PDF file:
evi_241215541-20181109154202087181. EXH_B_PART_1_Nov_9_2018.pdf
Converted PDF file(s) ( 85 pages)
Evidence-1
Evidence-2
Evidence-3
Evidence-4
Evidence-5
Evidence-6
Evidence-7
Evidence-8
Evidence-9
Evidence-10
Evidence-11

Evidence-12
Evidence-13
Evidence-14
Evidence-15
Evidence-16
Evidence-17
Evidence-18
Evidence-19
Evidence-20
Evidence-21
Evidence-22
Evidence-23
Evidence-24
Evidence-25
Evidence-26
Evidence-27
Evidence-28
Evidence-29
Evidence-30
Evidence-31
Evidence-32
Evidence-33
Evidence-34
Evidence-35
Evidence-36
Evidence-37
Evidence-38
Evidence-39
Evidence-40
Evidence-41
Evidence-42
Evidence-43
Evidence-44
Evidence-45
Evidence-46
Evidence-47
Evidence-48
Evidence-49
Evidence-50
Evidence-51
Evidence-52
Evidence-53
Evidence-54
Evidence-55
Evidence-56
Evidence-57
Evidence-58
Evidence-59
Evidence-60
Evidence-61
Evidence-62
Evidence-63
Evidence-64
Evidence-65
Evidence-66
Evidence-67
Evidence-68
Evidence-69

Evidence-70
Evidence-71
Evidence-72
Evidence-73
Evidence-74
Evidence-75
Evidence-76
Evidence-77
Evidence-78
Evidence-79
Evidence-80
Evidence-81
Evidence-82
Evidence-83
Evidence-84
Evidence-85
Original PDF file:
evi_241215541-20181109154202087181_._EXH_B_PART_2_Nov_9_2018.pdf
Converted PDF file(s) ( 50 pages)
Evidence-1
Evidence-2
Evidence-3
Evidence-4
Evidence-5
Evidence-6
Evidence-7
Evidence-8
Evidence-9
Evidence-10
Evidence-11
Evidence-12
Evidence-13
Evidence-14
Evidence-15
Evidence-16
Evidence-17
Evidence-18
Evidence-19
Evidence-20
Evidence-21
Evidence-22
Evidence-23
Evidence-24
Evidence-25
Evidence-26
Evidence-27
Evidence-28
Evidence-29
Evidence-30
Evidence-31
Evidence-32
Evidence-33
Evidence-34
Evidence-35
Evidence-36
Evidence-37
Evidence-38
Evidence-39

Evidence-40
Evidence-41
Evidence-42
Evidence-43
Evidence-44
Evidence-45
Evidence-46
Evidence-47
Evidence-48
Evidence-49
Evidence-50

## Original PDF file:

evi_241215541-20181109154202087181_._EXH_B_PART_3_Nov_9_2018.pdf
Converted PDF file(s) ( 58 pages)
Evidence-1
Evidence-2
Evidence-3
Evidence-4
Evidence-5
Evidence-6
Evidence-7
Evidence-8
Evidence-9
Evidence-10
Evidence-11
Evidence-12
Evidence-13
Evidence-14
Evidence-15
Evidence-16
Evidence-17
Evidence-18
Evidence-19
Evidence-20
Evidence-21
Evidence-22
Evidence-23
Evidence-24
Evidence-25
Evidence-26
Evidence-27
Evidence-28
Evidence-29
Evidence-30
Evidence-31
Evidence-32
Evidence-33
Evidence-34
Evidence-35
Evidence-36
Evidence-37
Evidence-38
Evidence-39
Evidence-40
Evidence-41
Evidence-42
Evidence-43
Evidence-44

Evidence-45
Evidence-46
Evidence-47
Evidence-48
Evidence-49
Evidence-50
Evidence-51
Evidence-52
Evidence-53
Evidence-54
Evidence-55
Evidence-56
Evidence-57
Evidence-58
Original PDF file:
evi_241215541-20181109154202087181_._EXH_C_Nov_9_2018.pdf
Converted PDF file(s) ( 33 pages)
Evidence-1
Evidence-2
Evidence-3
Evidence-4
Evidence-5
Evidence-6
Evidence-7
Evidence-8
Evidence-9
Evidence-10
Evidence-11
Evidence-12
Evidence-13
Evidence-14
Evidence-15
Evidence-16
Evidence-17
Evidence-18
Evidence-19
Evidence-20
Evidence-21
Evidence-22
Evidence-23
Evidence-24
Evidence-25
Evidence-26
Evidence-27
Evidence-28
Evidence-29
Evidence-30
Evidence-31
Evidence-32
Evidence-33

## CLASSIFICATION AND LISTING OF GOODS/SERVICES

Applicant proposes to amend the following class of goods/services in the application:
Current: Class 005 for Dietary supplemental drinks; Liquid nutritional supplement; all of the foregoing comprised of cannabidiol
Original Filing Basis:
Filing Basis: Section 1(b), Intent to Use: For a trademark or service mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to use the mark in commerce on or in connection with the identified goods/services in the application. For a collective trademark, collective service mark, or collective membership mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by members on or in connection with
the identified goods/services/collective membership organization. For a certification mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by authorized users in connection with the identified goods/services, and the applicant will not engage in the production or marketing of the goods/services to which the mark is applied, except to advertise or promote recognition of the certification program or of the goods/services that meet the certification standards of the applicant.

## Proposed:

Tracked Text Description: Dietary supplemental drinks; Liquid nutritional supplement; all of the foregoing eomprised of eannabidiof; all of the foregoing comprised of cannabidiol, and all of the foregoing being lawful under state and federal laws

Class 005 for Dietary supplemental drinks; Liquid nutritional supplement; all of the foregoing comprised of cannabidiol, and all of the foregoing being lawful under state and federal laws
Filing Basis: Section 1(b), Intent to Use: For a trademark or service mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to use the mark in commerce on or in connection with the identified goods/services in the application. For a collective trademark, collective service mark, or collective membership mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by members on or in connection with the identified goods/services/collective membership organization. For a certification mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by authorized users in connection with the identified goods/services, and the applicant will not engage in the production or marketing of the goods/services to which the mark is applied, except to advertise or promote recognition of the certification program or of the goods/services that meet the certification standards of the applicant.

## Applicant proposes to amend the following class of goods/services in the application:

Current: Class 032 for Bottled drinking water containing CBD; Bottled water comprised of CBD; Flavored bottled water containing CBD; Flavored waters containing CBD; Soda water comprised of CBD; Sparkling water comprised of CBD Original Filing Basis:
Filing Basis: Section 1(b), Intent to Use: For a trademark or service mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to use the mark in commerce on or in connection with the identified goods/services in the application. For a collective trademark, collective service mark, or collective membership mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by members on or in connection with the identified goods/services/collective membership organization. For a certification mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by authorized users in connection with the identified goods/services, and the applicant will not engage in the production or marketing of the goods/services to which the mark is applied, except to advertise or promote recognition of the certification program or of the goods/services that meet the certification standards of the applicant.

## Proposed:

Tracked Text Description: Bottled drinking water containing CBD; Bottled water comprised of CBD; Flavored bottled water containing CBD; Flavored waters containing CBD; Soda water comprised of CBD; Sparkling water comprised of CBD; Sparkling water comprised of CBD, all of the foregoing being lawful under state and federal laws

Class 032 for Bottled drinking water containing CBD; Bottled water comprised of CBD; Flavored bottled water containing CBD; Flavored waters containing CBD; Soda water comprised of CBD; Sparkling water comprised of CBD, all of the foregoing being lawful under state and federal laws
Filing Basis: Section 1(b), Intent to Use: For a trademark or service mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to use the mark in commerce on or in connection with the identified goods/services in the application. For a collective trademark, collective service mark, or collective membership mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by members on or in connection with the identified goods/services/collective membership organization. For a certification mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by authorized users in connection with the identified goods/services, and the applicant will not engage in the production or marketing of the goods/services to which the mark is applied, except to advertise or promote recognition of the certification program or of the goods/services that meet the certification standards of the applicant.

## Applicant proposes to amend the following class of goods/services in the application:

Current: Class 035 for Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations
Original Filing Basis:
Filing Basis: Section 1(b), Intent to Use: For a trademark or service mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to use the mark in commerce on or in connection with the identified goods/services in the application. For a collective trademark, collective service mark, or collective membership mark application: As of the application filing date, the applicant had a
bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by members on or in connection with the identified goods/services/collective membership organization. For a certification mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by authorized users in connection with the identified goods/services, and the applicant will not engage in the production or marketing of the goods/services to which the mark is applied, except to advertise or promote recognition of the certification program or of the goods/services that meet the certification standards of the applicant.

## Proposed:

Tracked Text Description: Promoting, advertising and marketing of the brands, products, serviees and online websites of individuals, businesses and nemprofit organizations; Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations, all of the foregoing being lawful under state and federal laws

Class 035 for Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations, all of the foregoing being lawful under state and federal laws
Filing Basis: Section 1(b), Intent to Use: For a trademark or service mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to use the mark in commerce on or in connection with the identified goods/services in the application. For a collective trademark, collective service mark, or collective membership mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by members on or in connection with the identified goods/services/collective membership organization. For a certification mark application: As of the application filing date, the applicant had a bona fide intention, and was entitled, to exercise legitimate control over the use of the mark in commerce by authorized users in connection with the identified goods/services, and the applicant will not engage in the production or marketing of the goods/services to which the mark is applied, except to advertise or promote recognition of the certification program or of the goods/services that meet the certification standards of the applicant.

## SIGNATURE(S)

## Request for Reconsideration Signature

Signature: /Jane S. Berman/ Date: 11/09/2018
Signatory's Name: Jane S. Berman
Signatory's Position: Attorney of Record, Illinois Bar Member
Signatory's Phone Number: 3128404333
The signatory has confirmed that he/she is an attorney who is a member in good standing of the bar of the highest court of a U.S. state, which includes the District of Columbia, Puerto Rico, and other federal territories and possessions; and he/she is currently the owner's/holder's attorney or an associate thereof; and to the best of his/her knowledge, if prior to his/her appointment another U.S. attorney or a Canadian attorney/agent not currently associated with his/her company/firm previously represented the owner/holder in this matter: (1) the owner/holder has filed or is concurrently filing a signed revocation of or substitute power of attorney with the USPTO; (2) the USPTO has granted the request of the prior representative to withdraw; (3) the owner/holder has filed a power of attorney appointing him/her in this matter; or (4) the owner's/holder's appointed U.S. attorney or Canadian attorney/agent has filed a power of attorney appointing him/her as an associate attorney in this matter.

The applicant is filing a Notice of Appeal in conjunction with this Request for Reconsideration.

Serial Number: 87194361
Internet Transmission Date: Fri Nov 09 15:53:48 EST 2018
TEAS Stamp: USPTO/RFR-XX.XX.XXX.XX-20181109155348764
315-87194361-610d0b5635f821c6df0ca7eb64f
e4c4b2f60a1a70a92ea1faa8461dceb0c7fe8-N/
A-N/A-20181109154202087181

## RESPONSE TO FINAL OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

## Mark:

CBDWATER
(Word mark in standard characters)

## Applicant:

Canna Farm LLC

## Final Office Action Issued On:

May 10, 2018
Attorney Docket No.:
CAN20-00101

1. Under 37 C.F.R. $\S 2.63(b)(3)$, Applicant files this timely request for reconsideration seeking to overcome the substantive refusals and to comply with outstanding requirements before the deadline for filing an appeal. Applicant is also filing a timely notice of appeal under 37 C.F.R. $\S 2.63$ (b)(1).
2. Applicant requests reconsideration of the final substantive refusals to register and the final requirement for information set forth in the final Office action issued May 10 , 2018 (the "Final Action"). The response also addresses matters maintained and continued from the first non-final Office action issued January 5, 2017 (the "First Action") and the second nonfinal Office action issued October 3, 2017 (the "Second Action"). As evidence provided by Applicant in its first Response filed July 5, 2017 (the "First Response") and in its second Response filed April 3, 2018 (the "Second Response") is considered to remain applicable to the present refusals and requests, the contents of the First Response and the Second Response are herein incorporated by reference.

## RESPONSE TO OFFICE ACTION

U.S. Trademark Application Serial No.: 87194361

## REPLY TO FINAL REFUSAL: NO LAWFUL USE IN COMMERCE

3. As to the goods in Class 005, as amended, namely: "dietary supplemental drinks; liquid nutritional supplement; all of the foregoing comprised of cannabidiol, and all of the foregoing being lawful under state and federal laws," and as to the goods in Class 032, as amended, namely: "bottled drinking water containing CBD ; bottled water comprised of CBD ; flavored bottled water containing CBD ; flavored waters containing CBD ; soda water comprised of CBD ; sparkling water comprised of CBD , all of the foregoing being lawful under state and federal laws," it is respectfully submitted that the refusal to register should be reconsidered and withdrawn. Applicant has a bona fide intent to lawfully use the applied-for mark in commerce, in compliance with Trademark Act Sections 1 and 45, 15 U.S.C. $\S \S 1051$, 1127. Applicant's identification of goods excludes any items that are not lawful under state and federal laws. Thus, the goods to which the proposed mark will be applied are, by definition, lawful under the federal Controlled Substances Act (CSA), 21 U.S.C. $\S \S 801-971$.
4. The record fails to establish that Applicant's Class 005 and Class 032 goods will be unlawful. Applicant's amended identification of goods in Class 005 and Class 032 explicitly excludes any item that is derived from unlawful sources. The Declaration of Robert DiVito (attached hereto as EXHIBIT A) provides facts that refute the examining attorney's presumptions on this point. Applicant intends to synthesize, or otherwise to obtain, the cannabidiol referenced in the identification of goods in a manner that is in full accordance and compliance with all state and federal laws and regulations, and to sell its Class 005 and Class 032 goods in a manner that is in full accordance and compliance with all state and federal laws and regulations. In contrast to the examining attorney's finding, based entirely on the examining attorney's speculation, Exhibit A provides factual evidence that the goods will be lawful.
5. Because the record fails to show that Applicant's Class 005 and Class 032 goods will be unlawful, Applicant submits that the refusal to register under Trademark Act Sections 1

## RESPONSE TO OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

and 45,15 U.S.C. $\S \S 1051,1127$ is premature. The examining attorney should, at the least, defer the refusal until the time of submission of a statement of actual use and specimens.
6. The examining attomey has erred in dismissing the possibility of lawful sourcing of cannabidiol as merely "theoretical." It is submitted this dismissal is not based on the evidence of record. Scientific advances have been made in synthesizing, sourcing, extracting, and concentrating cannabidiol since publication of the outdated reports relied upon by the examining attorney (Mölleken \& Husmann (1997); S.A. Ross et al (2000)). For example, attached hereto as EXHIBIT B are selected references identifying non-cannabis sources of cannabidiol that are lawful under state and federal law.
a. Poulos et al, U.S. Patent No. 10,093,949, discloses a method of producing cannabidiol using genetically engineered yeast.
b. Medical Marijuana, Inc. distributes a cannabidiol oil sourced from hops (accessed at https://www.medicalmarijuanainc.com/humulus/; see also https://dabsmagazine.com/you-dont-even-need-cannabis-to-make-organic-cbd-anymore/;
https://merryjane.com/are-fears-of-canadian-cannabis-shortages-justified-october-2-18; and
https://westword.com/cbd-derived-from-the-hop-plant-not-cannabis-now-offered-by-
peak-health-foundation-10578719).
c. Murphy, U.S. Patent App. Pub. No. US 2018/0153948 A1, discloses improved systems and methods for extracting from non-cannabis plant species cannabinoids (which includes cannabidiol) or similar compounds having affinity for cannabinoid receptors.

## RESPONSE TO OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

d. Winnicki, et al., U.S. Patent App. Pub. No. US 2018/0179564 A1, discloses improved methods and apparatus for biosynthetic production of cannabinoids (which includes cannabidiol) using yeast species.

It is submitted that, by the time of submission of Applicant's statement of use as to the listed goods in Class 005 and Class 032, even more lawful sources of cannabidiol will be available due to the swift advance of scientific research in this area exemplified by the references in Exhibit B.
7. Further showing that Applicant's Class 005 and Class 032 goods will be lawful when sold are the reports cited in HEMP INDUSTRIES ASSOCIATION, et al., v. DRUG ENFORCEMENT ADMINISTRATION, et al., 2017 WL 1346354 (C.A.9), 8 (Brief of Petitioners at 7), already of record. The reports summarize studies indicating that cannabinoids such as cannabidiol may be derived from non-cannabis plant sources such as coneflower (Echinacea), oxeye (Heliopsis helianthoides), electric daisy (Acmella oleracea), Helichrysum umbraculigerum, liverwort (Radula marginata), black pepper (Piper nigrum), chocolate (Theobrama cacao) plants, Echinacea purpurea, Echinacea angustifolia, Acmella oleracea, Helichrysum umbraculigerum, and Radula marginata, with lipophilic alkamides (alkylamides) from Echinacea species being the best-known). The examining attorney has erred in disregarding these studies showing that cannabinoids may be sourced from non-cannabis plants, on grounds that Ninth Circuit denied the petition in question. The examining attorney deferred to the Ninth Circuit's decision to deny the petition, and to the "DEA's authority to amend and interpret the regulations for which [it] is primarily responsible for administering."
8. First, with regard to the examining attorney's mention of the DEA's authority to amend and interpret regulations, Applicant points out that the DEA recently placed drug products in a finished dosage formulation that has been approved by the U.S. FDA that contains cannabidiol derived from cannabis on the least-restrictive schedule, Schedule V , of the

## RESPONSE TO OFFICE ACTION

U.S. Trademark Application Serial No.: 87194361

Controlled Substances Act. See FDA-APPROVED DRUG EPIDIOLEX PLACED IN SCHEDULE V OF CONTROLLED SUBSTANCES ACT, DOJ 18-1265, 2018 WL 4628300 (D.O.J., D.E.A., Sept. 27, 2018); Schedules of Controlled Substances: Placement in Schedule V of Certain FDA-Approved Drugs Containing Cannabidiol; Corresponding Change to Permit Requirements, 83 FR 48950-02, 2018 WL 4632087 (September 28, 2018). This change in scheduling of an FDA-approved drug product containing cannabis-derived cannabidiol shows that it is possible, and even likely, that DEA will undertake other scheduling changes affecting cannabidiol in the near future. Thus, recent regulatory changes by the DEA shows it is improper for the examining attorney to presume that Applicant will be unable to legally perfect its intent-to-use basis as to its Class 005 goods in the future. The examining attorney should, at the least, defer the refusal until the time of submission of a statement of actual use and specimens.
9. Second, the Ninth Circuit's denial of the Hemp Industries Assn. petition, and in turn, the examining attorney's dismissal of the cited reports, fail to diminish the scientific findings in the cited reports. The reports included:
a. Bauer et al., CB Receptor Ligands from Plants, 8 Curr. Topics in Med. Chem. 173, 173-86 (2008);
b. R. Bauer, P. Remiger, TLC and HPLC Analysis of Alkamides in Echinacea Drugs, 55 Planta Medica 367, 367-71 (1989);
c. Stefan Raduner et al., Alkylamides from Echinacea Are a New Class of Cannabinomimetics: Cannabinoid Type 2 Receptor-Dependent and -Independent Immunomodulatory Effects, 281 J. of Bio. Chem. 14,192, 14,192-206 (2006);
d. Nigel B. Perry et al., Alkamide Levels in Echinacea purpurea: A Rapid Analytical Method Revealing Differences among Roots, Rhizomes, Stems, Leaves and Flowers, 63 Planta Medica 58, 58-62 (1997);

## RESPONSE TO OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

e. Xian-guo He et al, Analysis of alkamides in roots and achenes of Echinacea purpurea by liquid chromatography-electrospray mass spectrometry, 815 J . of Chromatography A 205, 205-11 (1998);
f. Allesia Ligresti et al., Kavalactones and the endocannabinoid system: The plant-derived yangonin is a novel CB1 receptor ligand, 66 Pharmacological Research 163, 163-169 (2012);
g. G. Korte al., Tea catechins' affinity for human cannabinoid receptors, 17 Phytomedicine 19, 19-22 (2010);
h. Jurg Gertsch et al., Beta-caryophyllene is a dietary terpene, 105 Proceedings of Nat'l Academy of Sciences 9099, 9099-9104;
i. Giovanni Pcioni et al., Truffles contain endocannabinoid metabolic enzymes and anandamide, 110 Phytochemistry 104, 104-10 (2015).
10. The reports cited above support Applicant's factual statements of its bona fide intent to lawfully source and sell "dietary supplemental drinks; liquid nutritional supplement; all of the foregoing comprised of cannabidiol, and all of the foregoing being lawful under state and federal laws."
11. The examining attorney cited In Re Morgan Brown, 119 U.S.P.Q.2d 1350, 2016 WL 4140917 (T.T.A.B. July 14, 2016) in support of the examining attorney's determination that "[b]ecause the identification is unrestricted as to the source of the CBD used to be used in the goods, it is proper to presume that applicant will use CBD obtained from Cannabis sativa L , an unlawful source." Because the identification of Class 005 and Class 032 goods in the present application has been restricted to goods that are "lawful under state and federal laws," the analysis of Brown is inapplicable to the present application, and reliance upon Brown is unsupported by the present record.

## RESPONSE TO OFFICE ACTION

U.S. Trademark Application Serial No.: 87194361
12. In Brown, the Board found there was unrebutted evidence of record that the applicant's mark was actually "being used in connection with sales of a specific substance (marijuana) that falls within both the services identification and the prohibitions of the CSA." Brown, 2016 WL 4140917, at *5. The Board thus found that "Applicant's retail store services include sales of a good that is illegal under federal law, and therefore encompasses a use that is unlawful. Id. Unlike in Brown, there is no per se violation of law of record in the present application, as Applicant has established that it intends to source its cannabidiol only from lawful sources. See Exhibit A. Further, it is an impossibility for the Applicant to perfect its intent-to-use basis by declaring use as to any goods prohibited by the CSA, or by any other laws, because the identification of goods by its own terms excludes all unlawful goods. The goods identification at issue in Brown lacked the explicit exclusion of unlawful goods contained in the description of Class 005 and Class 032 goods in the instant application.
13. The examining attorney cited In Re JJ206, LLC, DBA Juju Joints, 120 U.S.P.Q.2d 1568, 2016 WL 7010624 (T.T.A.B. Oct. 27, 2016) in support of the conclusion that "[b]ecause the identified goods and/or services consist of or include items or activities that are prohibited under the Controlled Substances Act, applicant cannot have a bona fide intent to lawfully use the applied-for mark in commerce in connection with the goods." In In re JJ206, one of the two applications at issue was based upon an intent to use the mark in commerce for "smokeless cannabis vaporizing apparatus, namely, oral vaporizers for smoking purposes; vaporizing cannabis delivery device, namely, oral vaporizers for smoking purposes." JJ206, 2016 WL 7010624, at *1. The other application was based on actual use of the mark in commerce for "smokeless marijuana or cannabis vaporizer apparatus, namely, oral vaporizers for smokers; vaporizing marijuana or cannabis delivery device, namely, oral vaporizers for smoking purposes." Id. Thus, in both applications, the applicant explicitly identified its goods as vaporizing devices for cannabis or marijuana. The Board found that, "because Applicant's

## RESPONSE TO OFFICE ACTION

U.S. Trademark Application Serial No.: 87194361
identified goods constitute illegal drug paraphernalia under the CSA, Applicant's use and intended use of the applied-for marks on these goods is unlawful, and cannot serve as the basis for federal registration. Id., at *5.
14. In contrast to $J J 206$, in the instant application, Applicant explicitly excludes from the identification any unlawful goods, specifying that the goods are "lawful under state and federal laws." Unlike the situation in $J J 206$ where it was "a legal impossibility" for the applicant to have the requisite bona fide intent to use the mark," id., at $* 2$, in the instant application, it is an impossibility for the Applicant to perfect its intent-to-use basis by declaring use as to any goods prohibited by the CSA, or by any other laws, because the identification of goods by its own terms excludes all unlawful goods. Applicant cannot submit, and the Office cannot accept, a statement of use and specimens in this application declaring use for unlawful goods, as such have been explicitly excluded from the identification of goods. Thus, the "legal impossibility" found in JJ206 does not exist in the present application. JJ206 must be distinguished on this basis. Applicant respectfully submits that the examining attorney's reliance upon $J J 206$ in determining that Applicant cannot have a bona fide intent to lawfully use the applied-for mark in commerce in connection with the goods is thus based on error, unsupported by the record.
15. Applicant notes that the JJ206 and Brown decisions cited by the examining attorney were followed by In re PharmaCann LLC, 2017 WL 2876812 (T.T.A.B. June 16, 2017), but the Board there affirmed a refusal of intent-to-use applications covering "retail store services featuring medical marijuana," in International Class 35, and "dispensing of pharmaceuticals featuring medical marijuana," in International Class 44. Id., at * 1 . But like the analyses in JJ206 and Brown, the analysis in PharmaCann cannot support the examining attorney's refusal to register in the instant application. This is because the services descriptions in PharmaCann explicitly reference marijuana, and thus directly implicate violation of the

## RESPONSE TO OFFICE ACTION

U.S. Trademark Application Serial No.: 87194361

CSA. The services descriptions in PharmaCann also lack the exclusion of unlawful goods contained in the description of Class 005 goods in the instant application.

## REPLY TO REQUIREMENT FOR INFORMATION

16. The following is submitted in response to the examining attorney's determination that "applicant did not provide a satisfactory response to Question 4 in the January 5, 2017 or October 3, 2017 Office Actions." The Final Action continued and made final the requirement for response to Question 4:

## 4. Do or will the identified services in Class 35 enable applicant or consumers to disseminate, distribute, purchase, buy, sell, trade or barter any goods which contain as an ingredient marijuana, cannabis, hemp, marijuanabased, cannabis-based or hemp-based preparations, or marijuana, cannabis or hemp-based extracts or derivatives, synthetic marijuana, or any other illegal controlled substances?

The examining attomey has characterized this complex, multi-part question as "a simple 'yes' or 'no' question," in the Final Action, but it is not a simple 'yes' or 'no' question. Nonetheless, Applicant will attempt in the following to comply with the examining attorney's requirement for a simple 'yes' or 'no' answer to Question 4.
17. The identified services in Class 035 will not enable applicant or consumers to disseminate, distribute, purchase, buy, sell, trade or barter any goods which contain as an ingredient marijuana, cannabis, hemp, synthetic marijuana, or any other illegal controlled substances. Applicant has no intent to provide any services that will enable applicant or consumers to violate any laws, including the CSA.
18. The identified services in Class 035 will not enable applicant or consumers to disseminate, distribute, purchase, buy, sell, trade or barter any goods which contain as an ingredient marijuana-based, cannabis-based or hemp-based preparations, or marijuana, cannabis

## RESPONSE TO OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

or hemp-based extracts or derivatives, to the extent that any of the foregoing are unlawful under any laws, including the CSA. Applicant has no intent to provide any services that will enable applicant or consumers to violate any laws, including the CSA.
19. Many preparations, extracts, or derivatives falling within the list in the examining attorney's "Question 4" are not illegal controlled substances. For example, reference is made to U.S. Trademark Reg. Nos. 5363541, 5139076, 5589298, 5543497, 5193224, 5288805 , and 5498192 (see TESS records and registration certificates copied in EXHIBIT C, attached). These registrations list examples of goods that contain hemp-based preparations, extracts, or derivatives that may be sold in U.S. commerce without violating any laws, including the CSA. The goods listed in these registrations provide examples of the sorts of products that fall within the examiner's Question 4 categories and yet do not implicate the CSA or violate any laws. Thus, Applicant's services of "Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations" may involve promoting, advertising and marketing of such goods while not indicating the violation of any laws. As Applicant has explicitly excluded any unlawful goods from its identifications of goods and recitations of services in this application, it is submitted that Applicant's response to Question 4 should now be accepted.
20. Other preparations, extracts or derivatives falling within the list in the examining attorney's "Question 4" that are not illegal controlled substances may be exemplified by the plant extracts referenced in the scientific journal reports listed in Para. 9 above. Also, Exhibit B illustrates other preparations, extracts or derivatives that fall within the examining attorney's list in Question 4 but that are not illegal controlled substances.
21. Although the Final Action is not clear, it appears that the examining attorney has already accepted as adequate Applicant's prior responses to the other requirements for

## RESPONSE TO OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

information (other than Question 4), and so it is respectfully submitted that all requirements for information have now been adequately addressed.

## SECTION 2(E)(1) REFUSAL TO REGISTER AS TO ALL CLASSES

22. Applicant incorporates by reference all evidence of record and all prior arguments traversing refusal to register on grounds of Section 2(e)(1) descriptiveness. Applicant maintains and preserves all its arguments for appeal.
23. The examining attorney has engaged in impermissible dissection of the coined mark in making the finding of descriptiveness. CBDWATER is a unitary coined mark, originated and created by Applicant for use in connection with its Class 5, 32, and 35 goods and services. The mark is fanciful insofar as CBD is known to be water-insoluble, and so the telescoped mark CBDWATER has an incongruous, nonsensical meaning as applied to the listed goods and services. "Cannabidiol is insoluble in water but soluble in organic solvents such as pentane." Wikipedia entry, "Cannabidiol," https://en.wikipedia.org/wiki/Cannabidiol (accessed on April 3, 2018).
24. With respect to the Class 35 services of "promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations, all of the foregoing being lawful under state and federal laws" there is nothing in the mark that conveys an idea of the qualities or characteristics of the promotional, advertising, and marketing services.
25. As to the Class 5 goods of "dietary supplemental drinks; Liquid nutritional supplement, all of the foregoing comprised of cannabidiol, and all of the foregoing being lawful under state and federal laws," the mark is at best suggestive of the goods as it fails to immediately convey an immediate idea of "dietary supplemental drinks" or "liquid nutritional supplement."

## RESPONSE TO OFFICE ACTION

U.S. Trademark Application Serial No.: 87194361
26. As to Class 32, the mark is incongruous and cannot be immediately understood to apply to the listed goods, as it is known that CBD is insoluble in water. See Wikipedia article, supra. Thus, it is submitted that the refusal to register the mark on grounds of mere descriptiveness under Section $2(\mathrm{e})(1)$ should be reconsidered and withdrawn as to all three classes.
27. A term is merely descriptive of goods or services within the meaning of Section 2(e)(1) of the Trademark Act only if it forthwith conveys an immediate idea of an ingredient, quality, characteristic, feature, function, purpose, or use of the goods or services. In re Gyulay, 3 USPQ2d 1009 (Fed. Cir. 1987); In re Abcor Development Corp., 200 USPQ 215, 217-18 (CCPA 1978); J.S. Paluch Co., Inc. v. Irwin, 215 USPQ 533, 536 (TTAB 1982); In re Tennis in the Round, Inc., 199 USPQ 496, 498 (TTAB 1978). Under this standard, a mark is suggestive, rather than descriptive, if it requires imagination, thought, and perception to reach a conclusion as to the nature of the covered services or goods. In re Mayer-Beaton Corp., 223 USPQ 1347, 1349 (TTAB 1984); Plyboo Am., Inc. v. Smith \& Fong Co., 51 USPQ2d 1633, 1640 (TTAB 1999). The Examining Attorney bears the burden of proving that Applicant's mark is merely descriptive of the cited goods or services. TMEP Section 1209.02. And any doubt as to the mere descriptiveness of a word or phrase must be resolved in an applicant's favor. In re Conductive Systems, Inc., 220 USPQ 84, 86 (TTAB 1983); In re Gourmet Bakeries, Inc., 173 USPQ 565 (TTAB 1972).
28. A mark that suggests a number of things, but falls short of describing the goods with "any degree of particularity," is not merely descriptive. See In re TMS Corp. of the Americas, 200 USPQ 57, 59 (TTAB 1978). Rather, "[i]f information about the product or service given by the term used as a mark is indirect or vague, then this indicates that the term is being used in a 'suggestive' not descriptive manner." 2 J . Thomas McCarthy, MCCARTHY ON TRADEMARKS AND UNFAIR COMPETITION, Section 11:19. To be merely descriptive, a

## RESPONSE TO OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

mark must immediately convey some particular and clear idea about the goods and services. See, e.g., In re Hutchinson Technology, 7 USPQ2d 1490, 1493 (Fed. Cir. 1988) (finding that "technology is a very broad term which includes many categories of goods" and thus "does not convey an immediate idea of the 'ingredients, qualities, or characteristics of the goods' listed in [the application]").
29. The term "CBD" has numerous meanings in various contexts, and CBDWATER, the unitary mark, has even more possible meanings. In this instance, consumers must exercise some imagination to draw this connection and meaning from the term relative to Applicant's products - the very definition of a "suggestive" and not "descriptive" mark. This is underscored by the fact that CBD and WATER telescoped into a unitary mark CBDWATER is a nonsensical and fanciful term, as the two literally do not mix, as CBD is known to be insoluble in water. And so, any possible association between Applicant's mark and Applicant's goods, and in particular Applicant's Class 35 services, is far less immediate than the association between marks and covered goods and services previously held to be suggestive. Suggestive examples include: SUGAR \& SPICE for bakery products, In re Colonial Stores, Inc., 394 F. 2 d 549 (CCPA 1968); SNO-RAKE for a snow removal hand tool, In re Shutts, 217 U.S.P.Q. 363 (TTAB 1983); WET/DRY BROOM for electric vacuum cleaners, In re Shop-Vac Corp., 219 U.S.P.Q. 470 (TTAB 1983); HANDI WIPES for dusting cloths, In re Colgate-Palmolive Co., 149 U.S.P.Q. 793 (TTAB 1966). Each of these marks is far more direct than Applicant's mark in conveying a characteristic or quality of the relevant goods or services, yet each was found capable of registration on the Principal Register.
30. It is notable that the Examining Attomey has offered only minimal evidence of either "Competitors' Use" or "Competitors' Need" tests in rendering the descriptiveness refusal, particularly with respect to the Class 5 goods and the Class 35 services. The explanation is simple. Such evidence is de minimus at most. Competitors have no "need" to use the phrase

## RESPONSE TO OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

CBDWATER to identify the Applicant's listed Class 5, 32, and 35 goods and services, because that phrase conveys no clear, definitive, or descriptive information about them.
31. Recognizing that "the suggestive/descriptive dichotomy can require the drawing of fine lines and often involves a good measure of subjective judgment," the TTAB in Shutts held that "it is clear that such doubts are to be resolved in favor of applicants." In re Shutts, 217 USPQ 363, 365 (TTAB 1983). The Examining Attorney should follow Shutts and resolve any doubts about the descriptiveness of the CBDWATER mark in favor of Applicant.
32. As to Class 035, additional reference is made to Exhibit C to this Response as evidence of non-descriptiveness of the services as applied to promoting, advertising and marketing of goods such as those listed in the registrations of Exhibit C. The registrations contain examples of the types of goods that Applicant intends to promote, advertise and market when it provides the services listed in the Class 035 recitation in the future. The examples of the types of goods reveal that the mark is not merely descriptive as to such goods.
33. Thus, as to all three classes of goods and services, it is submitted that the refusal to register the mark on grounds of mere descriptiveness under Section 2(e)(1) should be reconsidered and withdrawn.

## RESPONSE TO OFFICE ACTION

## U.S. Trademark Application Serial No.: 87194361

## CONCLUSION

34. It is respectfully submitted that all requirements raised by the examining attorney have been addressed. Reconsideration and withdrawal of all refusals to register are hereby respectfully requested in view of the arguments, amendments, and evidence presented in and with this Response, the First Response and the Second Response. It is submitted that the application is in condition for approval for publication, and early, favorable treatment of the application is requested. The examining attorney is encouraged to contact the undersigned counsel for Applicant with any additional requests for information.

Respectfully submitted,
Signature: /Jane S. Berman/
Jane S. Berman
Attorney of Record, Illinois Bar Member

[^0]
## EXHIBIT A

Begins on the following page
U.S. Trademark Application Serial No.: ..... 87194361
Mark: CBDWATER (Word mark in standard characters)
Applicant: Canna Farm LLC
Attorney Docket No.: CAN20-00101
DECLARATION OF ROBERT DIVITO

I, Robert DiVito, declare the following:

1. I am a Manager of Canna Farm LLC, the Applicant in the above-referenced trademark and service mark application, Application No. 87/194,361 for the mark CBDWATER (the "Mark").
2. 1 have personal knowledge of the matters set forth in this Declaration, and I am competent to make the following statements.
3. The Applicant Canna Farm LLC has a bona fide intention to use the Mark in the future on the goods in Classes 005 and 032 identified in the application, and in connection with the services in Class 035 recited in the application, in a way that fully complies with the Controlled Substances Act (the "CSA") and all other applicable laws.
4. The Applicant intends to use the Mark only on lawful goods and services. Accordingly, the Applicant has amended the identification of goods and recitation of services in this Application to the following:

In Int. Class 005: Dietary supplemental drinks; liquid nutritional supplement; all of the foregoing comprised of cannabidiol, and all of the foregoing being lawful under state and federal laws

In Int. Class 032: Bottled drinking water containing CBD; Bottled water comprised of CBD; Flavored bottled water containing CBD; Flavored waters containing CBD; Soda water comprised of CBD; Sparkling water comprised of CBD, all of the foregoing being lawful under state and federal laws

In Int. Class 035: Promoting, advertising and marketing of the brands, products, services and online websites of individuals, businesses and nonprofit organizations, all of the foregoing being lawful under state and federal laws
5. The identified goods in this application in Classes 005 and 032 will not include as an ingredient any illegal controlled substances at the time of their sale. The goods in Classes 005 and 032 that will be sold under the Mark will include cannabidiol or cannabidiol-like compounds, as set forth in the identifications of goods for these classes in this application. The Applicant intends to synthesize, or otherwise to obtain, the cannabidiol or cannabidiol-like compounds in accordance with all applicable laws and regulations, including the CSA. Applicant intends to source the cannabidiol or cannabidiol-like compounds only from lawful sources and only from lawful source materials.
6. Because this application is pending as an intent to use application, the source materials to be used for extracting or synthesizing cannabidiol to be used in the listed goods in Classes 005 and 032 to be sold under the Mark remain uncertain at this point in time. The

Applicant will make sure the goods in Classes 005 and 032 , and the services in Class 035, will not be unlawful at the time of their sale, and hence, will not be unlawful at the time that the Mark is used in commerce.
7. Applicant has no intent to provide any services that will enable applicant or consumers to violate any laws, including the CSA.
8. The undersigned being warned that willful false statements and the like are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 , and that such willful false statements and the like may jeopardize the validity of the application or document or any registration resulting therefrom, declares that all statements made of his/her own knowledge are true; and all statements made on information and belief are believed to be true.


Name: Robert DiVito

Dated:


## EXHIBIT B - PART 1

Begins on the following page

## ${ }^{(12)}$ United States Patent Poulos et al.

(10) Patent No.: US 10,093,949 B2
(45) Date of Patent: *Oct. 9, 2018
(54) PRODUCTION OF CANNABIDIOLIC ACID IN YEAST
(71) Applicant: Librede Inc., Sherman Oaks, CA (US)
(72) Inventors: Jason L. Poulos, Los Angeles, CA (US); Anthony N. Farnia, Pasadena, CA (US)
(73) Assignee: Librede Inc., Sherman Oaks, CA (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.
(21) Appl. No.: 15/815,651
(22) Filed: Nov. 16, 2017
(65) Prior Publication Data

US 2018/0073043 A1 Mar. 15, 2018
Related U.S. Application Data
(63) Continuation of application No. 14/795,816, filed on Jul. 9, 2015, now Pat. No. 9, 822,384.
(60) Provisional application No. $62 / 024,099$, filed on Jul. 14, 2014.
(51) Int. Cl.

| C12P 7/42 | $(2006.01)$ |
| :--- | :--- |
| C12N 1/14 | $(2006.01)$ |
| C12N 15/00 | $(2006.01)$ |
| C12N 9/88 | $(2006.01)$ |
| C12N 9/10 | $(2006.01)$ |
| C12N 9/00 | $(2006.01)$ |
| C12N 15/81 | $(2006.01)$ |

(52) U.S. Cl.

CPC …......... C12P $7 / 42$ (2013.01); C12N 9/1029 (2013.01); C12N 9/1085 (2013.01); C12N 9/88 (2013.01); C12N $9 / 93$ (2013.01); C12N

15/81 (2013.01); CI2Y 203/01206 (2015.07);
C12Y 205/01 (2013.01); C12Y 504/99 (2013.01); C12Y 602/01 (2013.01)
(58) Field of Classification Search None
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS


FOREIGN PATENT DOCUMENTS

| WO | WO2013006953 | $1 / 2013$ |
| :--- | :--- | :--- |
| WO | WO2014134281 | $9 / 2014$ |
| WO | WO2016010827 | $1 / 2016$ |

## OTHER PUBLICATIONS

Gagne, S.J. et al. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proceedings of the National Academy of Sciences of the United States of America 109, 12811-12816 (2012).
(Continued)
Primary Examiner - Yong D Pak
(74) Attorney, Agent, or Firm - Carr \& Ferrell LLP

## (57) <br> ABSTRACT

Exemplary embodiments provided herein include genetically engineering microorganisms, such as yeast or bacteria, to produce cannabinoids by inserting genes that produce the appropriate enzymes for the metabolic production of a desired compound.

1 Claim, 8 Drawing Sheets
Specification includes a Sequence Listing.

(56) References Cited
U.S. PATENT DOCUMENTS

| 9,611,460 | B2 * | 4/2017 | Page | Cl2N 9/1025 |
| :---: | :---: | :---: | :---: | :---: |
| 9,822,384 | B2 | 11/2017 | Poulos et al. |  |
| 2009/0226991 | A1 | 9/2009 | Feldman et al. |  |
| 2012/0144523 | A1 | $6 / 2012$ | Page et al. |  |
| 2013/0067619 | A1 | 3/2013 | Page et al. |  |
| 2013/0210107 | A1 | 8/2013 | Akada et al. |  |
| 2014/0178954 | A1 | 6/2014 | Hitz et al. |  |
| 2016/0010126 | A1 | 1/2016 | Poulos et al. |  |

## OTHER PUBLICATIONS

Stout, J.M., Boubakir, Z., Ambrose, S.J., Purves, R.W. \& Page, J.E. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. The Plant Journal 71, 353-365 (2012).
Shoyama, Y. et al. Structure and function of 1-Tetrahydrocannabinolic Acid (THCA) synthase, the enzyme controlling the psychoactivity of cannabis sativa. J. Mol. Biol., 423 (1), 96-105 (2012).

ElSohly et al. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. National Center for Natural Prod-
ucts Research, School of Pharmacy, The University of Mississippi, University, MS 38677. Life Sciences (78), 539-548 (2005).
Ignea et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol, May 16, 2014. vol. 3, No. 5. pp. 298-306.
Fonseca et al. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol, Jun. 2008, vol. 79, No. 3, pp. 339-54.
International Search Report and Written Opinion dated Dec. 28. 2015 in Patent Cooperation Treaty Application No. PCT/US2015 039812, filed Jul. 9, 2015, 21 pages.
"Recombinase expression vector pSH68, complete sequence", GenBank entry HQ401270.1, [retrieved on Nov. 18, 2015 from http://www ncbi.nlm.nih.gov/nuccore/HW401270] Sep. 12, 2011 (Sep. 12, 2011), 3 pages.
Written Opinion of the International Preliminary Examining Authority dated Jun. 24, 2016 in Patent Cooperation Treaty Application No. PCT/US2015/039812, filed Jul. 9, 2015, 5 pages.
Fischer, Marc et al., Metalolic Engineering of Monoterpene Synthesis in Year, Biotechnology and Bioengineering, vol. 108, No. 8, Aug. 2011, 10 pages.

* cited by examiner



FIG. 2


FIG. 3


FIG. 4


FIG. 5
U.S. Patent



FIG. 6


## Librede's Pathway from

Glucose to CBD

| Glucose |
| :---: |
|  |
|  |
|  |
|  |
|  |
| 3-Hydroxybutyryl-COA <br> Crotonyi-CoA |
|  |
|  |
| 3-Ketonhexanoyk-COA <br> 4 6 |
| 3-Hydroxyhexanoyl-COA |
| Trans-hexa-2-EnOyd-COA |
|  |
| $04+04 \%$ |
| Olivetolic Acld |
| \|kisiz |
| Cannabigerolic Acid (CBGA) |
| 3k:...2* |
| Cannabidiolic Acid (CBDA) |

FIG. 8

# PRODUCTION OF CANNABIDIOLIC ACID 

 IN YEASTCROSS-REFERENCE TO RELATED APPLICATIONS

This continuation application claims the priority benefit of U.S. Non-Provisional patent application Ser. No. 14/795,816 filed on Jul. 9, 2015 titled "Production of Cannabinoids in Yeast," which will issue on Nov. 21, 2017 as U.S. Pat. No. $9,822,384$, which in turn claims the benefit and priority of U.S. Provisional Patent Application Ser. No. 62/024,099 filed Jul. 14, 2014, titled "Terpenophenolic Production in Microorganisms," which is incorporated by reference herein.

## REFERENCE TO SEQUENCE LISTINGS

The present application is filed with sequence listing(s) attached hereto and incorporated by reference, including Appendix 1B titled "Sequence IDs".

## FIELD OF THE INVENTION

This invention relates to molecular biology, and more specifically to the transformation of yeast cells and the production of cannabinoids.

## SUMMARY OF THE INVENTION

Exemplary embodiments provided herein include genetically engineering microorganisms, such as yeast or bacteria, to produce cannabinoids by inserting genes that produce the appropriate enzymes for the metabolic production of a desired compound.

## BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows exemplary experimental data achieved in connection with Example 1 of Appendix 1A titled "Additional Examples" for cannabidiol ("CBD")/cannabidiolic acid ("CBDA") production in S. cerevisiae.

FIG. 2 shows exemplary experimental data achieved in connection with Example 2 of Appendix 1A titled "Additional Examples" for tetrahydrocannabinol ("THC")/tetrahydrocannabinolic acid ("THCA") production in S. cerevisiae.

FIG. 3 shows exemplary experimental data achieved in connection with Example 3 of Appendix 1A titled "Additional Examples" for cannabigerol ("CBG")/caunabigerolic acid ("CBGA") production in $S$. cerevisiae.

FIG. 4 shows exemplary experimental data achieved in connection with Example 4 of Appendix 1A titled "Additional Examples" for CBGA, CBDA, CBD, CBG and THC production in K. marxianus.

FIG. 5 show exemplary experimental data achieved in connection with Example 5 of Appendix 1A titled "Additional Examples" for galactose induced CBD production in S. cerevisiae.

FIG. 6 shows exemplary experimental data achieved in connection with Example 6 of Appendix 1A titled "Additional Examples" for secretion of CBD into media by $S$. cerevisiae.

FIG. 7 shows an exemplary metabolic pathway for the production of cannabinoids by Cannabis sativa.

FIG. 8 shows an exemplary biosynthetic route for the production of CBDA from glucose.

## DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

The present application relates to the field of cannabinoid production in yeasts. Cannabinoids are a general class of chemicals that act on cannabinoid receptors and other target molecules to modulate a wide range of physiological behavior such as neurotransmitter release. Cannabinoids are produced naturally in humans (called endocannabinoids) and by several plant species (called phytocannabinoids) including Cannabis sativa. Cannabinoids have been shown to have 5 several beneficial medical/therapeutic effects and therefore they are an active area of investigation by the pharmaceutical industry for use as pharmacentical products for various diseases.

Currently the production of cannabinoids for pharmaceutical or other use is done by chemical synthesis or through the extraction of cannabinoids from plants that are producing these cannabinoids, for example Cannabis sativa. There are several drawbacks to the current methods of cannabinoid production. The chemical synthesis of various cannabinoids is a costly process when compared to the extraction of cannabinoids from naturally occurring plants. The chemical synthesis of cannabinoids also involves the use of chemicals that are not environmentally friendly, which can be considered as an additional cost to their production. Furthermore, 30 the synthetic chemical production of various cannabinoids has been classified as less pharmacologically active as those extracted from plants such as Cannabis sativa. Although there are drawbacks to chemically synthesized cannabinoids, the benefit of this production method is that the end product is a highly pure single cannabinoid. This level of purity is preferred for pharmaceutical use. The level of purity required by the pharmaceutical industry is reflected by the fact that no plant extract based cannabinoid production has received FDA approval yet and only synthetic compounds have been approved.

In contrast to the synthetic chemical production of cannabinoids, the other method that is currently used to produce cannabinoids is production of cannabinoids in plants that naturally produce these chemicals; the most used plant for 5 this is Cannabis sativa. In this method, the plant Cannabis sativa is cultivated and during the flowering cycle varions cannabinoids are produced naturally by the plant. The plant can be harvested and the cannabinoids can be ingested for pharmaceutical purposes in various methods directly from the plant itself or the cannabinoids can be extracted from the plant. There are multiple methods to extract the cannabinoids from the plant Cannabis sativa. All of these methods typically involve placing the plant, Cannabis sativa that contains the cannabinoids, into a chemical solution that selectively solubilizes the cannabinoids into this solution. There are various chemical solutions used to do this such as hexane, cold water extraction methods, CO 2 extraction methods, and others. This chemical solution, now containing all the different cannabinoids, can then be removed, leaving behind the excess plant material. The cannabinoid containing solution can then be further processed for use.

There are several drawbacks of the natural production and extraction of cannabinoids in plants such as Cannabis sativa. Since there are numerous cannabinoids produced by 5 Cannabis sativa it is often difficult to reproduce identical cannabinoid profiles in plants using an extraction process. Furthermore, variations in plant growth will lead to different
levels of cannabinoids in the plant itself making reproducible extraction difficult. Different cannabinoid profiles will have different pharmaceutical effects which are not desired for a pharmaceutical product. Furthermore, the extraction of cannabinoids from Cannabis sativa extracts produces a mixture of cannabinoids and not a highly pure single pharmaceutical compound. Since many cannabinoids are similar in structure it is difficult to purify these mixtures to a high level resulting in cannabinoid contamination of the end product.

Disclosed herein are strategies for creating cannabinoids in microorganisms such as yeast and methods to produce various cannabinoids in yeast from a simple sugar source. The general methods involve genctically engineering yeast to produce various cannabinoids, where the main carbon source available to the yeast is a sugar (glucose, galactose, fructose, sucrose, honey, molasses, raw sugar, etc.). Genetic engineering of the microorganism involves inserting various genes that produce the appropriate enzymes and/or altering the natural metabolic pathway in the microorganism to achieve the production of a desired compound. Through genetic engineering of microorganisms these metabolic pathways can be introduced into these microcrganisms and the same metabolic products that are produced in the plant Cannabis sativa can be produced by the microorganisms. The benefit of this method is that once the microorganism is produced, the production of the cannabinoid is low cost and reliable, only a specific cannabinoid is produced or a subset is produced, depending on the organism. The purification of the cannabinoid is straight forward since there is only a single cannabinoid or a selected few camabinoids present in the microorganism. The process is a sustainable process which is more envirounentally friendly than synthetic production.

FIG. 1 shows exemplary experimental data achieved in connection with Example 1 of Appendix 1A titled "Additional Examples" for cannabidiol ("CBD")/cannabidiolic acid ("CBDA") production in S. cerevisiae.

FIG. 1 shows gas chromatography - mass spectrometry of cannabidiol (CBD) produced in $S$. cervisiae. After processing the yeast cells, as described in Example 1 of Appendix 1A, the whole cell ethyl acetate extract is analyzed for the presences of CBD. The samples were prepared in a way similar to that shown in Appendix A1 except that no MSTFA derivatization was used in this sample (therefore CBDA turns into CBD upon heating), the oven protocol was also slightly different than that shown in Appendix 1A. Initially, a standard CBD solution is run ( $100 \mathrm{ug} / \mathrm{mL}$; TOP). After running the standard the inventors determined the run time of 17.5 minutes. After running the standard the inventors repeated the GC-MS experiment with their whole cell extract (BOTTOM). At a run time of 17.5 minutes, the inventors saw the same peak as in the standard. Mass spectrometry analysis of the peaks showed identical mass for the two samples (standard and extract) indicating the presence of CBD in their whole cell extract.

FIG. 2 shows exemplary experimental data achieved in connection with Example 2 of Appendix 1A titled "Additional Examples" for tetrahydrocannabinol ("THC")/tetrahydrocannabinolic acid ("THCA") production in $S$. cerevisiae.

FIG. 2 shows gas chromatography mass spectrometry of tetrahydrocannabinol (THC) produced in S. cervisiae. After processing the yeast cells, as described in Example 2 of Appendix 1A, the whole cell ethyl acetate extract was 65 analyzed for the presences of THC. The samples were prepared in a way similar to that shown in Appendix 1A
except that no MSTFA derivatization was used in this sample (therefore THCA turns into THC upon heating), the oven protocol was also slightly different than that shown in Appendix 1A. Initially, a standard CBD solution was run ( $100 \mathrm{ug} / \mathrm{mL} ;$ TOP). After running the standard the inventors determined the run time of 18.5 minutes. After running the standard the inventors repeated the GC-MS experiment with their whole cell extract (BOTTOM). At a run time of 18.5 minutes, the inventors saw the same peak as in the standard. Mass spectrometry analysis of the peaks showed identical mass for the two samples (standard and extract) indicating the presence of THC in their whole cell extract.
FIG. 3 shows exemplary experimental data achieved in connection with Example 3 of Appendix 1A titled "Addi5 tional Examples" for cannabigerol ("CBG")/cannabigerolic acid ("CBGA") production in S. cerevisiae.

FIG. 3 shows gas chromatography - mass spectrometry of cannabigerolic acid (CBGA) produced in S. cervisiae. After processing the yeast cells, as described in Example 3 of 0 Appendix 1A, the whole cell ethyl acetate extract was analyzed for the presences of CBGA. The samples were prepared in a way as described in Appendix 1A, but the oven protocol was also slightly different than that shown in Appendix 1A. Initially, a standard CBGA solution was run ( $45 \mathrm{ug} / \mathrm{mL}$; TOP). After running the standard, the inventors determined the run time of 11.1 minutes. After running the standard, the inventors repeated the GC-MS experiment with their whole cell extract (BOTTOM). At a run time of 11.1 minutes, the inventors saw the same peak as in the 0 standard. Mass spectrometry analysis of the peaks showed identical mass for the two samples (standard and extract) indicating the presence of CBGA in their whole cell extract.
FIG. 4 shows excmplary experimental data achieved in connection with Example 4 of Appendix 1A titled "Addi5 tional Examples" for CBGA, CBDA, CBD, CBG and THC production in K. marxianus.

FIG. 4 shows gas chromatography-mass spectrometry of cannabinoid production (CBGA, CBDA, CBD, CBG, THC) produced in K. marxianus. After processing the yeast cells, as described in Example 4 of Appendix 1A, the whole cell ethyl acetate extract was analyzed for the presence of cannabinoids. The samples were prepared in a way as described in Appendix 1A, but the oven protocol was also slightly different than that shown in Appendix 1A. Initially, 5 a standard solution containing CBD, CBG, THC, CBDA, and CBGA was run ( $70 \mathrm{ug} / \mathrm{mL}$ each; TOP). After running the standard, the inventors determined the run time for each compounds. After running the standard, the inventors repeated the GC-MS experiment with their whole cell extract (BOTTOM). At each run time the inventors saw the same peaks as in the standard. Mass spectrometry analysis of the peaks showed identical mass for the two samples (standard and extract) indicating the presence of cannabinoids in their whole cell extract.
FIG. 5 show exemplary experimental data achieved in connection with Example 5 of Appendix 1A titled "Additional Examples" for galactose induced CBD production in S. cerevisiae.

FIG. 5 shows gas chromatography - mass spectrometry of induced cannabidiol (CBD) production in S. cervisiae. After processing yeast cells, as described in Example 5 of Appendix 1A, the whole cell ethyl acetate extract was analyzed for the presences of CBD. The samples were prepared in a way as described in Appendix 1A. Initially, a standard solution containing CBD was run ( $1 \mathrm{ug} / \mathrm{mL}$; TOP). After running the standard the inventors determined the run time for CBD as 10.2 minutes. After ruming the standard, the inventors
repeated the GC-MS experiment with their whole cell extract (BOTTOM). At 10.2 minutes, the inventors saw the same peak as in the standard. Mass spectrometry analysis of the peaks showed identical mass for the two samples (standard and extract) indicating the presence of CBD in their whole cell extract.

FIG. 6 shows exemplary experimental data achieved in connection with Example 6 of Appendix 1A titled "Additional Examples" for secretion of CBD into media by $S$. cerevisiae.

FIG. 6 shows gas chromatography - mass spectrometry of induced cannabidiol production (CBD) produced in S. cervisiae and secreted into the media. After processing the growth media, as described in Example 6 of Appendix 1A, the media ethyl acetate extract was analyzed for the presence of CBD. The samples were prepared in a way as described in Appendix 1A. Initially, a standard solution containing CBD was run ( $45 \mathrm{ug} / \mathrm{mL}$; TOP). After running the standard the inventors determined the run time for CBD as 10.2 minutes. After rumiug the standard, the inventors repeated the GC-MS experiment with their whole cell extract (BOTTOM). At 10.2 minutes, the inventors saw the same peak as in the standard. Mass spectrometry analysis of the peaks showed identical mass for the two samples (standard and extract) indicating the presence of CBD in their whole cell extract.

Biosynthetic Production of Cannabidiolic Acid (CBDA) in S. cerevisiae

Through genetic engineering the inventors have reconstituted the cannabidiolic acid (CBDA) metabolic pathway found in Cannabis sativa into S. cerevisiae (a species of yeast).

Producing CBGA is an initial step in producing many cannabinoids from Cannabis sativa iu S. cerevisiae. Once CBGA is produced a single additional enzymatic step is required to turn CBGA into many other cannabinoids (CBDA, THCA, CBCA, etc.). The acidic forms of the cannabinoids can be used as a pharmaceutical product or the acidic cannabinoids can be turned into their neutral form for use, for example Cannabidiol (CBD) is produced from CBDA through decarboxylation. The resulting cannabinoid products will be used in the pharmaceutical/nutraceutical industry to treat a wide range of health issues.

FIG. 7 shows an exemplary metabolic pathway for the production of cannabinoids by Cannabis sativa.

The biosynthetic route for the production of cannabidiolic acid iu Cannabis sativa is shown in FIG. 7. The pathway begins with the conversion of Hexanoic acid (a simple fatty acid) to Hexanoyl-CoA by Hexanoyl-CoA Synthetase. Hexanoyl-CoA is couverted to Oleviolic acid (OA), a polyketide, by a Polyketide synthase. OA is then prenylated with the monoterpene geranyl diphosphate to cannabigerolic acid by an Aromatic prenyltransferase. Finally, cannabidiolic acid (CBDA) is produced by cyclizing cannabigerolic acid via CBDA syuthase (CBDAs). In summary, it takes four enzymatic steps to produce CBDA from Hexanoic acid. The inventors have engineered this metabolic pathway into $S$. cerevisiae (a species of yeast) for the production of CBDA.

There are a few key differences between plant polyketide and terpene biosynthesis when compared to yeast. Yeast does not contain many of the enzymes and fatty acids required for the production of CBDA. Moreover, yeast do not express high levels of geranyl dipbosphate (GPP), a chemical required for the production of cannabigerolic acid, the precursor to CBDA. Yet, through genetic engineering many of the required enzymes can be added and the production of GPP can be increased. In order to add the required

Creation of a Stable Yeast Strain Producing the Metabolic Pathway for CBDA

Three stable transformations of S. cerevesaie where created utilizing selection for leucine, uracil and tryptophan. The inventors first transformed an auxotrophic yeast strain (his3D1/leu2/trp1-289/ura3-52) with the CsAAE1-T2A-Erg20(K197E)-FLAG gene in an integrating vector. $5 \mu \mathrm{~g}$ of CsAAE1-T2A-Erg20(K197E)-FLAG in a vector containing a gene for tryptophan depletion resistance was linearized with the restriction enzyme EcoRV, transformed into chemically competent $\operatorname{InVSc} 1$, and grown on Yeast Nitrogen Base without amino acids and $0.5 \%$ ammonium sulfate (YNBA) agar plates supplemented with histidine, leucine, tryptophan, $1 \%$ glucose and $2 \%$ lactic acid are grown at $30^{\circ} \mathrm{C}$. until colonies are formed. Any yeast colonies that did not incorporate the plasmid, that contains the CsAAE1-T2A-Erg20 (K197E)-FLAG gene died since the starting yeast strain is a tryptophan auxotroph. All colonies, with successful plasmid incorporation, where picked and grown in YNBA supplemented with histidine, leucine and uracil, $1 \%$ glucose and $2 \%$ lactic acid. All colonies were screened for protein production by taking whole cell extracts of each induced clone and the total protein was subjected to SDS-PAGE followed by western blotting against the c-terminal tag of Erg20(K197E). Positive clones where stored at $-80^{\circ} \mathrm{C}$. in glycerol stocks. The highest expressing clone was taken for the second transformation and was be designated as VscGPHA.

Using the VscGPHA strains the inventors added $5 \mu \mathrm{~g}$ of OS-T2A-OAC-HA in the a vector containing a gene for leucine depletion resistance. This plasmid was linearized with the restriction enzyme Asel and transformed into chemically competent VscGPHA and grown on YNBA aga plates supplemented with histidine and uracil, $1 \%$ glucose and $2 \%$ lactic acid and grown at $30^{\circ} \mathrm{C}$. until colonies were formed. Any yeast colonies that did not incorporate the plasmid that contains the OS-T2A-OAC-HA gene died since the VscGPHA is a leucine auxotroph. All colonies, with successful plasmid incorporation, were picked and grown in YNBA supplemented with histidine, and leucine. All colonies were screened for protein production by taking whole cell extracts of each induced clone and subjected the total protein to SDS-PAGE followed by western blotting against the c-terminal HA tag of OAC. Positive clones were stored at $-80^{\circ} \mathrm{C}$. in glyeerol stocks. The highest expressing clone was taken for the second stable transformation and was designated VseGPHOA.

The final stable transformation was done in a similar way as the previous transformation. The CsPT-T2A-CBDAsMYC gene was placed in the vector containing a gene for uracil depletion resistance $5 \mu \mathrm{~g}$ of this plasmid was linearized with EcorV and transformed into chemically competent VscGPHOA. Transformed VscGPHOA was grown il YNBA supplemented with bistidine, $1 \%$ glucose and $2 \%$ lactic acid. Any yeast colonies that did not incorporate the plasmid that contains the CsPT-T2A-CBDAs-MYC gene died since they lacked leucine. All colonies were picked and grown in YNBA supplemented with histidine, $1 \%$ glucose and $2 \%$ lactic acid. All colonies were screened for protein production by taking whole cell extracts of each induced clone and subjecting the total protein to SDS-PAGE followed by western blotting against the c-terminal Myc tag of CBDAs. Positive clones are stored at $-80^{\circ} \mathrm{C}$. in glycerol 65 stocks. The highest expressing CBDAs was taken for the final strain and designated VscCBDA.

Production of CBDA in Yeast
To initiate the reconstituted metabolic pathway of CBDA a colony of VscCBDA was freshly streaked on a plate of a frozen glycerol stock of VscCBDA. A small culture of VscCBDA was grown in YNBA supplemented with $0.05 \%$ histidine, $1 \%$ glucose, $2 \%$ lactic acid, and $0.03 \%$ hexanoic acid overnight at $30^{\circ} \mathrm{C}$. The overnight culture was transferred to 1 L of YNBA supplemented with $0.05 \%$ histidine, $1 \%$ glucose, $2 \%$ lactic acid, and $0.03 \%$ hexanoic acid and was grown at $30^{\circ} \mathrm{C}$. until mid $\log$ phase. Cells were pelleted by centrifugation then washed with 200 ml of phosphate buffered saline (PBS) and repelleted. Pelleted cells were resuspended with 1 L of YNBA supplemented with $0.05 \%$ histidine, $2 \%$ galactose, and $0.03 \%$ hexanoic acid and grown at $30^{\circ} \mathrm{C}$. overnight.
Overnight 1 L cultures were pelleted by centrifugation, resuspended, washed one time in PBS and pelleted. Cell pellets were resuspended in $40 \%$ ( $\mathrm{wt} / \mathrm{vol}$ ) KOH and $50 \%$ ( $\mathrm{vol} / \mathrm{vol}$ ) ethanol solution and boiled for 10 minutes. Metabolite extraction was done by extracting from the boiled extracts 3 times with hexane, then 3 times with ethyl acetate. The spent supernatant broth was extracted in a similar fashion as described above. Organic phases of extracts of each sample were pooled then dried by a rotary evaporator and stored for liquid chromatography mass spectrometry (LC-MS) and gas chromatography mass spectrometry (GC-MS) analysis to confirm and quantitate how much CBDA is produced from strain VscCBDA.

Biosynthetic Production of Cannabidiolic Acid (CBDA)
in $K$. marxianus
Through genetic engineering the inventors have reconstituted the cannabidiolic acid (CBDA) metabolic pathway found in Cannabis sativa into $K$. marxianus (a species of yeast). Producing CBGA is an initial step in producing many cannabinoids from Cannabis sativa in K. marxianus. Once CBGA is produced a single additional enzymatic step is required to turn CBGA into many other cannabinoids (CBDA, THCA, CBCA, etc.). The acidic forms of the cannabinoids can be used as a pharmaceutical product or the acidic cannabinoids can be turned into their neutral form for use, for example Cannabidiol (CBD) is produced from CBDA through decarboxylation. The resulting cannabinoid products will be used in the pharmaceutical/nutraceutical industry to treat a wide range of health issues. Synthesis of fusion genes required for CBDA production in $k$. Marxianus FIG. 8 shows an exemplary biosynthetic route for the production of CBDA from glucose.

The biosynthetic route for the production of cannabidiolic acid in Cannabis sativa, from glucose to CBDA is shown in FIG. 8. The pathway begins with the conversion of glucose to malonyl-CoA throngh a series of steps that are common to many strains of yeast. The conversion of malonyl-CoA to Acetoacetyl-CoA is conducted by the enzyme MCT1, an acyl-carrier-protein. Acetoacetyl-CoA is converted to 3-Hy-droxybutyryl-CoA by the enzyme 3 -hydroxybutyryl-CoA dehydrogenase (Hbd) from Clostridium acetobutylicum. Next, 3-Hydroxybutyryl-CoA is converted into CrotonylCoA by the enzyme crotonase ( Cr ) from Clostridium acetobutylicum and the conversion of Crotonyl-CoA to ButyrylCoA is controlled by the enzyme trans-enoyl-CoA reducatase (Ter) from Treponema denticola. The ButyrylCoA is converted to 3 -Ketonhexanoyl-CoA by the enzyme $\beta$-ketothiolase (Bktb) from Ralstonia Eutropha. 3-Keton-hexanoyl-CoA is converted to 3-Hydroxyhexanoyl-CoA by the enzyme Hbd. Hydroxyhexanoyl-CoA is converted to Trans-hexa-2-enoyl-CoA by the enzyme Crt. Trans-hexa-2-enoyl-CoA is converted to Hexanoyl-CoA by the enzyme Ter. Hexanoyl-CoA, with 3 malonyl-CoAs, is converted to

Oleviolic acid (OA) by a Polyketide synthase and cyclase, OA and OAC respectively. OA is then prenylated with the monoterpene geranyl diphosphate to cannabigerolic acid by an Aromatic prenyltransferase, CsPT. Finally, cannabidiolic acid (CBDA) is produced by cyclizing cannabigerolic acid via CBDA synthase (CBDAS). We have engineered this metabolic pathway into K. marxianus (a species of yeast) for the production of CBDA (FIG. 8 ).

There are a few key differences between plant polyketide and terpene biosynthesis when compared to yeast. Yeast does not contain many of the enzymes and fatty acids required for the production of CBDA. Moreover, yeast do not express high levels of geranyl diphosphate (GPP), a chemical required for the production of cannabigerolic acid, the precursor to CBDA. Yet, the inventors through genetic engineering created many of the required enzymes that can be added so the production of GPP was increased. In order to add the required enzymes for CBDA production in yeast the inventors created plasmids that contain the essential genes in the CBDA biosynthetic pathway. The inventors have transformed these genes into $K$. marxianus.

Creation of a Stable K. marxianus Strain Producing the Metabolic Pathways for Hexonyl-coA and CBDA

Two stable transformations of K. marxianus were created utilizing selection for uracil and G418 (Genenticin). The inventors first transformed an auxotrophic $K$. marxianus strain (ATCC 17555 KM5) with 5 different genes needed to produce high levels of hexanoyl-CoA. After functional conformation of the genes required for hexanoyl-CoA the inventors did a second transformation with the genes responsible for CBDA production. The molecular biology methods required for biosynthetic production of CBDA in $K$. marxianus are outlined below.

Gene names Crt, Bktb, MCT1, TeR, Hhd, Erg20p(K179E) were codon optimized, synthesized and subcloned into puc57 and p426 ATCC with the restriction enzymes SpeI and Sall.

Genes Crt, Bktb, MCT1, TeR, Hbd, and Erg20p(K179E) were amplified via PCR using the primers GPD_F and URA_R and all 6 amplicons were electroporated into $K$. marxianus ATCC 17555 KM5 at a concentration of 200 nM and selected onto yeast nitrogen base (YNB) supplemented with amino acid dropout mix (DO supplement-Ura Clonetech 630416) $2 \%$ glucose, and $2 \%$ Agar plates.

Gene integration and functional gene expression of Crt, Bktb, MCTI, TeR, Hbd, and Erg20p(K179E) was validated by genomic PCR and RT-PCR methods respectively. The final strain produced containing the functional expression of Crt, Bktb, MCT1, TeR, Hbd, and Erg20p(K179E) was labeled kMarxHex 1 .

Gene names CBDAs, CsPt, OS, and OAC were codon optimized and synthesized by Genscript. The codon optimized gene sequences of CBDAs and CsPt were cloned in frame with a nucleotide sequence containing a self cleaving 55 T2A peptide and designated as CstTCbds. The codon optimized gene sequences of OS and OAC were cloned in frame with a nucleotide sequence containing a self cleaving T2A peptide and designated as OSTOc. CsTCbds and OSTOc were cloned in frame with an $S$. cerevisiae internal ribosomal entry site (IRES), Ure2, into a galactose inducible vector and the final gene sequence pcen/arsGal-OSTOe-IRES-CsTCbds plasuid can be seen below. The plasmid pcen/arsGal-OSTOc-IRES-CstTCbds was used to synthesize a functional gene fragment that expresses the enzymes 65 CBDAs, CsPt, OS, and OAC by using the primers GallRES_F, GalIRES_R.

40

The Gibson Assembly method was used to subclone the PCR fragment from [0057] into the plasmid HO-poly-KanMx4-HO (ATCC 87804) using the primers KmXIRES_F and KmXIRES_R to create the plasmid pHOOSCstKnMxHO

The plasmid pHOOSCstKnMxHO was digested with NotI and transformed into kMarxHex1 using standard electroporation methods. The selection of stable integrants was done with yeast nitrogen base (YNB) supplemented with 0 amino acid dropout mix (DO supplement-Ura Clonetech 630416) $2 \%$ glucose, $1 \mathrm{mg} / \mathrm{ml}$ G418 (Gibco) and $2 \%$ Agar plates.

Gene integration and functional gene expression of pHOOSCstKnMxHO validated by genomic PCR and RT5 PCR methods respectively. The final strain produced containing the functional expression of Crt, Bktb, MCT1, TeR, $\mathrm{Hbd}, \mathrm{Erg} 20 \mathrm{p}(\mathrm{K} 179 \mathrm{E}) \mathrm{CBDAs}, \mathrm{CsPt}, \mathrm{OS}$, and OAC was labeled k.MarxCBDA.

Production of CBDA in K. marxianus
To initiate the reconstituted metabolic pathway of CBDA, a colony from $K$. marx CBDA was freshly streaked onto an agar plate from a frozen glycerol stock of k.MarxCBDA. A small culture of VscCBDA was grown in YNBA base (YNB) supplemented with amino acid dropout mix (DO supplement-Ura Clonetech 630416) $2 \%$ glucose, $1 \mathrm{mg} / \mathrm{ml}$ G418 (Gibco) and 2\% Agar plates was grown overnight at $30^{\circ} \mathrm{C}$. The overnight culture was transferred to 1 L of YNBA supplemented with base (YNB) supplemented with amino acid dropout mix (DO supplement-Ura Clonetech 630416) $2 \%$ glucose, and $1 \mathrm{mg} / \mathrm{ml}$ G418 (Gibco) and was grown at $30^{\circ} \mathrm{C}$. until mid $\log$ phase. Cells were pelleted by centrifugation then washed with 200 ml of phosphate buffered saline (PBS) and repelleted. Pelleted cells were resuspended with 1 L of YNBA supplemented with base (YNB) supplemented with amino acid dropout mix (DO supple-ment-Ura Clonetech 630416) $2 \%$ galactose, and $1 \mathrm{mg} / \mathrm{ml}$ G418 (Gibco) and grown at $30^{\circ} \mathrm{C}$. overnight.
Processing CBDA for Analysis of Cannabinoid Production re-suspended, washed one time in PBS and pelleted. The process for extracting cannabinoids from the yeast generally follows the following basic steps:

1. Remove the yeast cells from the media by centrifugation or filtration.
2. Lysis the cells using either chemical or mechanical methods or a combination of methods. Mechanical methods can include a French Press or glass bead milling or other standard methods. Chemical methods can include enzymatic cell lysis, solvent cell lysis, or detergent based cell lysis.
3. Perform a liquid-liquid extraction of the cannabinoids form the cell lysate using the appropriate chemical solvent. An appropriate solvent is any solvent where the camnabinoids are highly soluble in this solveut and the solvent is not miscible in water. Examples of this are hexane, ethyl acetate, and cyclohexane. Preferred solvents can be straight or branched alkane chains (C5-C8) work well; mixtures of these solvents can also be use.
Protocol Used for Cannabinoid Extraction from Yeast Cell Lysate
4. After lysising the cells using any mechanical technique, add 1 mL of $4 \mathrm{M} \mathrm{KCl}, \mathrm{pH} 2.0$ to each 1 mL of cell lysate.
5. Add 1-2 mLs of ethyl acetate for each 1 mL of cell lysate.
6. Rigorously mix for 1 min .

## 11

4. Centrifuge the mixture for 5 min at $1000 \times \mathrm{g}$
5. Remove the top ethyl acetate layer. Camabinoids are present in this layer.
a. The ethyl acetate can be removed under vacuum if desired.
b. Cannabinoids can be further purified through liquid chromatography methods if desired.
Protocol Used for Cannabinoid Extraction from Growth
Media (for Secreted Cannabinoid Samples)
6. Add 1 mL of ethyl acetate for every 1 mL of growth media.
7. Rigorously mix for 1 min .
8. Centrifuge the mixture for 5 min at $1000 \times \mathrm{g}$.
9. Remove the top ethyl acetate layer. Cannabinoids are present in this layer.
a. The ethyl acetate can be removed under vacuum if desired.
b. Cannabinoids can be further purified through liquid chromatography methods if desired.
Protocol Used for GC-MS Analysis of Cannabinoid Extracts for $k$. Marx CBDA
10. Remove solvent from samples under vacuum.
11. Re-suspend dry samples in either 100 uL of dry hexane or dry ethyl acetate

12
3. Add 20 uL of N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA)
4. Briefly mix
5. Heat solution to $60^{\circ} \mathrm{C}$. for $10-15$ minutes 6. GC-MS Method
a. Instrument Agilent 6890-5975 GC-MS (Model Number: Agilent 19091S-433)
b. Column HP-5MS 5\% Phenyl Methyl Siloxane c. OVEN:
i. Initial temp: $100^{\circ} \mathrm{C}$. (On) Maximum temp: $300^{\circ} \mathrm{C}$. ii. Initial time: 3.00 min Equilibration time: 0.50 min iii. Ramps:

| \# | Rate | Final temp | Final time |
| :---: | :---: | :---: | :---: |
| $1-$ | 30.00 | 280 | 1.00 |
| $2-$ | 70.00 | 300 | 5.00 |
| $3-$ | 0.0 (Off) |  |  |

iv. Post temp: $0^{\circ} \mathrm{C}$.
v. Post time: 0.00 mi
vi. Run time: 15.29 min
$<160\rangle$ NUMBER OF SEQ ID NOS: 53
$<210>$ SEQ ID NO 1
$<211>$ LENGTH: 7969
<212> TYPE: DNA
213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: COdon optimized
<400> SEQUENCE: 1
togegegttt eggtgatgac ggtgaaaace tctgacacat geagetcocg gagacggtca $\quad 6$
cagcttgtct gtaagcggat gecgggagca gacaagcecg tcagggegeg tcagegcgtg 120
ttggegggtg teggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataaatt cecgttttaa gagcttggtg agcgctagga gtcactgcca ggtatcgttt 240
gaacacggca ttagtcaggg aagtcataac acagtecttt cecgcaattt tctttttcta $\quad 300$
ttactettgg ectectetag tacactetat attettttat gcetcggtaa tgattteat $\quad 360$

$\begin{array}{ll}\text { atgaattata cattatataa agtaatgtga tttcttegaa gatatacta aaaatgagc } & 480\end{array}$
aggcaagata aacgaaggea aagatgacag agcagaaagc cetagtaaag cgtattacaa 540
atgaaaccaa gattcagatt gcgatctctt taaagggtgg tcecctagcg atagagcact $\quad 600$
cgatcttccc agaaaaagag gcagaagcag tagcagaaca ggccacacaa tcgcaagtga 660
ttaacgtcca cacaggtata gggtttctgy accatatgat acatgctctg gccaagcatt $\quad 720$
coggctggtc gctaatogtt gagtgcattg gtgacttaca catagacgac catcacacca 780
ctgaagactg cgggattgct ctcggtcaag cttttaaaga ggccctactg gcgcgtggag 840
taaaaaggtt tggatcagga tttgcgectt tggatgagge acttcccaga geggtggtag 900
atctttcgaa caggcegtac gcagttgtcg aacttggtt gcaaagggag aaagtaggag 960
atctctcttg egagatgatc ccgcattttc ttgaaagett tgcagaggct agcagaatta 1020
ccctccacgt tgattgtctg cgaggcaaga atgatcatca cegtagtgag agtgcgttca 1080
aggctcttgc ggttgccata agagaagcea cctcgeccaa tggtaccaac gatgttccet 1140
ccaccaaagg tgttcttatg tagtgacacc gattatttaa agctgcagca tacgatatat ..... 1200
atacatgtgr atatatgtat acctatgaat gtcagtaagt atgtatacga acagtatgat ..... 1260
actgaagatg acaaggtaat gcatcattct atacgtgtca ttctgaacga ggegcgett ..... 1320
cetttettet ttttgctett tetttettt tetcttgaac tegacggatc tatgeggtgt ..... 1380
gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggaaattgta aacgttaata ..... 1440
ttttgttaaa attcgegtta aattttgtt aaatcagctc atttttaac caataggecg ..... 1500
aatcggcaa aatccctat aatcaaaag aatagaccga gatagggttg agtgttgtec ..... 1560
cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggegaaaaa ..... 1620
cogtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt ..... 1680
cgaggtgecg taaagcacta aatcggaacc ctaaagggag cocccgattt agagettgac ..... 1740
ggggaaagce ggegaacgtg gegagaaagg aagggaagaa agcgaaagga gcgggcgeta ..... 1800
gggcgetgge aagtgragcg gtcacgetge gegraaccac cacaccegce gegettaatg ..... 1860
cgecgetaca gggegegteg egceattegc cattcaggct gcgeaactgt tgggaagggc ..... 1920
gatcggtgcg ggcetcttcg ctattacgec agctggcgaa agggggatgt gctgcaaggc ..... 1980
gattaagttg ggtaacgeca gggttttccc agtcacgacg ttgtaaaacg acggccagrg ..... 2040
agcgegegta atacgactca ctatagggcg aattgggtac cggcegcaaa ttaaagcett ..... 2100
cgagcgtccc aaaaccttct caagcaaggt tttcagtata atgttacatg cgtacacgeg ..... 2160
tctgtacaga aaaaaagaa aaatttgaaa tataaataac gttcttaata ctaacataac ..... 2220
tataaaaaa taaataggga cctagacttc aggttgtcta actccttcet tttcggttag ..... 2280
agcggatgtg gggggagggc gtgaatgtaa gegtgacata actaattaca tgactegagg ..... 2340
tcgactcatt cgaaatgact gaattgttgt ctcaaaactc ttctcatgat cttgttget ..... 2400
gcagttctag gtaaggatga caatgggaca actctagtaa ctttgaataa tgggttcaat ..... 2460
ttcttttgca aacccaagtt aaaggataat ctcaattggt tcaaatcaat ggttgtgtcg ..... 2520
tttgaatcct tcaatacgaa aaatatgacc aattgttctg gaccaccacc caaaggtgga ..... 2580
acaccaatag cagtggtttc aaaaactctg tcatctactt cattacagac tctttcgatt ..... 2640
tcgatagaac taattttgat accaccgatg ttcatagtgt catcggctct accgtgtgca ..... 2700
tggtagtaac egttagaggt caattcgaaa atgtcaccat gtcttctcaa tacttcacca ..... 2760
ttcaaggttg gcataccett gaaatagaca tegtgatgat tacegtttaa caatgttttt ..... 2820
gaggcaccaa acataacagg acctaatgcc aattcaccga tacctggctt atttttaggc ..... 2880
attgggtaac cgttcttatc taatatgtac aaggtgcaac ccatacattg ggatgaaaaa ..... 2940
gaacttaaag attgagcttg caaaaatgaa ccagcagaaa aagcaccacc gatttctgta ..... 3000
ccaccacaca tttctataac tggcttgtag ttagctctac ccattaacca caaatattcg ..... 3060
tctacattag aggcttcacc ggatgaagaa aagcatctta tggtggacca atcgtaacct ..... 3120
gaacacaat ttgtggattt ccatgatctt acaatagatg gtacgacacc caacattgtg ..... 3180
acctttgcat cttgaacaaa tttagcgaaa ccagagacta aaggactacc gttgtacaag ..... 3240
gcaatagatg caccatttaa caactagca taaaccaacc aaggaccoat catccaacce ..... 3300
aattagttg gecatactat aacgtcacct tttctaatat ccaaatgaga ccaaccatca ..... 3360
gcagcagect tcaatggggt ggcttgtgtc caaggaattg cttttggttc acctgtagta ..... 3420
ccactggaga ataagatgtt agtataagca tcaacaggtt gttctctggc agtaaacteg ..... 3480
cagtttttaa actccttgge tettctaaa aagtaatccc aagatatgtc accatctctc ..... 3540
aattctgcac caatgttaga accactacaa gggataacta ttgccattgg ggatttagct ..... 3600
tcaactactc ttgaatacaa tggtattctc tttttacctc tgatgatgtg atcttgtgtg ..... 3660
aaattgcet tagctttgga taatctcaat ctagttgaga tttcaggggc ggaaaatgaa ..... 3720
tctgctatag agacaactac gtaaccagcc aatactatgg ccaaatatat aacaacagca ..... 3780
tcaacatgca ttggcatatc gatggctatt gcacaacctt tttctaaacc catttcttcc ..... 3840
aatgcataac caaccaacca aactctcttt ctcaattgat ctaatgtcaa ettattcaaa ..... 3900
ggcaagtcat cgttaccctc gtctctccaa acgatcatag tatcgttcaa tttcttattg ..... 3960
gagettacgr tcaagcaatt tttagetgag ttcaagtaac caccaggtaa ecattcagaa ..... 4020
ccacctgggt tgttgatgtc atctettctc aagatacatt ctgggtectt agagaaacta ..... 4080
attttcatt catccatcaa tactgttctc caatagactt cagggtttct aacagaaat ..... 4140
tettggaagt gagaaaaga agaaattgga tettrgtact ttacacccaa aaatccttea ..... 4200
cctetctttt ccaacaaagc acccaaatta gttgacttga ctttttcagg gtctggaatc ..... 4260
caagcaggtg gggctggace gaaatecttg tagcaaccat aaaacaacat ttggtgtaag ..... 4320
gagaaaggca aatctggtga caagatatgg ttagegatgt tgatecaagt trgaggggtt ..... 4380
gcagcaccat aattacaaac gatttctgce aatctaccat gtaatgttec tgctactect ..... 4440
gaggtgatac ccaatgcgat gaaatctgag gcaacgactg aatccaagga cttatagttt ..... 4500
ttacccatac tagttctaga tccgtcgaaa ctaagttctt ggtgttttaa aactaaaaaa ..... 4560
aagactaact ataaaagtag aatttaagaa gtttaagaaa tagattaca gaattacaat ..... 4620
caatacctac cgtctttata tacttattag tcaagtaggg gaataatttc agggaactgg ..... 4680
tttaaacctt ttttttcagc tttttccaaa tcagagagag cagaaggtaa tagaaggtgt ..... 4740
aagaaaatga gatagataca tgcgtgggtc aattgccttg tgtcatcatt tactccaggc ..... 4800
aggttgeatc actccattga ggttgtgecc gttttttgce tgtttgtgce ctgttctctg ..... 4860
tagttgegct aagagaatgg acctatgaac tgatggttgg tgaagaaaac aatattttgg ..... 4920
tgctgggatt ctttttttt ctggatgcca gcttaaaaag cgggctccat tatatttagt ..... 4980
ggatgccagg aataaacctg ttcacccaag caccatcagt gttatatatt ctgtgtaacc ..... 5040
cgccecetat tttggcatgt acgggttaca gcagaattaa aaggetaatt ttttgactaa ..... 5100
taaagttag gaaaatcact actattaatt atttacgtat tctttgaaat ggcagtattg ..... 5160
ataatgataa actcgagagc tccagctttt gttcccttta gtgagggtta attgcgegct ..... 5220
tggcgtaatc atggtcatag ctgttectg tgtgaaattg ttatccgctc acaattccac ..... 5280
acaacatagg agccggaagc ataaagtgta aagcctgggg tgcctaatga gtgaggtaac ..... 5340
tcacattaat tgegttgcgc tcactgcecg ctttccagtc gggaaacctg tcgtgccagc ..... 5400
tgcattaatg aatcggccaa egcgcgggga gaggeggttt gcgtattggg egctcttceg ..... 5460
cttcctcgct cactgactcg ctgegctegg tegttcggct gcggcgageg gtatcagctc ..... 5520
actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt ..... 5580
gagcaaaagg ceagcaaaag gccaggaacc gtaaaaagge cgegttgetg gegtttttcc ..... 5640
ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa ..... 5700
acccgacagg actataaaga taccaggcgt ttcccectgg aagctccctc gtgegctctc ..... 5760
ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg ..... 5820
cgctttctca tagctcacge tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc ..... 5880
tgggctgtgt geacgaacec cecgttcagc cegaccgetg cgcettatce ggtaactatc ..... 5940
gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagce actggtaaca ..... 6000
ggattagcag agcgaggrat gtaggeggtg ctacagagtt cttgaagtgg tggcctaact ..... 6060
acggctacac tagaaggaca gtatttggta tctgcgetct getgaagcca gttaccttcg ..... 6120
gaaaaagagt tggtagctet rgatceggea aacaaaccac cgetggtage ggrggttert ..... 6180
ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cetttgatct ..... 6240
tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga ..... 6300
gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa ..... 6360
tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ..... 6420
ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactccce gtcgtgtaga ..... 6480
taactacgat acgggagggc ttaccatctg gecccagtgc tgcaatgata cegegagace ..... 6540
cacgetcacc ggetccagat tratcagcaa taaaceagec agecggaagg gecgagegea ..... 6600
gaagtggtce tgeaacttta tecgecteca tecagtctat taattgttge egggaageta ..... 6660
gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt tgceattgct acaggcatcg ..... 6720
tggtgecacg etegregttt ggratggett cateagetc eggttcocaa cgatcaagge ..... 6780
gagttacatg atcccecatg ttgtgcaaaa aagcggttag ctccttcggt cctcogatcg ..... 6840
ttgtcagaag taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt ..... 6900
ctcttactgt catgceatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt ..... 5960
cattctgaga atagtgtatg eggcgaccga gttgctcttg cocggcgtca atacgggata ..... 720
ataccgegce acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc ..... 7080
gaaaactctc aaggatctta cegctgttga gatccagttc gatgtaacce actegtgcac ..... 7140
ccaactgatc ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa ..... 7200
ggcaaaatgc cgcaaaaaag ggaataaggg egacacggaa atgttgaata ctcatactet ..... 7260
tcctttttca atattattga agcatttatc agggttattg tctcatgagc ggatacatat ..... 7320
tgaatgtat ttagaaaaat aaacaaatag gggttccgeg cacatttccc cgaaaagtgc ..... 7380
cacctgggtc cttttcatca egtgctataa aaataattat aatttaaatt ttttaatata ..... 7440
aatatataaa ttaaaaatag aaagtaaaaa aagaaattaa agaaaaaata gtttttgttt ..... 7500
tccgaagatg taaaagacte tagggggatc gccaacaaat actacctttt atcttgctet ..... 7560
tcctgctctc aggtattaat gccgaattgt ttcatcttgt ctgtgtagaa gaccacacac ..... 7620
gaaaatcctg tgattttaca ttttacttat egttaatcga atgtatatct atttaatctg ..... 7680
cttttcttgt ctaataaata tatatgtaaa gtacgctttt tgttgaaatt ttttaaacct ..... 7740
tggttattt tttttctec attccgtaac tcttctacct tctttattta ctttctaaaa ..... 7800
tccaaataca aaacataaaa ataaataaac acagagtaaa ttcecaaatt attccatcat ..... 7860
taaaagatac gaggcgegtg taagttacag gcaagcgatc cgtcctaaga aaccattatt ..... 7920
atcatgacat taacctataa aataggcgt atcacgagge cotttcgtc ..... 7969
<210> SEQ ID NO 2
<211> LENGTH: 10004
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 2
tcgegcgttt eggrgatgac ggtgaaaace tetgacacat gcagetcceg gagacggtca ..... 60
cagcttgtct gtaagcggat gecgggagca gacaagccog tcagggcgeg tcagcgegtg ..... 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc ..... 180
accataaatt cecgttttaa gagcttggtg agegctagga gtcactgcca ggtatcgttt ..... 240
gaacacggca ttagtcaggg aagtcataac acagtccttt cccgcaattt tctttttcta ..... 300
ttactcttgg cctcctttca attcatcatt $t$ ttttttat tetttttt gatttcggtt ..... 360
tctttgaaat ttttttgatt eggtaatctc egaacagaag gaagaacgaa ggaaggagca ..... 420
cagacttaga ttggratata racgcatatg tagtgttgaa gaaacatgaa artgcccagt ..... 480
attettaacc caactgcaca gaacaaaac ctgcaggaaa egaagataaa teatgtcgaa ..... 540
agctacatat aaggaacgtg ctgctactea tectagtcct gttgetgcca agctatttaa ..... 600
tatcatgcac gaaaagcaaa caaacttgrg tgettcattg gatgrtcgta ccaccaagga ..... 660
attactggag ttagttgaag cattaggtce caaaatttgt ttactaaaaa cacatgtgga ..... 720
tatettgact gattttteca tggagggcac agttaagecg ctaaaggeat tatecgecaa ..... 780
gtacaatttt ttactcttcg aagacagaaa atttgctgac attggtaata cagtcaaatt ..... 840
gcagtactct geggstgtat acagaatagc agaatgggca gacattacga atgcacacgg ..... 900
tgtggtggge ccaggtattg ttageggttt gaagcaggcg gcagaagaag taacaaagga ..... 960
acctagaggc cttttgatgt tagcagaatt gtcatgcaag ggctccctat ctactggaga ..... 1020
atatactaag ggtactgttg acattgegaa gagcgacaaa gatttegtta tcggctttat ..... 1080
tgctcaaaga gacatgggtg gaagagatga aggttacgat tggttgatta tgacaccogg ..... 1140
tgtgggttta gatgacaagg gagacgcatt gggtcaacag tatagaaccg tggatgatgt ..... 1200
ggtctctaca ggatctgaca ttattattgt tggaagagga ctatttgcaa agggaaggga ..... 1260
tgctaaggta gagggtgaac gttacagaaa agcaggctgg gaagcatatt tgagaagatg ..... 1320
cggccagcaa aactaatgac accgattatt taaagctgca gcatacgata tatatacatg ..... 1380
tgtatatatg tatacctatg aatgtcagta agtatgtata cgaacagtat gatactgaag ..... 1440
atgacaaggt aatgcatcat tctatacgtg tcattctgaa cgaggcgegc tttcctttt ..... 1500
tcttttget tttcetttt tttcetctg aactegacgg atctatgcgg tgtgaaatac ..... 1560
cgcacagatg cgtaaggaga aataccgca tcaggaaatt gtaaacgtta atattttgtt ..... 1620
aaaattcgeg ttaaattttt gttaaatcag ctcatttttt aaccaatagg cegaaatcgg ..... 1680
caaaatccet tataaatcaa aagaatagac cgagataggg ttgagtgttg ttccagtttg ..... 1740
gaacaagagt ccactattaa agaacgtgga ctccaacgtc aaagggcgaa aaaccgtcta ..... 1800
tcagggegat ggeccactac gtgaaccatc accetaatca agtttttgg ggtegaggtg ..... 1860
cegtaaagca ctaaategga accetaaagg gagcceccga tttagagctt gacggggaaa ..... 1920
gecggcgaac gtggegagaa aggaagggaa gaaagegaaa ggagcgggeg ctagggcget ..... 1980
ggcaagtgta geggtcacge tgegcgtaac caccacacce gecgegctta atgegcoget ..... 2040
acagggegeg tegcgecatt cgccattcag getgcgcaac tgttgggaag ggegatcggt ..... 2100
gegggectet tegctattac gecagetgge gaaaggggga tgtgetgcaa ggcgattaag ..... 2160
ttgggtaacg ccagggtttt cccagtcacg acgttgtaaa acgacggcca gtgagcgcgc ..... 2220
gtaatacgac tcactatagg gegaattggg taccggecgc aaattaaagc cttcgagegt ..... 2280
cccaaaacct tctcaagcaa ggttttcagt ataatgttac atgcgtacac gcgtctgtac ..... 2340
agaaaaaaa gaaaaatttg aaatataaat aacgttctta atactaacat aactataaaa ..... 2400
aaataaatag ggacctagac tecaggttgt ctaactcctt cctttcoggt tagagcggat ..... 2460
gtggggggag ggegrgaatg taagcgtgac ataactaatt acatgactcg aggtcgactt ..... 2520
acttgtcatc gtcatctttg tagtcaatat cgtggtcttt atagtcaccg tcatgatcct ..... 2580
tgraatcett tgatctcttg cagacettat tcaagaaage rgtcaaaacg teggettcaa ..... 2640
aacctcttga ttcatcaact tgactaatct ttgcctttaa gtctttageg atggattctt ..... 2700
cgtattcatg gtacaattgt tcaatcttca aatcattaaa aattttctta cactttgctt ..... 2760
cagcaactga gtcctttta cegtagtttt catccaaagt ctttctttgt teggcagatg ..... 2820
ctaattccaa agecttgtta ataacccaac tgcacttatt gtcttgaata tctgtaccga ..... 2880
ttttacctat ttgttctgga gtaccgaaac agtctaagta gtcatcttgg atttggaagt ..... 2940
attcacceaa aggtatcaaa acatctcttg cttgcttcaa gtctttttca tcagtaatac ..... 3000
cagctacgta catagceaag gegactggca aatagaagga gtaataagea grttcaaagg ..... 3060
tgacgatgaa tgaatgtttc ttcaaggaaa actttgacaa gtcaacttta tcttcaggtg ..... 3120
cagttatcaa atccatcaat tgacccaatt ctgtttggaa agtaacttcg tggaataatt ..... 3180
eggtaatatc gatgragtac etetcgttec tgaaatgtga cttcaacaat tratagatag ..... 3240
cggcttccaa cataaaagca tcatttatgg ctatttcacc aacttctgga actttgtacc ..... 3300
agcatggttg acctcttctt gttatagact tatccatcat gtcatcggca accaaaagt ..... 3360
atgcttgcaa caatccaata caccaaccea agatagcgac cttttcgtat tettcttgac ..... 3420
ctaattgttc aacggtttg ttagacaaga tagcataagt atcaactaca ctcaaacctc ..... 3480
tattcaattt accacctgga gtattgtagt ttaaagagtg agcataccaa tcgcaggctt ..... 3540
ctttaggeat accataagct aacaaactag cgttcaattc etcaactaac tttgggaata ..... 3600
cgttcaagaa tctttctcte cttatttcct tetctgaagc cataggacct ggattetcte ..... 3660
caacgtcacc acatgttaac aagaacctc taccttcttc gaaatgactg aattgttgtc ..... 3720
tcaaaactct tctcatgatc ttgtttgttg cagttctagg taaggatgac aatgggacaa ..... 3780
ctctagtaac tttgaataat gggttcaatt tcttttgcaa acccaagtta aaggataatc ..... 3840
tcaattggtt caaatcaatg gttgtgtcgt ttgaatcctt caatacgaaa aatatgacca ..... 3900
attgttctgg accaccaccc aaaggtggaa caccaatagc agtggtttca aaaactctgt ..... 3960
catctacttc attacagact ctttcgattt cgatagaact aatttgata ecaccgatgt ..... 4020
tcatagtgtc atcggctcta cegtgtgcat ggtagtaacc gttagaggtc aattcgaaaa ..... 4080
tgtcaccatg tettctcaat acttcaccat tcaaggttgg catacccttg aaatagacat ..... 4140
cgtgatgatt accgtttaac aatgtttttg aggcaccaaa cataacagga cctaatgcca ..... 4200
attcaccgat acctggctta tttttaggca ttgggtaacc gttcttatct aatatgtaca ..... 4260
aggtgcaacc catacattgg gatgaaaaag aacttaaaga ttgagcttgc aaaaatgaac ..... 4320
cagcagaaaa agcaccaccg atttctgtac caccacacat ttctataact ggcttgtagt ..... 4380
tagctctacc cattaaccac aatattcgt ctacattaga ggettcaccg gatgaagaaa ..... 4440
agcatcttat ggtggaccaa tcgtaacctg aaacacaatt tgtggattec catgatctea ..... 4500
caatagatgg tacgacaccc aacattgtga cetttgcatc ttgaacaaat ttagcgaaac ..... 4560
cagagactaa aggactaccg ttgtacaagg caatagatgc accatttaac aaactagcat ..... 4620
aaaccaacca aggacceatc atccaaccca aattagttgg ccatactata acgtcacctt ..... 680
-continued
ttctaatatc caaatgagac caaccatcag cagcagcctt caatggggtg gcttgtgtcc ..... 4740
aaggaattgc ttttggttca cctgtagtac cactggagaa taagatgtta gtataagcat ..... 4800
caacaggttg ttctctggca gtaaactcgc agtttttaaa ctccttggct ctttctaaaa ..... 4860
agtaatccca agatatgtca ccatctctca attctgcacc aatgttagaa ccactacaag ..... 4920
ggataactat tgecattggg gatttagctt caactactct tgaatacaat ggtattctct ..... 4980
ttttacctct gatgatgtga tettgtgtga aaattgcctt agctttggat aatctcaatc ..... 5040
tagttgagat ttcaggggeg gaaaatgaat ctgctataga gacaactacg taaccageca ..... 5100
atactatggc caaatatata acaacagcat caacatgcat tggcatatcg atggctattg ..... 5160
cacaacctct ttctaaaccc attrctecca atgcaraacc aaccaaccaa actctcterc ..... 5220
tcaattgatc taatgtcaac ttattcaaag gcaagtcatc gttaccctcg tctctccaaa ..... 5280
cgatcatagt atcgttcaat tettattgg agtttacgtt caagcaattt ttagctgagt ..... 5340
tcaagtaacc accaggtaac cattcagaac cacctgggtt gttgatgtca teccttctca ..... 5400
agatacattc tgggtectta gagaaactaa ttttcatte atccatcaat actgttctec ..... 5460
aatagacttc agggtttcta acagaaaatt ettggaagtg agaaaaagaa gaaattggat ..... 5520
ctttgtactt tacacceaaa aattctttac ctctctttc caacaaagea cccaaattag ..... 5580
ttgacttgac tttttcaggg tctggaatcc aagcaggtgg ggctggaccg aaatccttgt ..... 5640
agcaaccata aaacaacatt tggtgtaagg agaaaggcaa atctggtgac aagatatggt ..... 5700
tagcgatgtt gatccaagtt tgaggggttg cagcaccata attacaaacg atttctgcca ..... 5760
atctaccatg taatgttect gctacttctg aggtgatacc caatgcgatg aaatctgagg ..... 5820
caacgactga atccaaggac ttatagtttt tacceatact agttetagat ecgtcgaac ..... 5880
taagttcttg gtgttttaaa actaazaaaa agactaacta taaaagtaga atttaagaag ..... 5940
tttaagaaat agatttacag aattacaatc aatacctacc gtctttatat acttattagt ..... 6000
caagtagggg aataatttca gggaactggt ttaaaccttt tttttcagct ttttccaaat ..... 6060
cagagagage agaaggtaat agaaggtgta agaaaatgag atagatacat gegtgggtca ..... 6120
attgccttgt gtcatcattt actccaggca ggttgcatca ctccattgag gttgtgcecg ..... 6180
ttttttgcet gtttgtgcce tgttctctgt agttgcgcta agagaatgga cctatgaact ..... 6240
gatggttggt gaagaaaaca atattttggt gctgggattc tttttttttc tggatgccag ..... 6300
cttaaaaagc gggctccatt atatttagtg gatgccagga ataaacctgt tcacccaagc ..... 6360
accatcagtg ttatatattc tgtgtaaccc gccccctatt ttggeatgta egggttacag ..... 6420
cagaattaaa aggctaattt tttgactaaa taaagttagg aaaatcacta ctattaatta ..... 6480
tttacgtatt ctttgaaatg gcagtattga taatgataaa ctcgagagct ccagcttttg ..... 6540
ttcagt tgat tgtatgcttg gtatagcttg aaatattgtg cagaaaaaga aacaaggaag ..... 6600
aagggaacg agaacaatga cgaggaaaca aaagattaat aattgcaggt ctatttatac ..... 6660
ttgatagcaa gacagcaaac tttttttat ttcaaattca agtaactgga aggaaggceg ..... 6720
tataccgttg ctcattagag agtagtgtgc gtgaatgaag gaaggaaaaa gtttcgtgtg ..... 6780
cttcgagata cecctcatca gctctggaac aacgacatct gttggtgctg tctttgtcgt ..... 6840
taatttttcc ctttagtgtc ttccatcatt ttttgtcat tgcggatatg gtgagacaac ..... 6900
aacgggggag agagaaaaga aaaaaaaga aaagaagttg catgcgccta ttantacttc ..... 6960
aatagatggc aaatggaaaa agggtagtga aacttcgata tgatgatggc tatcaagtct ..... 020
agggctacag tattagttcg ttatgtacca ccatcaatga ggcagtgtaa ttggtgtagt ..... 7080
cttgtttage ceattatgtc ttgtctggta tctgttctat tgtatatctc cectecgeca ..... 7140
cctacatget agggagacca acgaaggtat tataggaatc cogatgratg ggtttggetg ..... 7200
ceagaaaaga ggaagtccat attgtacacc cggaaacaac aaaaggatge gegettggeg ..... 7260
taatcatggt catagctgtt tectgtgtga aattgttatc cgctcacaat tccacacaac ..... 7320
ataggagecg gaagcataaa grgtaaagce tggggtgect aatgagtgag graactcaca ..... 7380
ttaattgegt tgegctcact gcecgetttc cagtcgggaa acctgtcgtg ccagctgcat ..... 7440
taatgaatcg gecaacgegc ggggagagge ggtttgegta ttgggegctc ttcegcttcc ..... 7500
tegctcactg actcgetgeg ctcggtcgtt eggetgegge gageggtatc agctcactca ..... 7560
aaggeggtaa tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca ..... 7620
aaaggceage aaaaggceag gaaccgtaaa aaggecgegt tgetggegtt tttccatagg ..... 7680
ctccgcecce etgacgagca tcacaaaaat egacgetcaa gtcagaggtg gegaaacecg ..... 7740
acaggactat aaagatacca ggegtttcce cetggaaget ccetcgrgeg ecetcctget ..... 7800
cegaccetge egettacegg atacetgtce gectttetcc ettegggaag egtggegett ..... 7860
tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgetc caagctgggc ..... 7920
tgtgtgeacg aaccoccogt tcagecogac egetgegcet tatcoggtaa ctatcgtcet ..... 7980
gagtccaace cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt ..... 8040
agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc ..... 8100
tacactagaa ggacagtatt tggtatctge getctgctga agceagttac etteggaaaa ..... 8160
agagttggta getcttgatc cggcaaacaa accaccgctg gtageggtgg tttttttgtt ..... 8220
tgcaagcage agattacgeg cagaaaaaaa ggatctcaag aagatcettt gatctttect ..... 8280
acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt catgagatta ..... 8340
tcaaaaagga tettcaccta gatcctttta aattaaaaat gaagttttaa atcaatctaa ..... 8400
agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga ggcacctatc ..... 8460
tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt gtagataact ..... 8520
acgatacggg agggctacc atctggccec agtgctgcaa tgataccgcg agacccacgc ..... 8580
tcaccggctc cagatttatc agcaataaac cagccagceg gaagggcoga gegcagaagt ..... 8640
ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgecggga agctagagra ..... 8700
agtagttegc cagttaatag tttgcgcaac gttgttgeca ttgctacagg catcgtggtg ..... 8760
tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc aaggcgagtt ..... 8820
acatgatcec ceatgttgtg caaaaaagcg gttagetcct teggtcetce gatcgttgtc ..... 8880
agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca taattctctt ..... 8940
actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac caagtcattc ..... 3000
tgagaatagt gtatgeggeg accgagttgc tettgecegg cgtcaatacg ggataatacc ..... 9060
gcgccacata gcagaacttt aaagtgctc atcattggaa aacgttcttc ggggcgaaaa ..... 9120
ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg tgcacccaac ..... 9180
tgatcttcag catcttttac ttcaccagc gtttctgggt gagcaaaaac aggaaggcaa ..... 9240
aatgccgcaa aaagggaat aagggcgaca eggaaatgtt gaatactcat actcttcctt ..... 9300
tttcaatart attgaagcat ttatcagggt tattgtctca rgagcggata catatttgaa ..... 9360
tgtatttaga aaaataaaca aataggggrt cogcgcacat ttceccgaaa agtgccacct ..... 9420
gggtcctttt catcacgtge tataaaata attataatt aaattttta atataaatat ..... 9480
ataaattaaa aatagaaagt aaaaaagaa attaaagaaa aaatagtttt tgttttcega ..... 9540
agatgtaaaa gactctaggg ggatcgccaa caaatactac cttttatctt gctcttcctg ..... 9600
ctctcaggta ttaatgccga attgtttcat cttgtctgtg tagaagacca cacacgaaaa ..... 9660
tcctgtgatt ttacattta cttatcgtta atcgaatgta tatctatta atctgcttt ..... 9720
cttgtctaat aaatatatat gtaaagtacg ctttttgttg aaatttttta aacctttgtt ..... 9780
tattttttt tettcattcc gtaactettc taccttctt atttacttc taaaatccaa ..... 9840
atacaaaaca taaaataaa taaacacaga gtaaattcce aaattattcc atcattaaa ..... 9900
gatacgagge gegtgraagt tacaggcaag cgatccgtcc taagaaacca ttattatcat ..... 9960
gacattaacc tataaaata ggegtatcac gaggeccttt cgte ..... 10004
<210> SEQ ID NO 3

<212> TYPE. DNA

213> ORGANTSM.

<213> ORGANISM: Artificial Sequence

220> FEATURE,

<223> OTHER INFORMATION: COdon optimized

<400> SEQUENCE: 3
tegegegttt cggtgatgac ggtgaaaace tetgacacat geagetcceg gagacggtca 60
cagcttgtet gtaageggat gecgggagca gacaagcecg tcagggegeg teagegegrg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc ..... 180
accataaatt cecgttttaa gagcttggtg agegctagga gtcactgeca ggtatcgttt ..... 240
gaacacggca ttagtcaggg aagtcataac acagtcottt cccgcaattt tettttcta ..... 300
ttactcttgg cetcctaacg acattactat atatataata taggaagcat ttaatagaca ..... 360
gcatcgtaat atatgtgtac tttgcagtta tgacgecaga tggcagragt ggaagatatt ..... 420
ctttattgaa aaatagcttg tcaccttacg tacaatcttg atccggagct tttcttttt ..... 480
tgecgattaa gaattaatte ggtcgaaaaa agaaaaggag agggceaaga gggagggcat ..... 540
tggtgactat tgageacgtg agtatacgtg attaagcaca caaaggcage ttggagtatg ..... 600
tctgttatta atttcacagg tagttctggt ccattggtga aagtttgcgg cttgcagagc ..... 660
acagaggecg cagaatgtge tctagattcc gatgctgact tgctgggtat tatatgtgtg ..... 720
cccaatagaa agagaacaat tgacccggtt attgcaagga aaatttcaag tcttgtaaaa ..... 780
gcatataaaa atagttcagg cactccgaaa tacttggttg gcgtgtttcg taatcaacct ..... 840
aaggaggatg ttttggctct ggtcaatgat tacggcattg atatcgtcca actgcatgga ..... 900
gatgagtcgt ggcaagaata ccaagagttc ctcggtttgc cagttattaa aagactcgta ..... 960
tttccaaaag actgcaacat actactcagt geagcttcac agaaacctca ttcgtttatt ..... 1020
cccttgtttg attcagaagc aggtgggaca ggtgaacttt tggattggaa ctcgatttct ..... 1080
gactgggttg gaaggcaaga gagccecgaa agcttacatt ttatgttage tggtggactg ..... 1140
acgecagaaa atgttggtga tgegcttaga ttaaatggcg ttattggtgt tgatgtaagc ..... 1200
ggaggtgtgg agacaaatgg tgtaaaagac tctaacaaaa tagcaaattt cgtcaaaaat ..... 1260
gctaagaaat agtgacaccg attatttaaa gctgcagcat acgatatata tacatgtgta ..... 1320
tatatgtata cctatgaatg tcagtaagta tgtatacgaa cagtatgata ctgaagatga ..... 1380
caaggtaatg catcattcta tacgtgtcat tctgaacgag gcgcgctttc cttttttctt ..... 1440
tttgcttttt cttttttttt ctcttgaact egacggatct atgcggtgtg aaataccgca ..... 1500
cagatgegta aggagaaaat accgcatcag gaaattgtaa acgttaatat tttgttaaaa ..... 1560
ttcgegttaa attetcgtta aatcagetca ctttttaacc aataggecga aatcggcaaa ..... 1620
atcccttata aatcaaaaga atagaccgag atagggttga gtgttgttce agtttggaac ..... 1680
aagagtccac tattaagaa cgtggactcc aacgtcaaag ggcgaaaaac cgtctatcag ..... 1740
ggcgatggec cactacgtga accatcacce taatcaagtt tttrggggte gaggrgecgt ..... 1800
aaagcactaa atcggaacce taaagggage ccccgattta gagcttgacg gggaaagccg ..... 1860
gcgaacgtgg cgagaaagga agggaagaaa gcgaaaggag cgggcgctag ggcgetggca ..... 1920
agtgtagegg teacgetgeg egtaaccacc acacccgecg cgcttaatge gcegctacag ..... 1980
ggcgegtcge gecattcgec attcaggctg cgeaactgtt gggaagggeg atcggtgegg ..... 2040
gectcttege tattacgeca getggegaaa gggggatgtg ctgcaaggeg attaagttgg ..... 2100
gtaacgecag ggttttceca gtcacgacgt tgtaaaacga cggceagtga gegegcgtaa ..... 2160
tacgacteac tatagggega attgggtace ggcegcaaat taaagectte gagegtecea ..... 2220
aaaccttctc aagcaaggtt ttcagtataa tgttacatgc gtacacgegt etgtacagaa ..... 2280
aaaaagaaa aattgaaat ataaataacg ttcttaatac taacataact ataaaaaat ..... 2340
aatagggac ctagacttca ggetgtctaa ctecttcctt tecggteaga geggatgegg ..... 2400
ggggagggcg tgaatgtaag egtgacataa ctaattacat gactcgaggt egacttacaa ..... 2460
atcttcttca cttattaatt tttgttcgtg gtggtgaggt ggcaaaggtg ggatggattg ..... 2520
ttcgtttctg aaaagttgt tagggtcggc tttagtcttt actttaacta atctgttgaa ..... 2580
atttttacca aagtacttt caccccaaat tettgettgt gtatagttat ttggagattc ..... 2640
agggttagtt ttacctaagt ccaaatctet gtagttcaaa tatgecaate ttgggttttg ..... 2700
actaacgtaa ggtgragtga agttgtaaac ggatctgace cagttgatat gettttcgtt ..... 2760
atcttcttgc ttttcceatg aggctgtgta ccataattca tacatgatac cagctctgtg ..... 2820
aggaaatgge atggctgatt cagatattc ttccataata ccacegtatg gatacaaaac ..... 2880
gtacatgccg acacctacat cttcttcgta caacttttcc aatatcttga ccattgcagt ..... 2940
ttcagggatt ggtttcttaa cgtagtccaa tttaatagaa aaageggtct ttttaccagc ..... 3000
ggatctatcc aacaagattt cottttgaa gttagcggtg ttgaagttta caacacctga ..... 3060
atagaagatg gttgtgtcta tccaagaaaa ttccttgcaa tctgtctttt taatacccaa ..... 3120
ttctgggaat gacttattca tcaaatcaac caaagaatct acaccaccat ggaaaattga ..... 3180
agaaaataa cegtgaacag tggtcttatt tttaccatgg ttatctgtaa tatttttagt ..... 3240
gatgaaatgg gteatcaaaa ccaagtcctt atcgtacttg taagegatgt tttgecactt ..... 3300
attaaacaac ttaaccaaac cgtggatttc catgttcttt ttgacagaga aaatagtact ..... 3360
tttggaagga acagcgacta acttaattt ccaagcggca atgataccga aattttcacc ..... 3420
accaccacct cttatggcce aaaacaaate ttcacccata gactttctgt ecaaaacttt ..... 3480
accatctacg ttaaccaaat gggegtctat aatattatct gcagctaaac cgtagttect ..... 3540
catcaatgca ccataaccac caccagaaaa gtgaccaccg acacctactg ttggacagta ..... 3600
accaccaggg aaagaaaagt tttcattctt ttcgttgatc cagtagtaaa cttcacccaa ..... 3660
ggtggcacct gettctaccc atgctgtttg actgtgaacg tcgatcttta tggaatgcat ..... 3720
attrctcaaa tegactacaa cgaatggaac ttgtgagatg taagacatge cttctgcatc ..... 3780
atgaccacct gatctagttc tgatttgcaa acctacttc ttagagcaca atatagaagc ..... 3840
-continued
ttgaatgtga ctaacattgg aaggtgtaac aatgactaaa ggtttggtg tagtgtcaga ..... 3900
agtgaatctc aaattttgga tggtactgtt caaaacggac atgtacaatt gatcatgttg ..... 3960
agtatatata aactttgggt tagcagggtt gtttgggatg tattcggaga aacacttcaa ..... 4020
aaagttttct tgtggatttg cgatggagat ttggatgttg aaggacaaga agaagaagat ..... 4080
tattttacag acgaaccaga aagagaatgc ggagcagttc ataggacctg gattttcte ..... 4140
aacgtcacca caggtcaaca aagaacctct accttcaata aaaacgtata ccaaatattc ..... 4200
agcgtagtac aatttccaca taaactegta gaatcttcta cotgettcag ggtcataatt ..... 4260
tgtcaaagcg aaatctctag tttgcaagat caaccagaaa gccaagatgg catgtgacaa ..... 4320
caacataacg ttagaattaa aggcttgtgg ccaaatgata cctgccaaaa tggetgcgac ..... 4380
gtaacttaac aaaacgatac cggagcagaa caaagtcaaa tttettgaac egtacttaga ..... 4440
agccaaggta ctaataccga actttgtgtc accttcaacg tcagaggcat ccttgatcaa ..... 4500
ggctaatgca gaacccatac etrtcatgaa tgecaacaaa aatgtgaatg aaggtctcaa ..... 4560
ttcgaatggc aaacctaaag cagctcttga agcgtagtag aaggtgaagt ttgtgatgat ..... 4620
atgagctaag aaattcaaca aaaaggcagt actagggttt tgttccatc taaaaggtgg ..... 4680
tacggaatag acaataccac egaagatacc gaaacagtaa cogaagatgt acaatggacc ..... 4740
accettcatt ttaattgtga tgatcaaacc gaacaagget actatgatag acatgatcca ..... 4800
tgcagtattg acggatattt cacctgaage caaaggcaaa tctggtttgt taattctgtc ..... 4860
gatgtgcaaa tcgtatattt gattaattgt agtggtgaat gaagcgatgc acaagatggc ..... 4920
aactaaaaag aaaaatgcct tgaacatcaa ggaccatgaa attaagttag tgttatgcaa ..... 4980
caattettta cegaataaac egcatgcaca agaagtaaaa gcgattatgg tgtatggtct ..... 5040
ttgcaacttc caacatgctt taccgaagtt caaaattett gtggcaacag agtgattatc ..... 5100
actttcaggt ggttcagttt gatttgtagt tgeagctctg atagagttct tagctataga ..... 5160
caaactttcg gagcacttat tttgtaagtg gaaggacttg gttgaacaat gttttgatgg ..... 5220
aaagttgttg taagagtact taataggtgt ctttggatgt ctgtaacaca acaatgatgt ..... 5280
ttttggattg ttgttgtgag gattcaataa ggtatgatag ttagtttgga aggagaaagt ..... 5340
acagacggat gataaaccca tactagttct agatccgtcg aaactaagtt cttggtgtt ..... 5400
taaaactaaa aaaagacta actataaaag tagaatttaa gaagtttaag aaatagattt ..... 5460
acagaattac aatcaatacc taccgtcttt atatacttat tagtcaagta ggggaataat ..... 5520
ttcagggaac tggtttaaac cttttttte agctttttcc aaatcagaga gagcagaagg ..... 5580
taatagaagg tgtaagaaaa tgagatagat acatgcgtgg gtcaattgce ttgtgtcatc ..... 5640
atttacteca ggcaggttgc atcactccat tgaggttgtg cccgtttttt gcctgttegt ..... 5700
gccetgttct ctgtagttgc gctaagagaa tggacctatg aactgatggt tggtgaagaa ..... 5760
aacaatattt tggtgctggg attcttttt tttctggatg ccagcttaaa aagcgggctc ..... 5820
cattatattt agtggatgce aggaataaac ctgttcaccc aageaccatc agtgttatat ..... 5880
attctgtgta acccgceccc tattttggca tgtacgggtt acagcagaat taaaaggcta ..... 5940
atttttgac taaataaagt taggaaaatc actactatta attatttacg tattctttga ..... 6000
aatggcagta ttgataatga taaactcgag agctccagct tttgttcagt tgattgtatg ..... 6060
cttggtatag cttgaaatat tgtgcagaaa aagaaacaag gaagaaaggg aacgagaaca ..... 6120
atgacgagga aacaaaagat taataattgc aggtctattt atacttgata gcaagacagc ..... 6180
aactttttt ttatttcaaa ttcaagtaac tggaaggaag gccgtatacc gttgctcatt ..... 6240
agagagtagt gtgegtgaat gaaggaagga aaaagtttcg tgtgettcga gataccectc ..... 6300
atcagctetg gaacaacgac atctgttggt getgecttg tcgttaattt tececttrag ..... 6360
tgtcttecat cattttttg tcattgcgga tatggtgaga caacaacggg ggagagagaa ..... 6420
aagaaaaaaa aagaaaagaa gttgcatgcg cctattatta cttcaataga tggcaaatgg ..... 6480
aaaagggta gtgaaacttc gatatgatga tggetatcaa gtctaggget acagtattag ..... 6540
ttcgttatgt accaccatca atgaggcagt gtaattggtg tagtcttgtt tagcccatta ..... 6600
tgtcttgtct ggtatctgtt ctattgtata tctcccctcc gccacctaca tgttagggag ..... 6660
accaacgaag gtattatagg aatccegatg tatgggtttg gttgecagaa aagaggaagt ..... 6720
ccatattgta caccoggaaa caacaaaagg atgcgegctt ggcgtaatca tggtcatagc ..... 6780
tgtttectgt gtgaaattgt tatcogetca caattccaca caacatagga geeggaagca ..... 6840
taaagtgtaa agectggggt gectaatgag tgaggtaact cacattaatt gegttgegct ..... 6900
cactgeccge tttccagteg ggaaacetgt egtgecaget geattaatga atcggccaac ..... 6960
gegcggggag aggeggtttg egtattgggc getcttcoge ttcetcgetc actgactcge ..... 7020
tgcgetcggt cgttcggctg cggcgagegg tatcagctca ctcaaaggeg gtaatacggt ..... 7080
tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ..... 7140
ccaggaaccg taaaaggce gegttgetgg cgtttttcca taggetcege cecectgacg ..... 7200
agcatcacaa aaatcgacge tcaagtcaga ggtggcgaaa cccgacagga ctataagat ..... 7260
accaggegtt teccectgga agctcecteg tgegetctec tgttecgace etgecgetta ..... 7320
coggatacct gtcogecttt ctccettegg gaagegtgge getttctcat agctcacgct ..... 7380
gtaggtatct cagttcggtg taggtcgttc getccaagct gggetgtgtg cacgaacccc ..... 7440
cogttcagce cgaccgetge gecttatceg gtaactatcg tcttgagtce aacocggtaa ..... 7500
gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg ..... 7560
taggeggtge tacagagtte ttgaagtggt ggectaacta cggetacact agaaggacag ..... 7620
tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt ..... 7680
gatccggcaa acaaaccacc getggtageg gtggtttttt tgtttgcaag cagcagatta ..... 7740
egcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc ..... 7800
agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca ..... 7860
cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa ..... 7920
cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ..... 7980
ttcgtteatc catagttgec tgactccecg tegtgtagat aactacgata egggaggget ..... 9040
taccatctgg ccccagtgct gcaatgatac cgegagaccc acgctcaccg gctccagatt ..... 8100
tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat ..... 8160
ccgcctccat ceagtctatt aattgttgcc gggaagctag agtaagtagt tegccagtta ..... 8220
atagtttgeg caacgttgtt gecattgcta caggcatcgt ggtgtcacge tegtcgtteg ..... 8280
gtatggettc attcagctcc ggttcccaac gatcaaggeg agttacatga teccccatgt ..... 8340
tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggceg ..... 8400
cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatecg ..... 8460
taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc ..... 8520
ggcgaccgag ttgctettgc coggcgtcaa tacgggataa tacegcgeca catagcagaa ..... 8580
ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac ..... 8640
cgetgttgag atccagtteg atgtaaccca ctegtgcacc caactgatct tcagcatctt ..... 8700
ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg ..... 8760
gaataagggc gacacggaaa tgttgaatac tcatactctt ccttttcaa tattattgaa ..... 8820
gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata ..... 8880
aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgggtcc ttttcatcac ..... 8940
gtgctataaa aataattata atttaaattt tttaatataa atatataaat taaaaataga ..... 9000
aagtaaaaaa agaaattaaa gaaaaaatag tttttgttt ccgaagatgt aaaagactct ..... 9060
agggggatcg ccaacaaata ctacctttea tettgetctt cetgetctca ggrattaarg ..... 9120
ccgaattgtt teatcttgtc tgtgtagaag accacacacg aaaatcctgt gattttacat ..... 9180
tttacttatc gttaatcgaa tgtatatcta tttaatctgc ttttettgtc taataaatat ..... 9240
atargtaaag tacgectttt getgaaate tttaaacctt egtttatttt tetttcteca ..... 9300
ttcegtaact cttctacctt ctttatttac tttctaaaat ccaaatacaa aacataaaaa ..... 9360
taaataaaca cagagtaaat tcecaaatta ttccatcatt aaaagatacg aggegegtgt ..... 9420
aagrtacagg caagegatce gtcetaagaa accattatta tcatgacatt aacctataaa ..... 9480
aataggegta tcacgaggec ctttegtc ..... 9508
<210> SEQ ID NO 4
<211> LENGTH: 950
13) ORGANISM
<220> FEATURE:
<223> OTHER INFORMATION: Codon optimized
$<400>$ SEQUENCE: 4
tcgegegttt eggtgatgac ggrgaaaace tctgacacat gcagetcocg gagacggtca ..... 60
cagcttgtct gtaageggat gecgggagca gacaagcocg tcagggegcg tcagcgegtg ..... 120
ttggcgggtg teggggctgg cttaactatg cggcatcaga gcagattgta etgagagtgc ..... 180
accataaatt cecgttttaa gagcttggtg agcgctagga gtcactgcca ggtatcgttt ..... 240
gaacacggca ttagtcaggg aagtcataac acagtccttt cccgcaatte tcttttecta ..... 300
ttactcttgg cotcctaacg acattactat atatataata taggaagcat ttaatagaca ..... 360
gcatcgtaat atatgtgtac tttgcagtta tgacgccaga tggcagtagt ggaagatatt ..... 420
ctttattgaa aaatagcttg tcaccttacg tacaatcttg atccggagct tttctttett ..... 480
tgcegattaa gaattaattc ggtcgaaaaa agaaaaggag agggecaaga gggagggcat ..... 540
tggtgactat tgagcacgtg agtatacgtg attaagcaca caaaggcagc ttggagtatg ..... 600
tetgttatta attcacagg tagttctggt ceattggtga aagtttgegg ettgcagagc ..... 660
acagaggecg cagaatgtgc tetagattce gatgetgact tgetgggtat tatatgtgtg ..... 720
cccaatagaa agagaacaat tgaccoggtt attgcaagga aaatttcaag tettgtaaaa ..... 780
gcatataaa atagttcagg cactccgaaa tacttggttg gegtgtttcg taatcaacct ..... 840
aaggaggatg ttttggctct ggtcaatgat tacggcattg atatcgtcca actgcatgga ..... 900
gatgagtcgt ggcaagaata ccaagagttc ctcggtttgc cagttattaa aagactegta ..... 960
tttccaaaag actgcaacat actactcagt gcagcttcac agaaacctca ttcgtttatt ..... 1020
cccttgtttg attcagaagc aggtgggaca ggtgaacttt tggattggaa ctcgatttct ..... 1080
gactgggttg gaaggcaaga gagccccgaa agcttacatt ttatgttagc tggtggactg ..... 1140
acgecagaaa atgttggtga tgegettaga ttaaatggcg ttattggtgt tgatgtaagc ..... 1200
ggaggtgtgg agacaaatgg tgraaaagac tctaacaaaa tagcaaattt egrcaaaaat ..... 1260
gctaagaas agtgacaccg attatttaaa getgcagcat acgatatata tacatgtgta ..... 1320
tatatgtata cctatgaatg tcagtaagta tgtatacgaa cagtatgata ctgaagatga ..... 1380
caaggtaatg catcattcta racgtgtcat tetgaacgag gegcgettte ectttttect ..... 1440
tttgcttttt etttttttt ctcttgaact cgacggatct atgcggtgtg aaataccgca ..... 1500
cagatgcgta aggagaaaat accgcatcag gaaattgtaa acgttaatat tttgttaaaa ..... 1560
ttcgegttaa atttttgtta aatcagctca tttttaacc aataggecga aateggcaaa ..... 1620
atcecttata aatcaaaaga atagaccgag atagggttga gtgttgttce agttggaac ..... 1680
aagagtccac tattaaagaa egtggactcc aacgtcaaag ggcgaaaaac egtctatcag ..... 1740
ggcgatggce cactacgtga accatcacce taatcaagtt tttggggtc gaggtgcegt ..... 1800
aaagcactaa ateggaacec taaagggage eccegattta gagettgacg gggaaagecg ..... 1860
gegaacgtgg egagaaagga agggaagaaa gegaaaggag cgggegctag ggegctggca ..... 1920
agtgtagcgg tcacgctgcg cgtaaccacc acaccegceg cgettaatgc gecgctacag ..... 1980
ggcgegtegc gecattcgec attcaggetg cgcaactgtt gggaagggeg atcggtgegg ..... 2040
gcctcttcge tattacgcca gctggcgaaa gggggatgtg ctgcaaggeg attaagttgg ..... 2100
gtaacgccag ggttttccca gtcacgacgt tgtaaaacga cggccagtga gcgegcgtaa ..... 2160
tacgactcac tatagggega attgggtacc ggecgeaaat taaagcette gagegtecea ..... 2220
aaaccttctc aagcaaggtt ttcagtataa tgttacatgc gtacacgegt ctgtacagaa ..... 2280
aaaaaagaaa aatttgaaat ataaataacg ttcttaatac taacataact ataaaaaaat ..... 2340
aaatagggac ctagacttca ggttgtctaa ctecttcctt ttcggttaga geggatgtgg ..... 2400
ggggagggcg tgaatgtaag cgtgacataa ctaattacat gactcgaggt egacttacaa ..... 2460
atcttcttca cttattaatt tttgttegtg tetatgtcta ggtaaaggtg gaatggactg ..... 2520
ttcgtttcta aagaagttgt ttgggtcaac caatgtctta acctttacta atctatcgaa ..... 2580
atttttaccg aagtattttt caccccaaat tctagcttgg gtatagttgt taggattctt ..... 2640
tggatcgtta ataccgatgt ccaaatctct gtagttcaaa tatgecaatc tagggttttt ..... 2700
agaaacgtat ggagtcatga agttatagat gtttctaatc cagtttaagt gcttttcgtt ..... 2760
atcttctgc ttttcecatg aacaaatgta ccacaattog tataagatac cagctetatg ..... 2820
aggaaatgga atggcagatt cactgatttc gtccattata ccaccgtatg gatacaaggc ..... 2880
gtacatgect geaccaatat cttcttcgta caatttttct aagatttgga egaaaactga ..... 2940
ttcaggtatt ggctttttaa cgtagtctaa cttaatttta aaggcaccgt tttgacctgc ..... 3000
ggatctatcc aataatattt ctttgttgaa gttgtctgta tcgtagttga caacacctga ..... 3060
ataaaagatg atggtgtcga tccaagacaa ttgtctacaa tcagttttct taatacctaa ..... 3120
ttctggaaaa gacttattca tcaagtctac taaggaatcg acaccaccea agaaaactga ..... 3180
agaaaagtat gtgtggatag cagtcttatt tttaccttgg ttatcggtga tgtttcttgt ..... 3240
gatgaaatga gtcatcaaca acaagtcctt atcgtacttg tatgcgatgt tttgccactt ..... 3300
attgaccaat ttaactaatt catggatte cattatcttt ttgactgaga acatagtaga ..... 3360
ctttggtact gegactaatc ttatcttcca agcaactatg ataccgaatg attctgcacc ..... 3420
accacctctc aagcecaaa ataagtcttc acccatagac ettctatcca aaactttace ..... 3480
-continued
gtgaacattt accaaatgag cgtcgattat gttatcagcg gccaaaccgt agtttctcat ..... 3540
taaaggacca taaccaccac caccaaaatg accacctgcg caaactgttg gacagtaacc ..... 3600
agcagccaat gataagtttt cattcttte gttaacccag tagtatactt cacccaatgt ..... 3660
tgcaccagct tcaacccaag cagtttgtga gtgtacgtct attttaattg atctcatgtt ..... 3720
tctcaaatca acgataacga atggaacttg ggagatgtat gacatgcctt cactatcatg ..... 3780
accaccggat ctagttctaa tttgcaaacc aaccttttta gaacataaga tagtaccttg ..... 3840
gatgtgagat acatgactag gggttacaat gaccaaaggt ettggagtgg tatcagaagt ..... 3900
gaatctcaaa ttatggattg tactgttcaa gacggacatg tacaatgggt tgtttgagt ..... 3960
graaaccaac ttcaaattgg eggcgttatt aggtatgtat tgtgagaage acttcaaaaa ..... 4020
gttttctett gggtttgcga tacttgtttg gatgttaaag gaaaagaaaa agaagatgat ..... 4080
cttgcatacg aaccaaagg agaagttga acatttcata ggacctggat tttcttcaac ..... 4140
gtcaccacag gtcaacaaag aacctctacc ttcaataaaa acgtatacca aatattcagc ..... 4200
gtagtacaat ttccacataa actcgtagaa tettctacct gcttcagggt cataatttgt ..... 4260
caaagcgaaa tetctagttt gcaagatcaa ccagaaagcc aagatggcat gtgacaacaa ..... 4320
cataacgtta gaatraaagg cttgtggeca aatgatacct gccaaaatgg ctgegacgta ..... 4380
acttaacaaa acgataccgg agcagaacaa agtcaaattt cttgaaccgt acttagaagc ..... 4440
caaggtacta ataccgaact ttgtgtcacc ttcaacgtca gaggeatcct tgatcaaggc ..... 4500
taatgcagaa cccatacttt tcatgaatgc caacaaaaat gtgaatgaag gtctcaattc ..... 4560
gaatggcaaa cetaaagcag ctcttgaagc gtagtagaag gtgaagtttg tgatgatatg ..... 4620
agctaagaaa ttcaacaaaa aggcagtact agggttttgt ttccatctaa aaggtggtac ..... 4680
ggaatagaca ataccaccga agataccgaa acagtaaccg aagatgtaca atggaccacc ..... 4740
cttcatttra attgtgatga tcaaaccgaa caaggctact atgatagaca tgatccatgc ..... 4800
agtattgacg gatatttcac ctgaagccaa aggcaaatct ggtttgttaa ttctgtcgat ..... 4860
gtgcaaatcg tatatttgat taattgtagt ggtgaatgaa gcgatgcaca agatggcaac ..... 4920
taaaaagaaa aatgcettga acatcaagga ccatgaaatt aagttagtgt tatgcaacaa ..... 4980
ttctttaccg aataaaccgc atgcacaaga agtaaaagcg attatggtgt atggtctttg ..... 5040
caacttccaa catgctttac cgaagttcaa aatttttgtg gcaacagagt gattatcact ..... 5100
ttcaggtggt tcagtttgat ttgtagttgc agctctgata gagttcttag ctatagacaa ..... 5160
actttcggag cacttatttt gtaagtggaa ggacttggtt gaacaatgtt ttgatggaaa ..... 5220
gttgttgtaa gagtacttaa taggtgtctt tggatgtctg taacacaaca atgatgtttt ..... 5280
tggattgttg ttgtgaggat tcaataaggt atgatagtta gtttggaagg agaaagtaca ..... 5340
gacggatgat aaacccatac tagttctaga tecgtcgaaa otaagttctt ggtgttttaa ..... 5400
aactaaaaa aagactaact ataaagtag aatttaagaa gtttaagaaa tagatttaca ..... 5460
gaattacaat caatacctac egtctttata tacttattag tcaagtaggg gaataatte ..... 5520
agggaactgg tttaaacctt ttttteage tttttccaaa tcagagagag cagaaggtaa ..... 5580
tagaaggtgt aagaaaatga gatagataca tgegtgggtc aattgccttg tgtcatcatt ..... 5640
tactccagge aggttgcatc actceattga ggttgtgecc gttttttgec tgtttgtgec ..... 5700
ctgttctctg tagttgcgct aagagaatgg acctatgaac tgatggttgg tgaagaaaac ..... 5760
aatatttyg tgctgggatt cttttttttt ctggatgcca gcttaaaaag cgggctcca ..... 5820
tatatttagt ggatgccagg aataaacctg ttcacccaag caccatcagt gttatatatt ..... 5880
ctgtgtaace cgeccectat tttggcatgt acgggttaca gcagaattaa aaggctaatt ..... 5940
trftgactaa ataaagttag gaaaatcact actattaatt atttacgtat tctttgaaat ..... 6000
ggcagtattg ataatgataa actegagage tccagcttt gttcagttga ttgtatgett ..... 6060
ggtatagctt gaatattgt gcagazaaag aaacaaggaa gaaagggaac gagaacaatg ..... 6120
acgaggaaac aaaagattaa taattgcagg tetatttata cttgatagea agacagcaaa ..... 6180
cttttttta tttcaaattc aagtaactgg aaggaaggce gtataccgtt gctcattaga ..... 6240
gagtagtgtg cgtgaatgaa ggaaggaaaa agtttcgtgt gcttcgagat acccctcatc ..... 6300
agctctggaa caacgacatc tgttggtgct gtctttgtcg ttaattttt cotttagtgt ..... 6360
cttccatcat ttttttgtca ttgcggatat ggtgagacaa caacggggga gagagaaaag ..... 6420
aaaaaaaag aaaagaagtt gcatgcgect attattactt caatagatgg caaatggaaa ..... 6480
aagggtagtg aaacttcgat atgatgatgg ctatcaagtc tagggctaca gtattagttc ..... 6540
gttatgtace accatcaatg aggcagtgta attggrgtag tettgettag eccactargt ..... 6600
cttgtctggt atetgttcta ttgtatatct cecctccgcc acctacatgt tagggagacc ..... 6660
aacgaaggta ttataggaat cccgatgtat gggtttggtt gccagaaaag aggaagtcca ..... 6720
tartgtacac ceggaaacaa caaaaggatg cgegcttgge graatcatgg tcacagcegr ..... 6780
ttcctgtgtg aaattgttat cegctcacaa ttccacacaa cataggagec ggaagcataa ..... 6840
agtgtaaage ctggggtgce taatgagtga ggtaactcac attaattgcg ttgegctcac ..... 6900
tgecegettt coagteggga aacctgtegt gecagctgca ttaatgaate ggeeaacgeg ..... 6960
cggggagagg eggtttgegt attgggegct ettccgettc ctcgetcact gactcgctgc ..... 7020
getcggtegt teggetgegg egagcggtat cagcteactc aaaggeggta atacggttat ..... 7080
ccacagaatc aggggataac gcaggaaaga acatgtgage aaaaggecag caaaaggeca ..... 7140
ggaaccgtaa aaaggcegcg ttgctggegt ttttccatag gctcegcccc ectgacgagc ..... 7200
atcacaaaaa tegacgetca agtcagagge ggegaaacce gacaggacta taaagatacc ..... 7260
aggcgtttcc cectggaage tccctcgtgc gctctcctgt tccgaccetg ccgettaccg ..... 7320
gatacctgtc cgectttctc cettcgggaa gegtggcget ttctcatagc tcacgctgta ..... 7380
ggtatctcag tteggtgtag gtcgttcgct ccaagctggg otgtgtgcac gaaccoccog ..... 7440
ttcagcecga cegctgegcc ttatceggta actatcgtct tgagtccaac ecggtaagac ..... 7500
acgacttatc gceactggca gcagccactg gtaacaggat tagcagagcg aggtatgtag ..... 7560
gcggtgctac agagttcttg aagtggtggc ctaactacgg ctacactaga aggacagtat ..... 7620
ttggtatctg cgetctgctg aagccagtta cettcggaaa aagagttggt agctcttgat ..... 7680
ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt ttgcaagcag cagattacgc ..... 7740
gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc tacggggtct gacgetcagt ..... 880
ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg atcttcacct ..... 7860
agatccttt aaattaaaaa tgaagttta aatcaatcta aagtatatat gagtaaactt ..... 7920
ggtctgacag ttaccaatgc ttaatcagtg aggcacctat ctcagcgatc tgtctattec ..... 7980
gttcatccat agttgcetga ctcccogtcg tgtagataac tacgatacgg gagggcttac ..... 8040
catctggece cagtgetgca atgatacegc gagacceacg ctcaccggct coagatttat ..... 8100
cagcaataaa ccagccagec ggaagggecg agcgcagaag tggtectgca actttatceg ..... 8160
cctccatcca gtctattaat tgttgecggg aagctagagt aagtagttcg ecagttaata ..... 8220
-continued
gtttgcgeaa cgttgttgcc attgctacag gcatcgtggt gtcacgctcg tcgtttggta ..... 8280
tggcttcatt cagctccggt tcccaacgat caaggcgagt tacatgatcc cocatgttgt ..... 8340
gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt cagaagtaag ttggccgcag ..... 8400
tgttatcact catggttatg gcagcactgc ataattctet tactgtcatg ccatccgtaa ..... 8460
gatgcttttc tgtgactggt gagtactcaa ccaagtcatt ctgagaatag tgtatgcggc ..... 8520
gaccgagttg ctettgcceg gcgtcaatac gggataatac cgcgecacat agcagaactt ..... 8580
taaaagtgct catcattgga aaacgttctt cggggcgaaa actctcaagg atcttaccgc ..... 9640
tgttgagatc cagttcgatg taacccactc gtgcacceaa ctgatcttca gcatctttta ..... 8700
cttrcaccag cgtttctggg tgagcaaaaa caggaaggca aaatgccgca aaaagggaa ..... 8760
taagggcgac acggaaatgt tgaatactca tactcttcct tttcaatat tattgaagca ..... 8820
tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag aaaaataaac ..... 8880
aataggggt tecgcgcaca tetccccgaa aagtgccacc tgggtccttt tcatcacgrg ..... 8940
ctataaaaat aattataatt taaatttet aatataaata tataaattaa aaatagaag ..... 9000
taaaaaaaga aattaaagaa aaaatagttt ttgtttcceg aagatgtaaa agactctagg ..... 9060
gggatcgeca acaaatacta cettttatct tgctettect getctcaggt attaatgecg ..... 9120
aattgtttca tcttgtctgt gtagaagacc acacacgaaa atcctgtgat tttacatttt ..... 9180
acttatcgtt aatcgaatgr atatctattt aatctgcttt tettgtctaa taaatatata ..... 240
tgtaaagtac getttttget gaaattttt aaacctttgt ttattttttt tecteatcc ..... 9300
cgtaactett ctacctecte tatttacttt ctaaaatcca aatacaaaac ataaaaataa ..... 9360
ataaacacag agtaaattcc caaattattc catcattaaa agatacgagg egegtgtaag ..... 9420
ttacaggcaa gcgatccgtc ctaagaaacc attattatca tgacattaac ctataaaaat ..... 9480
aggegtatca cgaggecett tegtc ..... 9505
<210> SEQ ID NO 5
<211> LENGTH: 869
<212> TYPE: DNA<213> ORGANISM: Artificial Sequence<220> FEATURE<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 5
tcgcgegttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca ..... 60
cagcttgtct gtaagcggat gccgggagca gacaagcceg tcagggcgeg tcagcgcgtg ..... 120
ttggcgggtg teggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc ..... 180
accataaatt cccgttttaa gagcttggtg agcgctagga gtcactgcca ggtatcgttt ..... 240
gaacacggca ttagtcaggg aagtcataac acagtccttt cccgcaatt tcttttcta ..... 300
ttactcttgg cetcctaact gtgggaatac tcaggtateg taagatgcaa gagttcgaat ..... 360
ctcttagcaa ccattatttt tttcctcaac ataacgagaa cacacagggg egctatcgca ..... 420
cagaatcaaa ttegatgact ggaaattttt tgttaatte agaggtcgec tgacgeatat ..... 480
acctttttca actgaaaaat tgggagaaaa aggaaaggtg agaggccgga accggctttt ..... 540
catatagaat agagaagegt tcatgactaa atgcttgcat cacaatactt gaagttgaca ..... 600
atattatta aggacctatt gttttttcca ataggtggtt agcaatcgtc ttactttcta ..... 660
acttttctta ccttttacat ttcagcaata tatatatata tttcaaggat ataccattct ..... 720
aatgtctgcc cctatgtctg cccctaagaa gatcgtcgtt ttgccaggtg accacgttgg ..... 780
tcaagaaatc acagcegaag ccattaaggt tcttaaagct atttetgatg ttegttccaa ..... 840
tgecaagtec gatetcgaaa atcatttaat rggtggtget getatcgatg etacaggrgt ..... 900
cccactteca gatgaggegc tggaagcetc caagaaggtt gatgecgttt tgttaggtgc ..... 960
tgtgggtggt cctaaatggg gtaccggtag tgttagacct gaacaaggtt tactaaaaat ..... 1020
cegtaaagaa cttcaattgt acgecaactr aagaccatgt aacttcgeat ecgactecet ..... 1080
tttagactta tctccaatca agccacaatt tgctaaaggt actgacttcg ttgttgtcag ..... 1140
agaattagtg ggaggtattt actttggtaa gagaaaggaa gacgatggtg atggtgtcgc ..... 1200
ttgggatagt gaacaataca cogttccaga agtgcaaaga atcacaagaa tggecgettt ..... 1260
catggeccta caacatgage caccattgec tatttggtcc ttggataaag ctaatgtttt ..... 1320
ggcetcttca agattatgga gaaaaactgt ggaggaaacc atcaagaacg aattccerac ..... 1380
attgaaggtt caacatcaat tgattgattc tgecgecatg atcetagtta agaacccaac ..... 1440
ceacetaaat ggtatcataa tcaccagcaa catgtttggt gatatcatct ecgatgaage ..... 1500
ctecgttate ceaggttect tgggttgtt gecatctgeg tecttggect etttgccaga ..... 1560
caagaacacc gcatttggtt tgtacgaace atgccacggt tetgetccag atttgccaaa ..... 1620
gaataaggte gaccotatcg ecactatctt gtctgetgca atgatgetga aattgtcart ..... 1680
gaacttgect gaagaaggta aggccattga agatgcagtt aaaaaggttt tggatgcagg ..... 1740
tatcagaact ggtgatttag gtggttccaa cagtaccacc gaagtcggtg atgetgtcgc ..... 1800
cgaagaagtt aagaaaatcc ttgcttaatg acaccgatta tttaaagctg cagcatacga ..... 1860
tatatataca tgtgtatata tgtataccta tgaatgtcag taagtatgta tacgaacagt ..... 1920
atgatactga agatgacaag gtaatgcatc attctatacg tgtcattctg aacgaggegc ..... 1980
gcttcecttt tttcttttg cttttettt tttttctct tgaactcgac ggatctatgc ..... 2040
ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg catcaggaaa ttgtaaacgt ..... 2100
taatatttg ttaaaattcg cgttaaattt ttgttaaatc agctcatttt traaccaara ..... 2160
ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag accgagatag ggttgagtgt ..... 2220
tgttccagtt tggaacaaga gtccactatt aaagaacgtg gactccaacg tcaaagggcg ..... 2280
aaaaaccgtc tatcagggeg atggeccact acgtgaacca tcaccctaat caagttttt ..... 2340
ggggtcgagg tgecgtaaag cactaaatcg gaaccctaaa gggagccecc gatttagagc ..... 2400
ttgacgggga aagcoggcga acgtggegag aaaggaaggg aagaaagega aaggagcggg ..... 2460
cgctagggeg ctggcaagtg tageggtcac gctgcgegta accaccacac cogecgegct ..... 2520
taatgegecg ctacagggeg egtcgegeca ttcgecattc aggetgegca actgttggga ..... 2580
agggcgatcg gtgcgggcet cttcgctatt acgccagctg gcgaaagggg gatgtgctgc ..... 2640
aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgacgttgta aaacgacggc ..... 2700
cagtgagege gegtaatacg actcactata gggegaattg ggtaccggce geaaattaaa ..... 2760
gecttcgage gtcccaaaac cttctcaage aaggttttca gtataatgtt acatgegtac ..... 2820
acgegtctgt acagaaaaaa aagaaaaatt tgaaatataa ataacgttct taatactaac ..... 2880
ataactataa aaaataat agggacctag acttcaggtt gtctaactcc ttcctttecg ..... 2940
gttagagegg atgtgggggg agggegtgaa tgtaagcgtg acataactaa ttacatgact ..... 3000
cgaggtcgac ttatgcatag tetggaacat cgtaagggta ctttcttggg gtgtaatcga ..... 3060
agatcaacaa tttttcccag aaggatctgt aaacgtcacc aaaaccaacg tgagctggat ..... 3120
-continued
gaatgatgta atcttggata gtttcaactg attcgaaggt tacttcgaca atgtgtgtat ..... 3180
aaccttcttc tttcttttgt gtaacgtctt taccccagta tacatctttc atagcaggta ..... 3240
taatgttgac caaattaacg taggtcttga aaaattettc cttttgagct tctgtgattt ..... 3300
catctttaaa cttcaatact atcaaatgct tgacggccat aggacctggg ttttcttcaa ..... 3360
cgtcaccaca agttaacaag gaacctctac ettcatattt aattggtact gatctgacaa ..... 3420
ctactctttc gacggtcaaa ccaggaccga aaccaaataa gacaccccat tcaaaaccgt ..... 3480
caccagtagt agatttacce tettctaatg atctctttct caattcatcc attacgaaca ..... 3540
agacagtgga tgaagacatg ttaccgtgtt cagataaaac atgtctacta tctacaaact ..... 3600
tectttcte caaatccaat etttcttcaa cettatccaa aatggettta ccacctggat ..... 3660
gtgttatcca gaaatagag ttccaatctg agatacctat aggagtgaat gettctatca ..... 3720
aacactttc tatgttgtta gagattaaca ttggaacgtc tttgtgcaaa tegaagatca ..... 3780
aacctgettc tettatatga ccaccaattg taccttcaga attaggcaag atggtttgac ..... 3840
ctgtactgac taattcaaat attggtcttt caccaacaga ttcgtcaggt tctgcaccaa ..... 3900
caataacagc agcagcaccg tcaccgaaga tagcttgace aactaacaat tecaagtcag ..... 3960
aatcacttgg acctctaaac aagcaagcea taatgtcgea acaaacagct aatactctgg ..... 4020
caccettgtt gttttctgca atatccttag cgattctcaa aacagtacca ecaccgtagc ..... 4080
aacctaattg atacatcatg actctcttaa cggatggtga caaacctaac aatttggcac ..... 4140
agtggtagtc tgcaccagge atatctgtag tagatgcact tgtaaaaatc aaatgagtga ..... 4200
tctttgactt tggttgacce cattccttaa tggettttgc acaagcatct ttacccaatt ..... 4260
taggaacttc gacaactaac atgtcttgtc tggcatccaa tgtttgcatt tcgtgttcta ..... 4320
ccaatcttgg attttgcttc aaatgttctt cgttcaagaa gcagttctc tttctgatca ..... 4380
tagacttatc acarattttt ctaaactttt cettcaattg agtcargtgt tcactcttgg ..... 4440
taactctgaa gtaataatca ggaaattcat cttggatcaa tatgttttct gggttggetg ..... 4500
tacctatggc taatacggag gcaggacctt cggctetcaa atggttcata ctagttctag ..... 4560
atcegtegaa actaagttct tggtgtttta aaactaaaaa aaagactaac tataaaagta ..... 4620
gaatttaaga agtttaagaa atagatttac agaattacaa tcaataccta ccgtctttat ..... 4680
atacttatta gtcaagtagg ggaataattt cagggaactg gtttaaacct tttttttcag ..... 4740
ctttttccaa atcagagaga gcagaaggta atagaaggtg taagaaaatg agatagatac ..... 4800
atgcgtgggt caattgcctt gtgtcatcat ttactccagg caggttgcat cactccattg ..... 4860
aggttgtgce cgttttttgc ctgtttgtgc cctgttctct gtagttgcge taagagaatg ..... 4920
gacctatgaa ctgatggttg gtgaagaaaa caatattttg gtgctgggat tctttttttt ..... 4980
tctggatgcc agcttaaaaa gcgggctcca ttatatttag tggatgccag gaataaacct ..... 5040
gttcacccaa gcaccatcag tgttatatat tctgtgtaac cegcceccta ttttggcatg ..... 5100
tacgggttac agcagaatta aaaggctaat tttttgacta aataaagtta ggaaaatcac ..... 5160
tactattaat tatttacgta ttctttgaaa tggcagtatt gataatgata aactcgagag ..... 5220
ctccagettt tgttcagttg attgtatget tggtataget tgaaatattg tgcagaaaaa ..... 5280
gaaacaagga agaaagggaa cgagaacaat gacgaggaaa caaaagatta ataattgcag ..... 5340
gtctatttat acttgatagc aagacagcaa acttttttt atttcaaatt caagtaactg ..... 5400
gaaggaaggc cgtataccgt tgctcattag agagtagtgt gcgtgaatga aggaaggaaa ..... 5460
aagtttcgtg tgcttcgaga tacccctcat cagctctgga acaacgacat ctgttggtgc ..... 5520
tgtcttgtc gttaatttt tectttagtg tettceatca ttttttgtc attgeggata ..... 5580
tggtgagaca acaacggggg agagagaaaa gaaaaaaaaa gaaaagaagt tgcatgcgec ..... 5640
tattattact tcaatagatg gcaaatggaa aaagggtagt gaaacttcga tatgatgatg ..... 5700
gctatcaagt ctagggctac agtattagtt cgttatgtac caccatcaat gaggeagtgt ..... 5760
aattggtgra gtertgttta geccattatg tetcgtctgg tatctgrtct atcgtatatc ..... 5820
tcocctcogc cacctacatg ttagggagac caacgaaggt attataggaa tocegatgta ..... 5880
tgggtttggt tgecagaaaa gaggaagtcc atattgtaca cccggaaaca acaaaaggat ..... 5940
gegcgettgg cgtaatcatg gtcatagctg tttcetgtgt gaaattgtta tcegctcaca ..... 6000
attccacaca acataggage eggaagcata aagtgtaaag cctggggtge ctaatgagtg ..... 6060
aggtaactca cattaattge gttgcgetca ctgccegctt tccagtcggg aaacetgtcg ..... 6120
tgecagetgc attaatgaat eggecaacge gcggggagag gcggtttgeg tattgggegc ..... 6180
tetecegete cetcgetcac rgactegerg egcteggteg tecggetgeg gegageggta ..... 6240
tcagctcact caaaggeggt aatacggtta tecacagaat caggggataa egeaggaaag ..... 6300
aacatgtgag caaaaggcea gcaaaaggcc aggaaccgta aaaaggecge gttgctggeg ..... 6360
tttttccata ggetcegcce cectgacgag catcacaaaa atcgacgetc aagrcagagg ..... 6420
tggcgaaace cgacaggact ataaagatac caggegtttc cocetggaag ctcoctcgtg ..... 6480
cgetctcetg ttccgaccet gecgettacc ggatacctgt cegectttct cccttcggga ..... 6540
agegtggegc tttctcatag ctcacgetgt aggtatctca gttcggtgta ggtegttcgc ..... 6600
tccaagetgg getgtgtgea cgaacceccc gttcagcocg accgetgege cttatcoggt ..... 6660
aactategtc ttgagtccaa eccggtaaga cacgacttat cgceactgge ageagecact ..... 6720
ggtaacagga ttagcagage gaggtatgta ggeggtgeta cagagttctt gaagtggrgg ..... 6780
cctaactacg getacactag aaggacagta tttggtatct gcgetctgct gaagccagtt ..... 6840
accttcggaa aaagagttgg tagctettga tecggcaaac aaaceaccge tggtageggt ..... 6900
ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct ..... 6960
ttgatctett ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattteg ..... 7020
gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt ..... 7080
aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt ..... 7140
gaggcaccta tetcagcgat ctgtctatte cgttcatcea tagttgcetg actcccogtc ..... 7200
gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg ..... 7260
cgagacceac getcaccgge tccagattta tcagcaataa accagccage eggaagggec ..... 7320
gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg ..... 7380
gaagctagag taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctaca ..... 7440
ggcatcgtgg tgtcacgctc gtcgtttggt atggettcat tcagetcogg ttcccaacga ..... 7500
tcaaggcgag ttacatgatc ccccatgttg tgcaaaaag cggttagctc cttcggtcct ..... 7560
ccgatcgttg tcagaagtaa gttggcegca gtgttatcac tcatggttat ggcagcactg ..... 7620
cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca ..... 7680
accaagtcat tctgagaata gtgtatgegg egaccgagtt gctcttgcce ggegtcaata ..... 7740
cgggataara cegcgecaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct ..... 7800
teggggegaa aactctcaag gatcttaccg ctgttgagat ccagtegat gtaaccoact ..... 7860
cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa ..... 7920
acaggaagge aaaatgccgc aaaaaggga ataagggega cacggaaatg ttgaatactc ..... 7980
atactcttcc ttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga ..... 8040
tacatatttg aatgtattta gaaaataaa caaatagggg ttcegcgeac atttcccoga ..... 8100
aagtgecac ctgggtcctt ttcatcacgt gctataaaaa taattataat ttaaattttt ..... 8160
taatataaat atataaatta aaatagaaa gtaaaaaagg aaattaaaga aaaaatagtt ..... 8220
tttgttttcc gaagatgtaa aagactetag ggggatcgec aacaaatact accttttatc ..... 8280
ttgctcttcc tgctctcagg tattaatgcc gaattgtttc atcttgtctg tgtagaagac ..... 8340
cacacacgaa aatccrgtga tettacattt tactratcgt taatcgaatg tatatctatt ..... 8400
taatctgett ttettgtcta ataaatatat atgtaaagta cgctttttgt tgaaatttt ..... 8460
taaccttg tttatttett ftcttcatt ccgtaactct tctaccttct thatttact ..... 8520
tctaaatce aaatacaaaa cataaaata aataaacaca gagtaaattc ecaaattart ..... 8580
ccatcattaa aagatacgag gcgcgtgtaa gttacaggca agcgatcogt ectaagaaac ..... 8640
cattattate atgacattaa cetataaaa taggegtatc acgaggecct ttcgtc ..... 9696
<210> SEQ ID NO 6
<211> LENGTH: 432
212> TYPE: DNA. <213> ORGANISM: Artificial Sequence <220> FEATURE
<223> OTHER INFORMATION: Codon Optimized
<400> SEQUENCE: 6
aggaaacgaa gataaatctc gagtttatca ttatcaatac tgceatttca aagaatacgt ..... 60
aataattaa tagtagtgat tttcctaact ttatttagtc aaaaattag ccttttaatt ..... 120
ctgctgtaac cegtacatgc caaaataggg ggegggttac acagaatata taacactgat ..... 180
ggtgcttggg tgaacaggtt tattcctggc atccactaaa tataatggag cecgettttt ..... 240
aagctggcat ccagaaaaaa aaagaatccc agcaccaaaa tattgttttc ttcaccaacc ..... 300
atcagttcat aggtccattc tettagcgca actacagaga acagggcaca aacaggcaaa ..... 360
aaacgggcac aacctcaatg gagtgatgca acctgcctgg agtaaatgat gacacaaggc ..... 420
aattgaccca cgeatgtatc tatctcattt tettacacct tetattacct tctgctctct ..... 480
ctgatttgga aaagctgaa aaaaaggtt taaaccagtt ccctgaaatt attcccctac ..... 540
ttgactaata agtatataaa gacggtaggt attgattgta attctgtaaa tctatttctt ..... 600
aacttctta aattctactt ttatagttag tcttttttt agtttaaaa caccaagaac ..... 660
ttagtttcga cggatctaga actagtatgg gtaaaaacta taagtccttg gattcagtcg ..... 720
ttgcetcaga tttcatcgca ttgggtatca cctcagaagt agcagaaaca ttacatggta ..... 780
gattggcaga aatcgtttgt aattatggtg ctgcaaccec tcaaacttgg atcaacatcg ..... 840
ctaaccatat cttgtcacca gatttgectt tetccttaca ccaaatgttg ttttatggtt ..... 900
gctacaagga tttcggtcca gccecacctg cttggattce agacectgaa aaagtcaagt ..... 960
caactaattt gggtgctttg ttggaaaaga gaggtaaaga atttttgggt gtaaagtaca ..... 1020
aagatccaat tectetttt tetcacttce aagaattttc tgttagaaac ectgaagtct ..... 1080
attggagaac agtattgatg gatgaaatga aaattagttt ctctaaggac ecagaatgta ..... 1140
tcttgagaag agatgacatc aacaacccag gtggttctga atggttacct ggtggttact ..... 1200
tgaactcagc taaaaattgc ttgaacgtaa actccaataa gaaattgaac gatactatga ..... 1260
tcgtttggag agacgagggt aacgatgact tgcetttgaa taagttgaca ttagatcaat ..... 1320
tgagaaagag agtttggtrg gttggttatg cattggaaga aatgggttta gaaaaaggtt ..... 1380
gtgcaatagc catcgatatg ccaatgcatg ttgatgctgt tgttatatat ttggccatag ..... 1440
tattggctgg ttacgtagtt gtctctatag cagattcatt ttcegccect gaaatctcaa ..... 1500
ctagattgag attatccaaa gctaaggcaa tetceacaca agatcacatc atcagaggra ..... 1560
aaaagagaat accattgtat tcaagagtag ttgaagctaa atccecaatg gcaatagtta ..... 1620
tcccttgtag tggttctaac attggtgcag aattgagaga tggtgacata tcttgggatt ..... 1680
actttttaga aagagecaag gagtttaaaa actgcgagtt tactgccaga gaacaacctg ..... 1740
ttgatgetta tactaacatc ttattcteca gtggtactac aggtgaacca aaagcaattc ..... 1800
cttggacaca agecaccoca rtgaaggetg ctgctgatgg ttggtctcat ttggatatta ..... 1860
gaaaaggtga cgttatagta tggccaacta atttgggttg gatgatgggt cettggttgg ..... 1920
tetatgetag tetgetaat ggrgeatera ttgecttgta caacggragt ectetagret ..... 1980
ctggttege taaatttgtt caagatgcaa aggtcacaat gttgggtgtc gtaceatcta ..... 2040
ttgtaagatc atggaaatcc acaaattgtg tttcaggtta cgattggtcc accataagat ..... 2100
getettettc atecggtgaa gectetaatg tagacgaata tttgtggtta atgggtagag ..... 2160
ctaactacaa gccagttata gaaatgtgtg gtggtacaga aatcggtggt getttttctg ..... 2220
ctggttcatt tttgcaagct caatctttaa gttcttttc atcccaatgt atgggttgca ..... 2280
ccttgtacat attagataag aacggttacc caatgcctaa aaataagcea ggtatcggtg ..... 2340
aattggcatt aggtcctgtt atgtttggtg cctcaaaaac attgttaaac ggtaatcatc ..... 2400
acgatgtcta tttcaagggt atgccaacct tgaatggtga agtattgaga agacatggrg ..... 2460
acattttcga attgacctct aacggttact accatgcaca cggtagagec gatgacacta ..... 2520
tgaacatcgg tggtatcaaa attagttcta tcgaaatcga aagagtctgt aatgaagtag ..... 2580
atgacagagt ttttgaaace actgctattg gtgttccace ettgggtggt ggtecagaac ..... 2640
aattggtcat atttttcgta ttgaaggatt caaacgacac aaccattgat ttgaaccaat ..... 2700
tgagattatc ctttaacttg ggtttgcaaa agaaattgaa cccattattc aaagttacta ..... 2760
gagttgtccc attgtcatcc ttacctagaa ctgcaacaaa caagatcatg agaagagttt ..... 2820
tgagacaaca attcagteat ttegaagaag gtagaggttc tttgttaaca tgtggtgacg ..... 2880
ttgaagaaaa tceaggtcct atggcttcag aaaaggaaat aagaagagaa agattettga ..... 2940
acgtattccc aaagttagtt gaagaattga acgctagttt gttagcttat ggtatgccta ..... 3000
aagaagcetg egattggtat getcactctt taaactacaa tactccaggt ggtaaattga ..... 3060
atagaggttt gagtgtagtt gatacttatg ctatcttgtc taacaaaacc gttgaacaat ..... 3120
taggtcaaga agaatacgaa aaggtcgcta tcttgggttg gtgtattgaa ttgttgcaag ..... 3180
catacttttt ggttgecgat gacatgatgg ataagtetat aacaagaaga ggtcaaccat ..... 3240
getggtacaa agttccagaa gttggtgaaa tagccataaa tgatgetttt atgttggaag ..... 3300
cegctatcta taaattgttg aagtcacatt tcagaaacga aaagtactac atcgatatta ..... 3360
ccgaattatt ccacgaagtt actttccaaa cagaattggg tcaattgatg gatttgataa ..... 3420
ctgcacctga agataaagtt gacttgtcaa agttttcctt gaagaaacat tcattcatcg ..... 3480
tcaccttga aactgcttat tactccttct atttgccagt cgcettggct atgtacgtag ..... 3540
ctggtattac tgatgaaaaa gacttgaagc aagcaagaga tgtttgata cctttgggtg ..... 3600
-continued
aatacttcca aatccaagat gactacttag actgtttcgg tactccagaa caaataggta ..... 3660
aaatcggtac agatattcaa gacaataagt gcagttgggt tattaacaag getttggaat ..... 3720
tagcatctgc cgaacaaaga aagactttgg atgaaaacta cggtaaaaag gactcagttg ..... 3780
ctgaagcaaa gtgtaagaaa atttttaatg atttgaagat tgaacaattg taccatgaat ..... 3840
acgaagaatc catcgetaaa gacttaaagg caaagattag tcaagttgat gaatcaagag ..... 3900
gttttaaagc cgacgttttg acagctttct tgaataaggt ctacaagaga tcaaaggatt ..... 3960
acaaggatca tgacggtgac tataaagacc acgatattga ctacaaagat gacgatgaca ..... 4020
agtaagtega cetcgagtca tgtaattagt tatgtcacge ttacattcac gecetccecc ..... 4080
cacatccget ctaaccgaaa aggaaggagt tagacaacct gaagtctagg tecctateta ..... 4140
ttttttata gttatgttag tattaagaac gttattaa ..... 4200
tctgtacaga cgegtgtacg catgtaacat tatactgaaa accttgcttg agaaggtttt ..... 4260
gggacgetcg aaggctttaa ettgcgtgac ataactaatt acatgacttg actgattect ..... 4320
cc4322
<210> SEQ ID NO 7
<211> LENGTH: 2522
212> TYPE: DNA
213> ORGANISM: Artificial Sequence <220> FEATURE
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 7
aggaaacgaa gataaatctc gagtttatca ttatcaatac tgecatttca aagaatacgt ..... 60
aaataattaa tagtagtgat tttcctaact ttatttagtc aaaaattag ecttttaatt ..... 120
ctgctgtaac ccgtacatgc caaaataggg ggegggttac acagatata taacactgat ..... 180
ggrgettggg tgaacaggtt tattcotgge atccactaaa tataarggag eccgettttt ..... 240
aagctggcat ccagaaaaaa aaagaatcce agcaccaaaa tattgttttc ttcaccaacc ..... 300
atcagttcat aggtccatte tcttagegca actacagaga acagggcaca aacaggcaaa ..... 360
aaacgggcac aacctcaatg gagtgatgca acctgcctgg agtaaatgat gacacaaggc ..... 420
aattgaccea cgcatgtatc tatctcattt tcttacacct tctattacct tctgctctct ..... 480
ctgatttgga aaaagctgaz aaaaaaggtt taaaccagtt ccctgaaatt attcocctac ..... 540
tggactaata agtatataaa gacggtaggt attgattgta attctgtaaa tctatttctt ..... 600
aaactecta aattctactt ttatagttag tctettettt agttttaaaa caccaagaac ..... 660
ttagtttcga cggatctaga actagtatga accatttgag agcegaaggt cctgcctcog ..... 720
tattagccat aggtacagcc aacceagaaa acatattgat ccaagatgaa tttcctgatt ..... 780
attacttcag agttaccaag agtgaacaca tgactcaatt gaaggaaaag tttagaaaaa ..... 840
tatgtgataa gtctatgatc agaaagagaa actgcttctt gaacgaagaa catttgaagc ..... 900
aaatccaag attggtagaa cacgaaatgc aaacattgga tgccagacaa gacatgttag ..... 960
ttgtcgaagt tectaaattg ggtaaagatg cttgtgcaaa agceattaag gaatggggtc ..... 1020
aaccaaagtc aaagatcact catttgattt ttacaagtge atctactaca gatatgectg ..... 1080
gtgcagacta ccactgtgcc aaattgttag gtttgtcacc atcogttaag agagtcatga ..... 1140
tgtatcaatt aggttgctac ggtggtggta ctgttttgag aatcgctaag gatattgcag ..... 1200
aaaacaacaa gggtgccaga gtattagctg tttgttgcga cattatggct tgcttgttta ..... 1260
gaggtccaag tgattctgac ttggaattgt tagttggtca agctatcttc ggtgacggtg ..... 1320
ctgctgctgt tattgetggt gcagaacctg acgaatctgt tggtgaaaga ccaatatttg ..... 1380
aattagtcag tacaggtcaa accatcttgc ctaattctga aggtacaatt ggrggtcata ..... 1440
taagagaage aggtttgatc ttcgatttgc acaaagacgt tccaatgtta atctctaaca ..... 1500
acatagaaaa gtgtttgata gaagcattca ctcctatagg tatctcagat tggaactcta ..... 1560
trtectggat aacacatcca ggtggtaaag ccattttgga taaggttgaa gaaaaattgg ..... 1620
atttgaagaa agaaaagttt gtagatagta gacatgtttt atctgaacac ggtaacatgt ..... 1680
cttcatccac tgtcttgttc gtaatggatg aattgagaaa gagatcatta gaagagggta ..... 1740
aatctactac tggtgacggt tttgaatggg gtgtcttatt tggtttcggt cotggtttga ..... 1800
ccgtcgaaag agtagttgtc agatcagtac caattaaata tgaaggtaga ggttccttgt ..... 1860
taacttgtgg tgacgttgaa gaaaacccag gtcctatggc cgtcaagcat ttgatagtat ..... 1920
tgaagtttaa agatgaaatc acagaagctc aaaaggaaga atttttcaag acctacgtta ..... 1980
atctggtcaa cattatacct getatgaaag atgratactg gggtaaagac grtacacaaa ..... 2040
agaaagaaga aggttataca cacattgtcg aagtaacctt cgaatcagtt gaaactatcc ..... 2100
aagattacat cattcatcca gctcacgttg gttttggtga cgtttacaga tccttctggg ..... 2160
aaaaattget gatcercgat tacaccecaa gaaagtacec etacgargtt ecagactarg ..... 2220
cataagtcga cetcgagtca tgtaattagt tatgtcacge ttacattcac gecotccecc ..... 2280
cacatccgct ctaaccgaaa aggaaggagt tagacaacct gaagtctagg tccetattea ..... 2340
ttttttata gttatgttag tattaagaac gttatttata ettcaaactt ttetttttt ..... 2400
tctgtacaga cgegtgtacg catgtaacat tatactgaaa accttgcttg agaaggtttt ..... 2460
gggacgetcg aaggctttaa tttgcgtgac ataactaatt acatgacttg actgattttt ..... 2520
cc ..... 2522
<210> SEQ ID NO B
<211> LENGTH: 388
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE:
<223> OTHER INFORMATION: Codon optimized
$<400>$ SEQUENCE: 8
aggaaacgaa gataaatctc gagtttatca ttatcaatac tgecatttca aagaatacgt ..... 60
aaataattaa tagtagtgat tttcctaact ttattagtc aaaaaattag cettttaatt ..... 120
ctgctgtaac cegtacatgc caaaataggg ggcgggttac acagaatata taacactgat ..... 180
ggtgettggg tgaacaggtt tattcetgge atccactaaa tataatggag ecegcttttt ..... 240
aagctggcat ccagaaaaaa aaagaatccc agcaccaaaa tattgttttc ttcaccaacc ..... 300
atcagttcat aggtccattc tcttagcgca actacagaga acagggcaca aacaggcaaa ..... 360
aaacgggcac aacctcaatg gagtgatgca acctgcctgg agtaaatgat gacacaaggc ..... 420
aattgaccea cgeatgtatc tatctcattt tettacacct tctattacct tetgctctet ..... 480
ctgatttgga aaagctgaa aaaaaggtt taaaccagtt ccetgaaatt attccectac ..... 540
ttgactaata agtatataaa gacggtaggt attgattgta attctgtaaa tctatttctt ..... 600
aacttctta aatctactt ttatagttag tetttttttt agttttaaaa caccaagaac ..... 660
ttagtttcga cggatctaga actagtatgg gtttatcatc egtctgtact ttctcctec ..... 720
aaactaacta tcatacctta ttgaatcctc acaacaacaa tccaaaaaca tcattgttgt ..... 780
-continued
gttacagaca tccaaagaca cctattaagt actcttacaa caactttcca tcaaaacatt ..... 840
gttcaaccaa gtccttccac etacaaaata agtgctccga aagtttgtct atagctaaga ..... 900
actctatcag agctgcaact acaaatcaaa ctgaaccacc tgaaagtgat aatcactctg ..... 960
ttgccacaaa aattttgaac ttcggtaaag catgttggaa gttgcaaaga ccatacacca ..... 1020
taatcgettt tacttcttgt gcatgcggtt tattcggtaa agaattgttg cataacacta ..... 1080
acttaatte atggtccttg atgttcaagg catttttctt tttagttgcc atcttgtgca ..... 1140
tcgcttcatt caccactaca attaatcaaa tatacgattt gcacatcgac agaattaaca ..... 1200
aaccagattt gectttggct tcaggtgaaa tatccgtcaa tactgcatgg atcatgtcta ..... 1260
tcatagtagc cttgetcggt etgatcatca caattaaat gaagggtggt ccattgtaca ..... 1320
tcttcggtta ctgtttcggt atcttcggtg gtattgtcta ttccgtacca cettttagat ..... 1380
ggaaacaaaa cectagtact gectttttgt tgaatttctt agctcatatc atcacaaact ..... 1440
teacetteta ctacgettca agagetgect taggtttgec attegaattg agacettcat ..... 1500
tcacattttt gttggeattc atgaaaagta tgggttctge attagecttg atcaaggatg ..... 1560
cctctgacgt tgaaggtgac acaaagttcg gtattagtac cttggcttct aagtacggtt ..... 1620
caagaaattt gactttgetc tgetcoggta tegttttgtt aagttacge geagecattt ..... 1680
tggcaggtat catttggcca caagccttta attctaacgt tatgttgttg tcacatgcca ..... 1740
tcttggettt ctggttgatc ttgcaaacta gagatttcge tttgacaaat tatgaccetg ..... 1800
aagcaggtag aagattctac gagtttatgt ggaaattgta ctacgctgaa tatttggtat ..... 1860
acgttettat tgaaggtaga ggttctttgt tgacctgtgg tgacgttgaa gaaaatccag ..... 1920
gtcctatgaa atgttcaact ttctcetttt ggttcgtatg caagatcatc ttctttttct ..... 1980
tttcctttaa catccaaaca agtatcgcaa acccaagaga aaactttttg aagtgcttct ..... 2040
cacaatacat acctaataac gccaccaatt tgaagttggt ttacactcaa aacaaccoat ..... 2100
tgtacatgtc cgtcttgaac agtacaatcc ataatttgag attcacttct gataccacte ..... 2160
caaaacettt ggtcattgta accectagtc atgtatctca catccaaggt actatcttat ..... 2220
gttctaaaaa ggttggtttg caaattagaa ctagatccgg tggtcatgat agtgaaggca ..... 2280
tgtcatacat ctcccaagtt ccattcgtta tcgttgattt gagaaacatg agatcaatta ..... 2340
aatagacgt acactcacaa actgcttggg ttgaagctgg tgcaacattg ggtgaagtat ..... 2400
actactgggt taacgaaaag aatgaaaact tatcattggc tgctggttac tgtccaacag ..... 2460
tttgcgeagg tggtcatttt ggtggtggtg gttatggtcc tttaatgaga aactacggtt ..... 2520
tggcegctga taacataatc gacgctcatt tggtaaatgt tcacggtaaa gttttggata ..... 2580
gaaagtctat gggtgaagac ttattttggg ctttgagagg tggtggtgca gaatcattcg ..... 2640
gtatcatagt tgettggaag ataagattag tegcagtace aaagtctact atgttetcag ..... 2700
tcaaaaagat aatggaaatc catgaattag ttaaattggt caataagtgg caaaacatcg ..... 2760
catacaagta cgataaggac ttgttgttga tgactcattt catcacaaga aacatcaceg ..... 2820
ataaccaagg taaaataag actgctatcc acacatactt ttcttcagtt ttcttgggtg ..... 2880
gtgtcgattc ettagtagac ttgatgaata agtcttttcc agaattaggt attaagaaaa ..... 2940
ctgattgtag acaattgtct tggatcgaca ccatcatctt ttattcaggt gttgtcaact ..... 3000
acgatacaga caacttcaac aaagaaatat tattggatag atccgcaggt caaaacggrg ..... 3060
cctttaaaat taagttagac tacgttaaaa agccaatacc tgaatcagtt ttcgtccaaa ..... 3120
tcttagaaaa attgtacgaa gaagatattg gtgcaggcat gtacgecttg tatccatacg ..... 3180
gtggtataat ggacgaaatc agtgaatctg ccattecatt tccteataga getggtatct ..... 3240
tatacgaatt gtggracatt egttcatggg aaaagcaaga agataacgaa aagcactraa ..... 3300
actggattag aacatctat aacttcatga ctecatacgt ttctaaaaac ectagattgg ..... 3360
catatttgaa ctacagagat ttggacatcg gtattaacga tccaagaat cctaacaact ..... 3420
atacccaagc tagaatttgg ggtgaaaaat actecggtaa aaattccgat agattagraa ..... 3480
aggttaagac attggttgac ccaaacaact tctttagaaa cgaacaatcc attccacctt ..... 3540
tacctagaca tagacacgaa caaaaattaa taagtgaaga agatttgtaa gtcgacctcg ..... 3600
agtcatgtaa ttagttatgt cacgcttaca ttcacgecct coccecacat cogctetaac ..... 3660
cgaaaaggaa ggagttagac aacctgaagt ctaggtccct atttattttt ttatagttat ..... 3720
gttagtatta agaacgttat ctatatttca aattettctt tttttctgt acagacgegt ..... 3780
gtacgcatgt aacattatac tgaaaacctt gcttgagaag gttttgggac gctegaaggc ..... 3840
tetaatttge gtgacataac taattacatg acttgactga ettttce ..... 3887
<210> SEQ ID NO 9

<211> LENGTH: 8963

12> TYPE: DNA

dficial sequence

$220>$ FEATURE

<223> OTHER INFORMATION: COdon optimized

<400> SEQUENCE: 9
togcgegttt cggtgatgac ggtgaaaacc tetgacacat gcagctcocg gagacggtca ..... 60
cagcttgtct gtaageggat gecgggagca gacaagcocg tcagggcgeg tcagcgggtg ..... 120
ttggcgggtg teggggetgg cttaactatg cggcatcaga gcagattgta ctgagagtgc ..... 180
accataaacg acatractat atatataata taggaagcat ttaatagaca gcatcgtaat ..... 240
atatgtgtac tttgcagtta tgacgccaga tggcagtagt ggaagatatt ctttattgaa ..... 300
aaatagcttg tcaccttacg tacaatcttg atecggagct tttctetttt tgecgattaa ..... 360
gattaattc ggtcgaaaaa agaaaaggag agggccaaga gggagggcat tggtgactat ..... 420
tgagcacgtg agtatacgtg attaagcaca caaaggcagc ttggagtatg tctgttatta ..... 480
atttcacagg tagttctggt ccattggtga aagtttgcgg cttgcagagc acagaggceg ..... 540
cagaatgtgc tctagattcc gatgctgact tgctgggtat tatatgtgtg cccaatagaa ..... 600
agagaacaat tgacceggtt attgcaagga aaatttcaag tcttgtaaaa gcatataaaa ..... 660
tagttcagg cactccgaad tacttggttg gcgtgtttcg taatcaacct aaggaggatg ..... 720
ttttggctct ggtcaatgat tacggcattg atatcgtcca actgcatgga gatgagtcgt ..... 780
ggcaagaata ccaagagttc ctcggtttgc cagttattaa aagactcgta tttccaaaag ..... 840
actgcaacat actactcagt gcagcttcac agaaacctca ttcgtttatt cccttgtttg ..... 900
attcagaage aggtgggaca ggtgaacttt tggattggaa ctcgatttct gactgggttg ..... 960
gaaggcaaga gagcccegaa agcttacatt ttatgttagc tggtggactg acgecagaaa ..... 1020
atgttggtga tgcgcttaga ttaaatggeg ttattggtgt tgatgtaagc ggaggtgtgg ..... 1080
agacaaatgg tgtaanagac tctaacaaaa tagcaaattt cgtcaaaaat gctaagaant ..... 1140
aggttattac tgagtagtat ttatttaagt attgtttgtg cacttgceta tgeggtgtga ..... 1200
aataccgcac agatgegtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ..... 1260
ttgttaaaat tegcgttaaa ttttgttaa atcagctcat tttttaacca ataggcegaa ..... 1320
-continued
atcggcaaaa tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca ..... 1380
gtttggaaca agagtccact attaaagaac gtggactcca acgtcaaagg gegaaaaacc ..... 1440
gtctatcagg gcgatggcce actacgtgaa ccatcaccct aatcaagttt tttggggtcg ..... 1500
aggtgccgta aagcactaaa tcggaaccet aaaggagcc cccgatttag agcttgacgg ..... 1560
ggaaagecgg cgaacgtggc gagaaaggaa gggaagaaag cgaaaggage gggegctagg ..... 1620
gcgctggcaa gtgtagcggt cacgetgegc gtaaccacca cacccgccgc gcttaatgcg ..... 1680
ccgctacagg gegegtegcg ecattegcca ttcaggctge gcaactgttg ggaagggcga ..... 1740
tcggtgeggg cetcttcgct attacgecag ctggegaaag ggggatgtgc tgcaaggega ..... 1800
ttaagttggg caacgecagg gttttcccag tcacgacgtt gtaaaacgac ggecagtgag ..... 1860
cgcgcgtaat acgactcact atagggcgaa ttgggtaccg gccgcaaatt aaagcettcg ..... 1920
agcgtcccaa aaccttctca agcaaggttt tcagtataat gttacatgcg tacacgegtc ..... 1980
tgtacagaaa aaaaagaaaa atctgaaata taaataacgt tcttaatact aacataacta ..... 2040
taaaaaata aatagggacc tagacttcag gttgtctaac tecttccttt teggttagag ..... 2100
cggatgtgge gggagggegt gaatgtaagc gtgacataac taattacatg actegaggtc ..... 2160
gacttactg tcatcgtcat ctttgtagtc aatatcgtgg tctttatagt caccgtcatg ..... 2220
atccttgtaa tcetttgatc tcttgtagac cttattcaag aaagctgtca aaacgtcggc ..... 2280
tttaaaacct cttgattcat caacttgact aatctttgcc tttaagtctt tagegatgga ..... 2340
ttcttcgtat tcatggtaca attgttcaat cttcaaatca ttaaaaattt tcttacactt ..... 2400
tgettcagca actgagtcct ttttaccgta gttttcatcc aaagtctttc tttgttcggc ..... 2460
agatgctaat tccaaagcot tgttaataac ccaactgcac ttattgtctt gaatatctgt ..... 2520
accgatttta cctatttgtt ctggagtacc gaaacagtct aagtagtcat cttggatttg ..... 2580
gaagtattca cccaaaggta tcaaaacatc tcttgctgc ttcaagtctt tttcatcagt ..... 2640
aataccagct acgtacatag ccaaggcgac tggcaaatag aaggagtaat aagcagtttc ..... 2700
aaaggtgacg atgaatgaat gtttcttcaa ggaaaacttt gacaagtcaa ctttatcttc ..... 2760
aggtgcagtt atcaaatcca tcaattgacc caattctgtt tggaaagtaa cttcgtggaa ..... 2820
taattcggta atatcgatgt agtacttttc gtttctgaaa tgtgacttca acaatttata ..... 2880
gatagcggct tccaacataa aagcatcatt tatggctatt tcaccaactt etggaactt ..... 2940
gtaccagcat ggttgacctc ttcttgttat agacttatcc atcatgtcat cggcaaccaa ..... 3000
aaagtatgct tgcaacaatt caatacacca acccaagata gcgacctttt egtattctec ..... 3060
tgacctaat tgttcaacgg tttgttaga caagatagca taagtatcaa ctacactcaa ..... 3120
acctctattc aatttaccac ctggagtatt gtagtttaaa gagtgagcat accaatcgca ..... 3180
ggcttctta ggcataccat aagctaacaa actagegttc aattettcaa ctaactttgg ..... 3240
gaatacgttc aagaatcttt ctcttcttat ttccttttct gaagccatag gacctggatt ..... 3300
ttcttcaacg tcaccacatg ttaacaaaga acctctacct tcttcgaaat gactgaattg ..... 3360
ttgtctcaaa actcttctca tgatcttgtt tgttgcagtt ctaggtaagg atgacaatgg ..... 3420
gacaactcta gtaactttga ataatgggtt caatttcttt tgcaaaccea agttaaagga ..... 3480
taatctcaat tggttcaaat caarggttgt gtcgtttgaa tccttcaata cgaaaaatat ..... 3540
gaccaattgt tctggaccac cacccaaagg tggaacacca atagcagtgg tttcaaaaac ..... 3600
tctgtcatct acttcattac agactctttc gatttcgata gaactaattt tgataccacc ..... 3660
gatgttcata gtgtcatcgg ctctaccgtg tgcatggtag taaccgttag aggtcaattc ..... 3720
gaaaatgtca ceatgtcttc tcaatacttc accattcaag gttggcatac ecttgaaata ..... 3780
gacatcgtga tgattaccgt traacaatgt ttttgaggca ccaaacataa caggacctaa ..... 3840
tgccaattca cegatacctg gcttattttt aggeattggg taacegttct tatctaatat ..... 3900
gtacaaggtg caacccatac attgggatga aaaagaactt aaagattgag cttgcaaaaa ..... 3960
tgaaccagca gaaaaagcac caccgatttc tgtaccacca cacatttcta taactgget ..... 4020
gtagttagct ctacccatta accacaaata ttcgtctaca ttagaggctt caccggatga ..... 4080
agaaagcat cttatggtgg accaatcgta acctgaaaca caatttgtgg atttccatga ..... 4140
tcttacaata gatggtacga cacccaacat tgtgaccttt gcatcttgaa caaatttagc ..... 4200
gaaaccagag actaaaggac taccgttgta caaggcaata gatgcaccat ttaacaaact ..... 4260
agcataaace aaccaaggac ccatcatcca acccaaatta gttggecata ctataacgtc ..... 4320
accttttcta atatccaaat gagaccaacc atcagcagca gccttcaatg gggtggctg ..... 4380
tgtccaagga attgetttg gtecacctgr agtaceactg gagaataaga tgetagtata ..... 4440
agcatcaaca ggttgetctc tggcagtaaa etcgcagttt ttaaactect tggetettec ..... 4500
taaaaagtaa teccaagata tgtcaccatc tctcaattct gcaccaatgt tagaaccact ..... 4560
acaagggata actattgcea ttggggattt agctecaact actctegaat acaatggtat ..... 4620
tctcttttta cctctgatga tgtgatcttg tgtgaaaatt gccttagctt tggataatct ..... 4680
caatctagtt gagatttcag gggcggaaaa tgaatctgct atagagacaa ctacgtaacc ..... 4740
agccaatact atggceaaat atataacaac agcatcaaca tgcattggea tatcgatggc ..... 4800
tattgcacaa cotttttcta aacccatttc ttccaatgca taaccaacca accaaactct ..... 4860
etttctcaat tgatctaatg tcaacttatt caaaggeaag tcategttac ectegtctct ..... 4920
ccaaacgatc atagtatcgt tcaattctt attggagttt acgttcaage aatttttagc ..... 4980
tgagttcaag taaccaccag gtaaccattc agaaccacct gggttgttga tgtcatctct ..... 5040
tctcaagata cattctgggt cottagagaa actaattttc atttcatcca tcaatactgt ..... 5100
tctccaatag acttcagggt tetaacaga aaattcttgg aagtgagaaa aagaagaaat ..... 5160
tggatctttg tactttacac ccaaaaattc tttacctctc ttttccaaca aagcacccaa ..... 5220
attagttgac ttgacttttt cagggtctgg aatccaagca ggtggggctg gaccgaaatc ..... 5280
cttgtagcaa ccataaaaca acatttggtg taaggagaaa ggcaaatctg gtgacaagat ..... 5340
atggttagcg atgttgatcc aagtttgasg ggttgcagca ccataattac aaacgatttc ..... 5400
tgccaatcta ccatgtaatg tttctgctac ttctgaggtg atacccaatg cgatgaaatc ..... 5460
tgaggcaacg actgaatcca aggacttata gtttttacce atactagttc tagatccgtc ..... 5520
gaactaagt tcttggtgtt ttaaaactaa aaaaaagact aactataaaa gtagaattta ..... 5580
agaagtttaa gaaatagatt tacagaatta caatcaatac ctaccgtctt tatatactea ..... 5640
ttagtcaagt aggggaataa tttcagggaa ctggtttaaa ccttttttt cagcttttc ..... 5700
caatcagag agagcagaag gtaatagaag gtgtaagaaa atgagataga tacatgcgtg ..... 5760
ggtcaattgc cttgtgtcat catttactcc aggcaggttg catcactcca ttgaggttgt ..... 5820
gcccgttett tgectgtttg tgccctgttc tctgtagttg cgctaagaga atggacctat ..... 5880
gaactgatgg ttggtgaaga aaacaatatt ttggtgetgg gattettttt tttctggat ..... 5940
gccagcttaa aaagcgggct ccattatatt tagtggatgc caggaataaa ectgttcacc ..... 6000
caagcaccat cagtgttata tattctgtgt aaccogccec ctatttgge argtacgggt ..... 6060
-continued
tacagcagaa ttaaaaggct aattttttga ctaaataaag ttaggaaaat cactactatt ..... 6120
aattattac gtattctttg aaatggcagt attgataatg ataaactcga gagctccagc ..... 6180
tttegttcce tttagtgagg gttaattgcg cgcttggcgt aatcatggtc atagctgtt ..... 6240
cctgtgtgaa attgttatcc gctcacaatt ccacacaaca taggagcegg aagcataaag ..... 6300
tgtaaagect ggggtgceta atgagtgagg taactcacat taattgegtt gegctcactg ..... 6360
cccgctttcc agtcgggaaa cetgtcgtgc cagctgcatt aatgaatcgg ccaacgegcg ..... 6420
gggagaggeg gtttgegtat tgggegctct tecgettcct cgctcactga etegctgegc ..... 6480
tcggtcgttc ggctgeggeg agcggtatca gctcactcaa aggeggtaat acggttatcc ..... 6540
acagaatcag gggataacge aggaaagaac atgrgagcaa aaggccagca aaaggccagg ..... 6600
aaccgtaaaa aggccgcgtt gctggegttt ttecatagge tccgccccce tgacgagcat ..... 6660
cacaaaatc gacgctcaag tcagaggtgg cgaaaccoga caggactata aagataccag ..... 6720
gegrttecec etggaagetc ectegtgege tetcctgtte cgaccetgec gettaccgga ..... 6780
tacctgtcog cetttctcce ttcgggaage gtggcgettt ctcatagctc acgetgtagg ..... 6840
tatctcagtt eggtgtaggt egttegctcc aagctggget gtgtgcacga acceccegtt ..... 6900
cagcocgace getgcgectt atcoggtaac tatcgtcttg agtccaacce ggtaagacac ..... 6960
gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ..... 7020
ggtgctacag agttcttgaa gtggtggect aactacggct acactagaag gacagtattt ..... 7080
ggtatctgcg ctctgctgaa gecagttacc ttcggaaaaa gagttggtag ctcttgatcc ..... 7140
ggcaaacaaa ccaccgctgg tageggtggt tettttgttt geaagcagca gattacgcge ..... 7200
agaaaaaaag gatctcaaga agatcctttg atcttttcta eggggtctga egctcagtgg ..... 7260
aacgaaact cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag ..... 7320
atccttttaa attaaaaatg aagtttaaa tcaarctaaa gtataratga gtaaacttgg ..... 7380
tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt ..... 7440
tcatccatag ttgcctgact cecegtegtg tagataacta cgatacggga gggettacca ..... 7500
tctggcecca gtgetgcaat gataccgega gaccoacget caceggctcc agatttatca ..... 7560
gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc ..... 7620
tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt ..... 7680
ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg ..... 7740
gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc catgttgtgc ..... 7800
aaaaagegg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggcegcagtg ..... 7860
ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc atccgtaaga ..... 7920
tgctttetg tgactggtga gtactcaacc aagtcattct gagaatagtg tatgeggega ..... 990
cogagttgct cttgcecggc gtcaatacgg gataataccg cgccacatag cagaacttta ..... 8040
aagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgctg ..... 8100
ttgagateca gttcgatgta acccactegt gcacccaact gatcttcage atcttttact ..... 8160
ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata ..... 3220
agggcgacac ggaaatgttg aatactcata ctcttccttt etcaatatta ttgaagcatt ..... 280
tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa ..... 8340
ataggggttc cgcgcacatt tcccegaaaa gtgccacctg ggtccttttc atcacgtgct ..... 8400
ataaaaataa ttataattta aattttttaa tataatata taaattaaaa atagaaggta ..... 8460
aaaaaagaaa ttaaagaaaa aatagttttt gttttccgaa gatgtaaaag actctagggg ..... 8520
gatcgecaac aatactacc etctatcttg ctettcetge tetcaggtat taatgecgaa ..... 8580
ttgtttcatc ttgtctgtgt agaagaccac acacgaaaat cotgtgattt tacatttac ..... 8640
ttatcgttaa tegaatgtat atctatttaa tetgetttce ttgtctaata aatatatatg ..... 8700
taaagtacge tttetgttga aatttttaa acctetgttt attttctttt ectcattccg ..... 8760
taactcttct accttcttta tetacttct aaaatccaaa tacaaaacat aaaaataaat ..... 8820
aaacacagag taaattccca aattattcca tcattaaag atacgaggeg cgtgtaagtt ..... 8880
acaggcaage gatcegtcet aagaaaccat tattatcatg acattaacct ataaaaatag ..... 8940
gegtatcacg aggecettte gtc ..... 8963
<210> SEQ ID NO 10
211)

213> ORGANISM.

213> ORGANISM: Artificial sequence

<220> FEATURE:

<223> OTHER INFORMATION: COdon optimized
<400> SEQUENCE: 10
tcgegegtte eggtgargac ggtgaaaacc tetgacacat gcagetcocg gagacggrea ..... 60
cagcttgtct gtaageggat gccgggagca gacaagcecg tcagggegcg tcagcgggtg ..... 120
ttggcgggtg teggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc ..... 180
accataaacg acatractat atarataata taggaagcat ttaatagaca gcatcgtaat ..... 240
atatgtgtac tttgcagtta tgacgecaga tggcagtagt ggaagatatt ctttattgaa ..... 300
aatagettg teacettacg tacaatettg atceggaget ttettettt tgecgattaa ..... 360
gaattaatte ggtcgaaaaa agaaaaggag agggccaaga gggagggcat tggtgactat ..... 420
tgagcacgtg agtatacgtg attaagcaca caaaggcagc ttggagtatg tctgttatta ..... 480
atttcacagg tagttctggt ccattggtga aagtttgcgg cttgcagage acagaggecg ..... 540
cagaatgtgc tetagattcc gatgctgact tgctgggtat tatatgtgtg cccaatagaa ..... 600
agagaacaat tgacceggtt attgcaagga aaatttcaag tcttgtaaaa gcatataaaa ..... 660
atagttcagg cactccgaaa tacttggttg gegtgtttcg taatcaacct aaggaggatg ..... 720
ttttggetct ggtcaatgat tacggcattg atatcgecca actgeatgga gatgagtcgt ..... 780
ggcaagaata ceaagagttc cteggtttge cagttattaa aagactogta tttccaaaag ..... 840
actgcaacat actactcagt gcagcttcac agaaacctca ttcgtttatt cccttgtteg ..... 900
attcagaage aggtgggaca ggtgaacttt tggattggaa ctcgatttct gactgggttg ..... 960
gaaggcaaga gagccecgaa agcttacatt ttatgttagc tggtggactg acgecagaaa ..... 1020
atgttggtga tgcgcttaga ttaaatggcg ttattggtgt tgatgtaagc ggaggtgtgg ..... 1080
agacaaatgg tgtaaaagac tetaacaaaa tagcaaattt cgtcaaaaat gctaagaaat ..... 1140
aggttattac tgagtagtat ttatttaagt attgtttgtg cacttgccta tgcggtgtga ..... 1200
aataccgcac agatgcgtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ..... 1260
ttgttaaat tegcgttaaa ttttegttaa atcagctcat tttttaacca ataggecgaa ..... 1320
atcggcaaaa teccttataa atcaaaagaa tagaccgaga tagggttgag tgttgtteca ..... 1380
gtttggaaca agagtecact attaaagaac gtggactcca acgtcaaagg gegaaaaacc ..... 1440
gtctatcagg gegatggece actacgtgaa ccatcacect aatcaagttt trtggggreg ..... 1500
-continued
aggtgccgta aagcactaaa teggaaccet aaagggagcc cccgatttag agcttgacgg ..... 1560
ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg ..... 1620
gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca caccegccgc gcttaatgcg ..... 680
ccgctacagg gegcgtcgeg ccattcgeca ttcaggctgc gcaactgttg ggaagggcga ..... 740
teggtgeggg cetcttcget attacgecag ctggegaaag ggggatgtge tgeaaggega ..... 1800
ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggceagtgag ..... 1860
cgcgcgtaat acgactcact atagggcgaa ttgggtaccg gccgcaaatt aaagccttcg ..... 1920
agcgtcceaa aaccttctca agcaaggttt tcagtataat gttacatgcg tacacgcgtc ..... 1980
tgtacagaaa aaaagaaaa atctgaaata taaataacgt tcttaatact aacataacta ..... 2040
taaaaaata aataggace tagacttcag gttgtctaac tecttecttt teggttagag ..... 2100
cggatgtggg gggagggegt gaatgtaage gtgacataac taattacatg actegaggtc ..... 2160
gacttatgca tagtctggaa catcgtaagg gtactttctt ggggtgtaat egaagatcaa ..... 2220
caatttttcc cagaaggatc tgtaaacgtc accaaaacca acgtgagctg gatgaatgat ..... 2280
gtaatcttgg atagtttcaa etgattcgaa ggttacttcg acaatgtgtg tataacettc ..... 2340
ttctttettt tgtgtaacgt ctttacceca gtatacatct ttcatagcag gtataatgtt ..... 2400
gaccaaatta acgtaggtct tgaaaaatc teccttttga gcttctgtga tttcatctet ..... 2460
aaacttcaat actatcaaat gertgacggc cataggacct gggttttctt caacgtcacc ..... 2520
acaagttaac aaggaacctc taccttcata tttaattggt actgatctga caactactct ..... 2580
ttcgacggtc aaaccaggac cgaaaccaaa taagacacec cattcaaaac egtcaccagt ..... 2640
agtagattta ccctcttcta atgatctctt tctcaattca tccattacga acaagacagt ..... 2700
ggatgaagac atgttaccgt gttcagataa aacatgtcta ctatctacaa acttttcttt ..... 2760
ctrcaaatcc aatttttctt caaccttatc caaaatggct ttaccacctg gatgtgttat ..... 2820
ccagaaaata gagttccaat ctgagatacc tataggagtg aatgcttcta tcaaacactt ..... 2880
ttctatgttg ttagagatta acattggaac gtctttgtgc aaatcgaaga tcaaacctgc ..... 2940
ttctcttata tgaccaccaa ttgtaccttc agaattagge aagatggttt gacctgtact ..... 3000
gactaattca aatattggtc tttcaccaac agattcgtca ggttctgcac caacaataac ..... 3060
agcagcagca cegtcaccga agatagcttg accaactaac aattccaagt cagaatcact ..... 3120
tggacctcta aacaagcaag ccataatgtc gcaacaaaca gctaatactc tggcaccctt ..... 3180
gttgttttct gcaatatcct tagcgattct caaaacagta ccaccaccgt agcaacctaa ..... 3240
ttgatacatc atgactctct taacggatgg tgacaaacct aacaatttgg cacagtggta ..... 3300
gtctgcacca ggcatatctg tagtagatgc acttgtaaaa atcaaatgag tgatctttga ..... 3360
ctttggttga ceccattcct taatggcttt tgcacaagca tcttaccca atttaggaac ..... 3420
ttcgacaact aacatgtctt gtctggcatc caatgtttge atttcgtgtt ctaccaatct ..... 380
tggattttgc ttcaaatgtt cttcgttcaa gaagcagttt ctctttctga tcatagactt ..... 3540
atcacatatt tttctaaact tttccttcaa ttgagtcatg tgttcactct tggtaactct ..... 3600
gaagtaataa tcaggaaatt catcttggat caatatgttt tctgggttgg ctgtacctat ..... 3660
ggctaatacg gaggcaggac ettcggctct caaatggttc atactagttc tagatccgtc ..... 3720
gaaactaagt tettggtgtt ttaaaactaa aaaaaagact aactataaaa gtagaattta ..... 780
agaagtttaa gaaatagatt tacagaatta caatcaatac ctaccgtctt tatatactta ..... 3840
ttagtcaagt aggggaataa tttcagggaa ctggtttaaa cctttttttt cagctttttc ..... 3900
caatcagag agagcagaag gtaatagaag gtgtaagaaa atgagataga tacatgcgtg ..... 3960
ggtcaattge cttgrgtcat catttactec aggcaggttg catcactcca ttgaggtegt ..... 4020
gccogttttt tgectgtttg tgcectgttc tetgtagttg cgctaagaga atggacctat ..... 4080
gaactgatgg ttggtgaaga aaacaatatt ttggtgctgg gattcttttt tttectggat ..... 4140
gccagcttaa aaagcgggct ccattatatt tagrggatge caggaataaa ectgttcacc ..... 4200
caagcaccat cagtgttata tattctgtgt aacccgcccc ctattttggc atgtacgggt ..... 4260
tacagcagaa ttaaaaggct aattttttga ctaaataaag ttaggaaaat cactactatt ..... 4320
aattatttac gtattcttg aaatggcagt attgataatg ataaactcga gagctccagc ..... 4380
ttttgttcce tttagtgagg gttaattgeg cgcttggegt aatcatggtc atagctgtt ..... 4440
cctgtgtgaa attgttatcc gctcacaatt ccacacaaca taggagcogg aagcataaag ..... 4500
tgtaaagect ggggtgceta atgagtgagg taactcacat taattgcgtt gegctcactg ..... 4560
cocgetttcc agtcgggaaa cetgtegtgc cagctgcatt aatgaatcgg ecaacgegeg ..... 4620
gggagaggeg gtttgegtat tgggegetet tecgettcct egcteactga etegctgegc ..... 4680
teggtcgttc ggetgeggeg agcggtatca gctcactcaa aggcggtaat acggttatcc ..... 4740
acagaatcag gggataacge aggaaagaac atgrgagcaa aaggecagea aaaggccagg ..... 4800
aaccgtaaaa aggcogegtt gctggegttt ttccatagge tcegcecece tgacgageat ..... 4860
cacaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag ..... 4920
gegtttecec etggaagete cetcgtgege tetcetgtte cgacectgec gettacegga ..... 4980
tacctgtcog cetttctccc ttcgggaage gtggegcttt ctcatagctc acgetgtagg ..... 5040
tatetcagtt eggtgtaggt egttegetcc aagetggget gtgtgeacga accececgtt ..... 5100
cagcecgace getgegectt atcoggtaac tatcgtcttg agtccaacce ggtaagacac ..... 5160
gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ..... 5220
ggtgctacag agttcttgaa gtggtggect aactacggct acactagaag gacagtattt ..... 5280
ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ..... 5340
ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc ..... 5400
agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg ..... 5460
aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag ..... 5520
atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg ..... 5580
tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt ..... 5640
tcatccatag ttgcctgact cocegtegtg tagataacta cgatacggga gggcttacca ..... 5700
tctggcccea gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca ..... 5760
gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc ..... 5820
tccatccagt ctattaattg ttgcegggaa getagagtaa gtagttcgec agttaatagt ..... 5880
ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg ..... 5940
gettcattca getccggttc ccaacgatca aggegagtta catgatcccc catgttgtgc ..... 6000
aaaaaagegg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggcegcagtg ..... 6060
ttatcactca tggttatggc agcactgeat aattctetta ctgtcatgce atcogtaaga ..... 6120
tgcttttctg tgacrggtga gtactcaacc aagtcattct gagaaragtg tatgeggcga ..... 6180
cogagttgct cttgcecggc gtcaatacgg gataataccg cgceacatag cagaacttta ..... 6240
-continued
aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgctg ..... 6300
ttgagatcca gttegatgta acccactcgt gcacccaact gatcttcagc atcttttact ..... 6360
ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata ..... 6420
agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaagcatt ..... 6480
tatcagggtt attgtctcat gageggatac atatttgaat gtatttagaa aaataaacaa ..... 6540
ataggggttc cgcgcacatt tccccgaaaa gtgccacctg ggtccttttc atcacgtgct ..... 6600
ataaaaataa ttataatta aatttttaa tataatata taaattaaaa atagaagta ..... 6660
aaaaaagaaa ttaaagaaaa aatagttttt gttttccgaa gatgtaaaag actctagggg ..... 6720
gatcgecaac aaatactacc efttatcttg ctctccctge tctcaggtat taatgecgaa ..... 6780
ttgtttcatc ttgtctgtgt agaagaccac acacgaaaat cctgtgattt tacattttac ..... 6840
ttatcgttaa tcgaatgtat atctatttaa tctgctttce ttgtctaata aatatatatg ..... 6900
taaagtacge tttetgttga aatttttaa accettgttt attttctttt ectcattccg ..... 6960
taactcttct accttcttta tttacttct aaaatccaaa tacaaaacat aaaaataaat ..... 7020
aaacacagag taaattceca aattatteca teattaaag atacgaggeg egtgtaagtt ..... 7080
acaggcaage gatcogtcet aagaaaccat tattatcatg acattaacct ataaaaatag ..... 7140
gegtatcacg aggecctttc gtc ..... 7163
<210> SEQ ID NO 11
<211> LENGTH: 8710
<212> TYPE: DNA <213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION Codon optimized
<400> SEQUENCE: 11
togegegttt eggtgatgac ggrgaaaace tctgacacat geagetcocg gagacggtca ..... 60
cagcttgtct gtaageggat gcogggagca gacaagcocg tcagggegcg tcagcgegtg ..... 120
ttggcgggtg teggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc ..... 180
accataaatt cecgttttaa gagcttggtg agcgetagga gtcactgcea ggtatcgttt ..... 240
gaacacggca ttagtcaggg aagtcataac acagtccttt cccgcaatte tcttttecta ..... 300
ttactcttgg cetcctctag tacactctat atttttttat gccteggtaa tgattttcat ..... 360
ttttttttti cccctagcgg atgactcttt ttttttctta gcgattggca ttatcacata ..... 420
atgaattata cattatataa agtaatgtga tttcttcgaa gaatatacta aaaaatgagc ..... 480
aggcaagata aacgaaggca aagatgacag agcagaaagc cctagtaaag ogtattacaa ..... 540
atgaaaccaa gattcagatt gcgatctctt taaagggtgg tcccctagcg atagagcact ..... 600
cgatcttccc agaaaaagag gcagaagcag tagcagaaca ggceacacaa tcgeaagtga ..... 660
ttaacgtcca cacaggtata gggtttctgg accatatgat acatgctctg gccaagcatt ..... 720
coggctggtc getaatcgtt gagtgeattg gtgacttaca catagacgac catcacacca ..... 780
ctgaagactg cgggattgct ctcggtcaag cttttaaaga ggcectactg gcgegtggag ..... 840
taaaaaggtt tggatcagga tttgcgectt tggatgagge actttccaga geggtggtag ..... 900
atctttcgaa caggcogtac gcagttgtcg aacttggttt gcaaagggag aaagtaggag ..... 960
atctctcttg cgagatgatc cegcattttc ttgaaagctt tgcagagget agcagaatta ..... 020
ccctccacgt tgattgtctg cgaggcaaga atgatcatca ccgtagtgag agtgcgttca ..... 1080
aggctcttgc ggttgccata agagaagcca cctcgeccaa tggtaccaac gatgttccet ..... 1140
ccaccaaagg tgttcttatg tagtgacacc gattatttaa agctgcagca tacgatatat ..... 1200
atacatgtgt atatatgtat acctatgaat gtcagtaagt atgtatacga acagtatgat ..... 1260
actgaagatg acaaggtaat gcatcattct atacgtgtca ttctgaacga ggegegctt ..... 1320
cetttettet ttttgctett tetttettt tetcttgaac tegacggatc tatgeggtgt ..... 1380
gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggaaattgta aacgttaata ..... 1440
ttttgttaaa attcgegtta aattttgtt aaatcagctc atttttaac caataggecg ..... 1500
aatcggcaa aatcccttat aatcaaaag aatagaccga gatagggttg agtgttgtec ..... 1560
cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggegaaaaa ..... 1620
cogtctatca gggegatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt ..... 1680
cgaggtgecg taaagcacta aatcggaacc ctaaagggag cocccgattt agagettgac ..... 1740
ggggaaagce ggegaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgeta ..... 1800
gggegetgge aagtgrageg gecacgetge gegraaccac cacaccegce gegettaatg ..... 1860
cgcegctaca gggegegteg egceattegc cattcaggct gegcaactgt tgggaagggc ..... 1920
gatcggtgcg ggcetcttcg ctattacgec agctggcgaa agggggatgt gctgcaaggc ..... 1980
gattaagttg ggtaacgeca gggttttccc agtcacgacg ttgtaaaacg acggccagrg ..... 2040
agcgcgegta atacgactca ctatagggeg aattgggtac cggcegcaaa ttaaagcett ..... 2100
cgagcgtcce aaaccttct caagcaaggt tttcagtata atgttacatg cgtacacgeg ..... 2160
tctgtacaga aaaaaagaa aaatttgaaa tataaataac gttcttaata ctaacataac ..... 2220
tataaaaaa taaataggga cctagacttc aggttgtcta actccttcct tttcggttag ..... 2280
ageggatgtg gggggaggge gtgaatgtaa gegtgacata actaattaca tgactegagg ..... 2340
tcgacttaca aatcttcte acttattaat tttgttcgt gtctatgtct aggtaaaggt ..... 2400
ggaatggatt gttcgtttct aaagaagttg tttgggtcaa ccaatgtctt aacctttact ..... 2460
aatctatcga aatctttace gaagtatttt tcaccccaaa ttctagettg ggtatagttg ..... 2520
ttaggattct ttggatcgtt aataccgatg tccaaatctc tgtagttcaa atatgccaat ..... 2580
ctagggtttt tagaaacgta tggagtcatg aagttataga tgtttctaat ccagtttaag ..... 2640
tgcttttcgt tatcttcttg cttttcccat gaacaaatgt accacaattc gtataagata ..... 2700
ccagctctat gaggaaatgg aatggcagat tcactgattt cgtccattat accaccgtat ..... 2760
Ggatacaagg egtacatgcc tgcaccaata tettcttcgt acaatttttc taagatttgg ..... 2820
acgaaaactg attcaggtat tggcttttta acgtagtcta acttaatttt aaaggcaccg ..... 2880
ttttgacetg cggatctatc caataatatt tetttgttga agttgtctgt atcgtagttg ..... 2940
acaacacctg aataaaagat gatggtgtcg atccaagaca attgtctaca atcagttttc ..... 3000
ttaataccta attctggaaa agacttattc atcaagtcta ctaaggaatc gacaccaccc ..... 3060
aagaaaactg aagaaaagta tgtgtggata gcagtcttat ttttaccttg gttatcggtg ..... 3120
atgtttcttg tgatgaaatg agtcatcaac aacaagtcct tatcgtactt gtatgcgatg ..... 3180
ttttgccact tattgaccaa tttaactaat tcatggattt ccattatctt tttgactgag ..... 3240
aacatagtag actttggtac tgcgactaat cttatcttcc aagcaactat gataccgaat ..... 3300
gattctgcac caccacctct caaagcecaa aataagtctt cacceataga ctttctatcc ..... 3360
aaaactttac cgtgaacatt taccaaatga gegtcgatta tgttatcage ggccaaaccg ..... 3420
tagtttctca ttaaaggacc ataaccacca ccaccaaaat gaccacctgc gcaaactgtt ..... 3480
-continued
ggacagtaac cagcagccaa tgataagttt tcattcttte cgttaaccca gtagtatact ..... 3540
tcacccaatg ttgcaccagc ttcaacccaa gcagtttgtg agtgtacgtc tatttaatt ..... 3600
gatctcatgt ttctcaaatc aacgataacg aatggaactt gggagatgta tgacatgcet ..... 3660
tcactatcat gaccaccgga tctagttcta atttgcaaac caaccttttt agaacataag ..... 3720
atagtacctt ggatgtgaga tacatgacta ggggttacaa tgaccaaagg ttttggagtg ..... 3780
gtatcagaag tgaatctcaa attatggatt gtactgttca agacggacat gtacaatggg ..... 3840
ttgttttgag tgtaaaccaa ettcaaattg gtggegttat taggtatgta ttgtgagaag ..... 3900
cacttcaaaa agttttctct tgggttgeg atacttgttt ggatgttaaa ggaaaagaaa ..... 3960
aagaagatga tctrgcatac gaaccaaaag gagaaagttg aacatctcat aggacctgga ..... 4020
ttttcttcaa cgtcaccaca ggtcaacaaa gaacctctac ettcaataaa aacgtatacc ..... 4080
aatattcag cgtagtacaa tttccacata aactcgtaga atcttctacc tgcttcaggg ..... 4140
tcataatteg tcaaagcgaa atctctagtt tgcaagatca accagaaage caagatggca ..... 4200
tgtgacaaca acataacgtt agaattaaag gettgtggec aaatgatace tgecaaaatg ..... 4260
getgegacgt aacttaacaa aacgataccg gagcagaaca aagtcaaatt tcttgaaccg ..... 4320
tacttagaag ccaaggtact aataccgaac tttgtgtcac cttcaacgtc agaggcatcc ..... 4380
ttgatcaagg ctaatgcaga acccatactt ttcatgaatg ccaacaaaaa tgtgaatgaa ..... 4440
ggtctcaatt cgaatggcaa acctaagca gctcttgaag egtagragaa ggtgaagrtt ..... 4500
gtgatgatat gagctaagaa attcaacaaa aaggcagtac tagggttttg tttccatcta ..... 4560
aaaggtggta cggaatagac aataccaccg aagataccga aacagtaacc gaagatgtac ..... 4620
aatggaccac cettcatttt aattgtgatg atcaaaccga acaaggctac tatgatagac ..... 4680
atgatccatg cagtattgac ggatatteca cctgaagcca aaggcaaatc tggtttgtta ..... 4740
attctgtcga tgtgcaaatc gtatatttga ttaattgtag tggtgaatga agegatgcac ..... 4800
aagatggcaa ctaaaaagaa aaatgccttg aacatcaagg accatgaaat taagttagtg ..... 4860
ttatgcaaca attctttacc gaataaaccg catgcacaag aagtaaaage gattatggtg ..... 4920
tatggtcttt gcaacttcca acatgcttta cegaagttca aaatttttgt ggcaacagag ..... 4980
tgattatcac tttcaggtgg ttcagtttga tttgtagttg cagctctgat agagttctta ..... 5040
gctatagaca aactttcgga gcacttattt tgtaagtgga aggacttggt tgaacaatgt ..... 5100
tttgatggaa agttgttgta agagtactta ataggtgtct ttggatgtct gtaacacaac ..... 5160
aatgatgttt ttggattgtt gttgtgagga ttcaataagg tatgatagtt agtttggaag ..... 5220
gagaaagtac agacggatga taaacccata ctagttctag atccgtcgaa actaagttct ..... 5280
tggtgtttta aaactaaaaa aaagactaac tataaaagta gaatttaaga agtttaagaa ..... 5340
atagattac agaattacaa tcaataccta cogtctttat atacttatta gtcaagtagg ..... 5400
ggaataattt cagggaactg gtttaaacct tttttttcag ottttccaa atcagagaga ..... 5460
gcagaaggta atagaaggtg taagaaaatg agatagatac atgegtgggt caattgcett ..... 5520
gtgtcatcat ttactccagg caggttgcat cactccattg aggttgtgec egttttttgc ..... 5580
ctgtttgtgc cetgttctct gtagttgegc taagagaatg gacctatgaa ctgatggttg ..... 5640
gtgaagaaaa caatattttg gtgctgggat tctttttttt tctggatgcc agcttaaaaa ..... 5700
gcgggctcca ttatatttag tggatgccag gaataaacct gttcacccaa gcaccatcag ..... 5760
tgttatatat tctgtgtaac ccgcecccta tttyggcatg tacgggttac agcagaatta ..... 5820
aaaggctaat tttttgacta aataaagtta ggaaaatcac tactattaat tatttacgta ..... 5880
ttctttgaaa tggcagtatt gataatgata aactcgagag ctccagcttt tgttccettt ..... 5940
agtgagggtt aattgegcge ttggegtaat catggtcata gctgtetcet gtgtgaaatt ..... 6000
gttatcegct cacaattcca cacaacatag gagccggaag cataaagtgt aaagcctggg ..... 6060
gtgcctaatg agtgaggtaa ctcacattaa ttgcgttgeg ctcactgcce gctttccagt ..... 6120
cgggaaacct gtegrgccag ctgcattaat gaatcggcca acgegcgggg agaggcggtt ..... 6180
tgegtattgg gegctcttce gcttectcge tcactgacte getgegcteg gecgttegge ..... 6240
tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca gaatcagggg ..... 6300
ataacgcagg aaagaacatg tgagcaaaag gecagcaaaa ggccaggaac cgtaaaaagg ..... 6360
cegcgttgct ggegtttttc cataggctcc geccecctga cgagcatcac aaaatcgac ..... 6420
gctcaagtca gaggrggega aaccegacag gactataaag ataccaggeg tttccecetg ..... 6480
gaagctecct cgtgegctet cetgttcega cectgcegct taceggatac etgtcogect ..... 6540
tectccetce gggaagegtg gegcttecc atagcteacg ctgtaggtat excagttegg ..... 6600
tgtaggtcgt tegctecaag etgggetgtg tgcacgaace cecegttcag eccgaceget ..... 6660
gegcettatc cggtaactat cgtcttgagt ccaacceggt aagacacgac ttatcgccac ..... 6720
tggeagcagc cactggtaac aggattagca gagegaggta tgtaggeggt getacagagt ..... 6780
tcttgaagtg gtggcetaac tacggctaca ctagaaggac agtatttggt atctgcgctc ..... 6840
tgetgaagce agttaccttc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ..... 6900
cogctggtag cggtggtttt tttgtttgca agcagcagat tacgegcaga aaaaaaggat ..... 5960
ctcaagaaga tectttgatc ttttctacgg ggtctgacge tcagtggaac gaaaactcac ..... 720
gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc ctttaaatt ..... 7080
aaaaatgaag ttttaaatca atctaaagta tatatgagta aacttggtct gacagttacc ..... 7140
aatgcttaat cagtgaggca cetatctcag cgatctgtct atttcgttca tccatagttg ..... 7200
cotgactccc cgtcgtgtag ataactacga tacgggaggs ottaccatct ggccecagtg ..... 7260
ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca ataaaccagc ..... 7320
cagceggaag ggccgagegc agaagtggtc ctgcaacttt atccgectcc atccagtcta ..... 7380
ttaattgttg cegggaagct agagtaagta gttcgccagt taatagtttg egcaacgttg ..... 7440
ttgccattgc tacaggcatc gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ..... 500
coggttccca acgatcaagg cgagttacat gatcccccat gttgtgcaaa aaagcggtta ..... 7560
gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ..... 7620
ttatggcage actgcataat tctcttactg tcatgccatc cgtaagatge ttttctgtga ..... 7680
ctggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgctctt ..... 7740
gcccggcgtc aatacgggat aataccgcge cacatagcag aactttaaaa gtgctcatca ..... 8800
ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgetgttg agatccagtt ..... 7860
cgatgtaacc cactcgtgca cccaactgat cttcagcatc ttttactttc accagcgtt ..... 7920
ctgggtgagc azaaacagga aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga ..... 7980
aatgttgat actcatactc tectettc aatattattg aagcatttat cagggttatt ..... 8040
gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata ggggttcogc ..... 8100
gcacatttcc cegaaaagtg ccacctgggt cettttcatc acgtgctata aaaataarta ..... 8160
taattraaat ttttaatat aaatatataa attaaaata gaagtaaaa aaagaaatta ..... 8220
aagaaaaaat agtttttgtt ttccgaagat gtaaaagact ctagggggat cgccaacaaa ..... 8280
tactaccttt tatcttgctc tecctgctet caggtattaa tgcogaattg tttcatcttg ..... 8340
tctgtgtaga agaccacaca cgaaaatcct gtgattttac attttactta tcgttaatcg ..... 8400
aatgtatatc tatttaatct gcttttcttg tctaataaat atatatgtaa agtacgctet ..... 8460
ttgttgaaat ttttaaace tetgtttatt tttttttctt cattecgtaa etcttctacc ..... 8520
ttctttattt actttctaaa atccaaatac aaaacataaz astaaataaa cacagagtaa ..... 8580
attcccaaat tattccatca ttaaaagata cgaggegegt gtaagttaca ggcaagegat ..... 9640
ccgtcctaag aaaccattat tatcatgaca ttaacctata aaaataggeg tatcacgagg ..... 8700
cocttecgec ..... 8710
<210> SEQ ID NO 12
<212> TYPE: DNA
213
213> ORGANISM: Artificial Sequence
220> FEATUPE.
<223> OTHER INFORMATION: COdon optimized
<400> SEQUENCE: 12
ttatcatgac attaacctat aaaatagge gtatcacgag gcectttcgt etcgegegtt ..... 60
tcggtgatga cggtgaaaac ctctgacaca tgcagctcce ggagacggtc acagcttgtc ..... 120
tgtaagegga tgecgggage agacaagece gtcagggege gtcagegggt getggegggt ..... 180
gtcggggctg gcttaactat gcggcatcag agcagattgt actgagagtg caccacgctt ..... 240
ttcaattcaa tecatcatte tettettatt ctttttetg atteggtte cttgaaat ..... 300
tttttgattc ggtaatctcc gaacagaagg aagaacgaag gaaggagcac agacttagat ..... 360
tggtatatat acgcatatgt agtgttgaag aaacatgaaa ttgcccagta ttcttaacce ..... 420
aactgcacag aacaaaaacc tgcaggaaac gaagataaat catgtcgaaa gctacatata ..... 480
aggaacgtgc tgctactcat cetagtcctg ttgctgccaa gctatttaat atcatgcacg ..... 540
aaaagcaaac aaacttgtgt gcttcattgg atgttcgtac caccaaggaa ttactggagt ..... 600
tagttgaagc attaggtcce aaaattgtt tactaaaaac acatgtggat atcttgactg ..... 660
atttttccat ggagggcaca gttaagccgc taaaggcatt atccgccaag tacaattttt ..... 720
tactcttega agacagaaaa tttgctgaca ttggtaatac agtcaaattg cagtactctg ..... 780
cgggtgtata cagaatagca gaatgggcag acattacgaa tgcacacggt gtggtgggce ..... 840
caggtattgt tagcggtttg aagcaggcgg cagaagaagt aacaaaggaa cctagaggcc ..... 900
ttttgatgtt agcagaattg tcatgcaagg gctccctatc tactggagaa tatactaagg ..... 960
gtactgttga cattgcgaag agcgacaaag attttgttat cggctttatt gctcaaagag ..... 1020
acatgggtgg aagagatgaa ggttacgatt ggttgattat gacacccggt gtgggtttag ..... 1080
atgacaaggg agacgeattg ggtcaacagt atagaaccgt ggatgatgtg gtctctacag ..... 1140
gatctgacat tattattgtt ggaagaggac tatttgcaaa gggaagggat gctaaggtag ..... 1200
agggtgaacg ttacagaaaa gcaggetggg aagcatattt gagaagatge ggecagcaaa ..... 1260
actaaaaaac tgtattataa gtaaatgcat gtatactaaa ctcacaaatt agagettcaa ..... 1320
tttaattata tcagttatta ccctgeggtg tgaaataccg cacagatgeg taaggagaaa ..... 1380
ataccgcatc aggaaattgt aaacgttaat attttgttaa aattcgcgtt aaatttttgt ..... 440
taaatcagct cattttttaa ccaataggcc gaaatcggca aaatccctta taaatcaaaa ..... 1500
gatagaccg agatagggtt gagtgttgtt ccagtttgga acaagagtcc actattaaag ..... 1560
aacgtggact ccaacgtcaa agggcgaaaa accgtctatc agggcgatgg cccactacgt ..... 1620
gaaccatcac cctaatcaag tettttgggg tegaggtgec gtaaagcact aatcggaac ..... 1680
cctaaaggga geccecgatt tagagettga cggggaaagc cggcgaacgt ggcgagaaag ..... 1740
gaagggaaga aagcgaaagg agcgggcgct agggcgctgg caagtgtage ggtcacgctg ..... 1800
egcgtaacca ccacaccegc egcgettaat gegccgetac agggegegte gegceatecg ..... 1860
ccattcaggc tgegcaactg ttgggaaggg cgatcggtgc gggectcttc gctattacgc ..... 1920
cagctggcga aggggggatg tgctgcaagg cgattaagtt gggtaacgcc agggttttcc ..... 1980
cagtcacgac gttgtaaaac gacggceagt gaattgtaat acgactcact atagggcgaa ..... 2040
ttggagetct agtacggatt agaagcegec gagcgggcga cagcectecg acggaagact ..... 2100
ctcctcegtg egtcetcgtc ttcaceggtc gegttcctga aacgeagatg tgectegcge ..... 2160
cgcactgctc cgaacaataa agattctaca atactagctt ttatggttat gaagaggaaa ..... 2220
aattggcagt aacctggccc cacaaacctt caaattaacg aatcaaatta acaaccatag ..... 2280
gatgataatg egattagttt tttagecta tttetggggt aattaatcag egaagegatg ..... 2340
atttttgatc tattaacaga tatataaatg gaaaagetgc ataaccactt taactaatac ..... 2400
tttcaacart ttcagtttgt attactect attcaaatgt cataaaagra tcaacaaaaa ..... 2460
attgttaata tacctctata ctttaacgtc aaggagaaaa aaccecggat tctagaacta ..... 2520
gtggatccec catcatgaac catttgagag ccgaaggtcc tgcetccgta ttagccatag ..... 2580
gtacagecaa cceagaaaac atattgatec aagatgaatt tectgattat tacttcagag ..... 2640
ttaccaagag tgaacacatg actcaattga aggaaaagtt tagaaaaata tgtgataagt ..... 2700
ctatgatcag aaagagaaac tgettettga acgaagaaca tttgaagcaa aatccaagat ..... 2760
tggtagaaca cgaaatgcaa acattggatg ccagacaaga catgttagtt gtcgaagttc ..... 2820
ctaaattggg taaagatgct tgtgcaaaag ccattaagga atggggtcaa ccaaagtcaa ..... 2880
agatcactca tttgattttt acaagtgeat ctactacaga tatgectggt gcagactacc ..... 2940
actgtgccaa attgttaggt ttgtcaccat ccgttaagag agtcatgatg tatcaattag ..... 3000
gttgctacgg tggtggtact gttttgagaa tcgctaagga tattgcagaa aacaacaagg ..... 3060
gtgccagagt attagctgtt tgttgcgaca ttatggcttg cttgtttaga ggtccaagtg ..... 3120
attctgactt ggaattgtta gttggtcaag ctatcttcgg tgacggtgct gctgctgtta ..... 3180
ttgttggtgc agaacctgac gaatctgttg gtgaaagacc aatatttgaa ttagtcagta ..... 3240
caggtcaaac catcttgcct aattctgaag gtacaattgg tggtcatata agagaagcag ..... 3300
gtttgatett cgatttgcac aaagacgttc caatgttaat ctctaacaac atagaaaagt ..... 3360
gtttgataga agcattcact cctataggta tctcagattg gaactctatt ttctggataa ..... 3420
cacatccagg tggtaaagcc attttggata aggttgaaga aaaattggat ttgaagaaag ..... 3480
aaaagtttgt agatagtaga catgttttat ctgaacacgg taacatgtct tcatccactg ..... 3540
tcttgttcgt aatggatgaa ttgagaaga gatcattaga agagggtaaa tctactactg ..... 3600
gtgacggttt tgaatggggt gtcttatttg gtttcggtcc tggtttgacc gtcgaaagag ..... 3660
tagttgtcag atcagtacca attaaatatg aaggtagagg ttccttgtta acttgtggtg ..... 3720
acgttgaaga aaacceaggt cotatggecg tcaagcattt gatagtattg aagtttaaag ..... 3780
atgaaatcac agaagctcaa aaggaagaat ttttcaagac ctacgttaat ttggtcaaca ..... 3840
ttatacctgc tatgaaagat gtatactggg gtaaagacgt tacacaaaag aaagaagaag ..... 3900
-continued
gttatacaca cattgtcgaa gtaaccttcg aatcagttga aactatccaa gattacatca ..... 3960
ttcatccagc tcacgttggt tttggtgacg tttacagatc cttctgggaa aaattgttga ..... 4020
tcttcgatta caccccaaga aagttaaagc caaaataatg ataacgagaa taatatcaag ..... 4080
aataccttag aacaacatcg acaacaacaa caggcatttt cggatatgag tcacgtggag ..... 4140
tattccagaa ttacaaaatt ttttcaagaa caaccactgg agggatatac ccttttctct ..... 4200
cacaggtctg cgccatgggt ttatcatccg tetgtacttt ctccttccaa actaactatc ..... 4260
ataccttatt gaatcctcac aacaacaatc caaaacate attgttgtgt tacagacatc ..... 4320
caaagacacc tattaagtac tcttacaaca actttccatc aaaacattgt tcaaccaagt ..... 4380
cettccactr acaaaataag egctccgaaa gttcgtctat agctaagaac tctatcagag ..... 4440
ctgcaactac aatcaaact gasccacctg asagtgataa tcactctgtt gccacaaaaa ..... 4500
ttttgaactt cggtaaagca tgttggaagt tgcaaagacc atacaccata atcgctttta ..... 4560
cttcttgtgc atgcggttta tccggtaaag aattgttgca taacactaac ttaattccat ..... 4620
ggtcettgat gttcaaggca tttttetttt tagttgccat cttgtgcatc gcttcattca ..... 4680
ccactacaat taatcaaata tacgatttge acategacag aattaacaaa ecagatttge ..... 4740
ctttggettc aggtgaaata tcegtcaata ctgcatggat catgtctatc atagtagcet ..... 4800
tgttcggttt gatcatcaca attaaatga agggtggtcc attgtacatc ttcggttact ..... 4860
gtttcggtat ettcggtggt attgtctatt ccgtaccacc ttttagatgg aaacaaaacc ..... 4920
ctagtactgc ctttttgttg aatttcttag ctcatatcat cacaaacttc accttctact ..... 4980
acgettcaag agetgcttta ggtttgecat tcgaattgag accttcattc acattttegt ..... 5040
tggcattcat gaaagtatg ggttctgcat tagcettgat caaggatgce tctgacgttg ..... 5100
aaggtgacac aagttcggt attagtacct tggcttctaa gtacggttca agaaatttga ..... 5160
ctttgttctg ctccggtatc gttttgttaa gttacgtcge agccattttg gcaggtatca ..... 5220
tttggccaca agcetttaat tctaacgtta tgttgttgtc acatgccatc ttggctttct ..... 5280
ggttgatett gcaaactaga gatttcgett tgacaaatta tgacectgaa geaggtagaa ..... 5340
gattctacga gtttatgtgg aaattgtact acgetgaata tttggtatac gtttttattg ..... 5400
aaggtagagg ttctttgttg acctgtggtg acgttgaaga aaatccaggt cctatgaaat ..... 5460
gttcaacttt ctecttttgg tegtatgca agatcatctt ctttttcttt tcctttaaca ..... 5520
tccaaacaag tatcgcaaac ccaagagaad acttttgaa gtgcttctca caatacatac ..... 5580
ctaataacgc caccaatttg aagttggttt acactcaaaa caacccattg tacatgtccg ..... 5640
tgaacag tacaatccat aatttgagat tcacttctga taccactcca aaacctttgg ..... 5700
ccattgtaac ccetagtcat gtatctcaca tccaaggtac tatcttatgt tctaaaaagg ..... 5760
ttggttgca aattagaact agatceggtg gtcatgatag tgaaggcatg tcatacatct ..... 5820
cocaagttcc attcgttatc gttgatttga gaaacatgag atcaattaaa atagacgtac ..... 5880
actcacaac tgcttgggtt gaagctggtg caacattggg tgaagtatac tactgggtta ..... 5940
acgaaaagaa tgaaaactta tcattggctg ctggttactg tccaacagtt tgegcaggtg ..... 6000
gtcattttgg tggtggtggt tatggtcctt taatgagaaa ctacggtttg gecgetgata ..... 6060
acataatcga cgetcatttg gtaaatgttc acggtaaagt tttggataga aagtctatgg ..... 6120
gtgaagactt attttgggct ttgagaggtg gtggtgcaga atcattcggt atcatagttg ..... 6180
cttggaagat aagattagtc gcagtaccaa agtctactat gttctcagtc aaaaagataa ..... 6240
tggaaatcca tgaattagtt aaattggtca ataagtggca aaacatcgca tacaagtacg ..... 6300
ataaggactt gttgttgatg actcatttca tcacaagaaa catcaccgat aaccaaggta ..... 6360
aaataagac tgetatccac acatacttt cttcagttt cttgggeggt gecgattect ..... 6420
tagtagactt gatgaataag tctttccag aattaggtat taagaaact gattgtagac ..... 6480
aattgtcttg gatcgacacc atcatctttt attcaggtgt tgtcaactac gatacagaca ..... 6540
acttcaacaa agaaatatta rtggatagat ccgcaggtca aaacggtgec tttaaaatta ..... 6600
agttagacta cgttaaaaag ccaatacctg aatcagtttt cgtccaaatc ttagaaaaat ..... 6660
tgtacgaaga agatattggt gcaggcatgt acgccttgta tccatacggt ggtataatgg ..... 6720
acgaaatcag tgaatctgce attccatttc ctcatagage tggtatctta tacgaattgt ..... 6780
ggtacatttg ttcatgggaa aagcaagaag ataacgaaaa gcacttaaac tggattagaa ..... 6840
acatctataa cttcatgact ccatacgttt ctaaaaaccc tagat tggca tatttgaact ..... 6900
acagagattt ggacatcggt attaacgatc caaagaatcc taacaactat acccaagcta ..... 6960
gaatttgggg tgaaaaatac etcggtaaaa attcogatag attagtaaag grtaagacat ..... 7020
tggttgacce aaacaacttc tttagaaacg aacaatccat tccaccttta cctagacata ..... 7080
gacactgatg ggetgcagga attcgatatc aagcttatcg ataccgtcga cctcgagtca ..... 7140
tgraattagt tatgrcacge ttacattcac gecetccecc cacatcoget etaaccgaaa ..... 7200
aggaaggagt tagacaacct gaagtetagg tecctattta ttttttata gttatgttag ..... 7260
tattaagaac gttatttata tttcaaattt tectttettt tctgtacaga cgegtgtacg ..... 7320
catgtaacat tatactgaaa accttgcttg agaaggttt gggacgeteg aaggetttaa ..... 7380
tttgcggcog gtacceagct tttgttccet ttagtgaggg ttaattcoga gettggcgta ..... 7440
atcatggtca tagctgtttc etgtgtgaaa ttgttatccg ctcacaattc cacacaacat ..... 7500
aggagcogga agcataaagt gtaaagectg gggtgcctaa rgagtgaggt aactcacatt ..... 7560
aattgegttg cgetcactgc cegctttcca gtcgggaaac ctgtcgtgce agctgcatta ..... 7620
atgaatcgge caacgegegg ggagaggegg tttgegtatt gggegctett ecgettcetc ..... 7680
gctcactgac tcgctgegct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ..... 7740
ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa ..... 7800
aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggegtttt tccataggct ..... 7860
cggcccccet gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac ..... 7920
aggactataa agataccagg egttcceccc tggaagctec etcgtgcgct otcctgttcc ..... 7980
gaccctgccg cttaccggat acctgtccgc ctttctccct tegggaagcg tggcgcttec ..... 8040
tcaatgetca cgetgtaggt atctcagttc ggtgtaggtc gttcgetcca agctgggctg ..... 8100
tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga ..... 8160
gtccaacceg gtaagacacg acttatcgcc actggcagca gccactggta acaggattag ..... 320
cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggceta actacggcta ..... 8280
cactagaagg acagtatttg gtatctgcge tctgctgaag ccagttacct tcggaaaag ..... 8340
agttggtagc tcttgatccg gcaaacaac caccgctggt agcggtggtt tttttgtteg ..... 8400
caagcagcag attacgegca gaaaaaagg atctcaagaa gatcctttga tcttttctac ..... 8460
ggggtctgac getcagtgga acgaaaactc acgttaaggg attttggtca tgagattatc ..... 8520
aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga agttttaaat caatctaaag ..... 8580
tatatatgag taaacttggt ctgacagtta ccaatgctta atcagrgagg cacctatctc ..... 8640
agcgatctgt ctatttcgtt catccatagt tgcetgactg cccgtcgtgt agataactac ..... 8700
gatacgggag ggettaccat ctggccccag tgctgcaatg ataccgegag acceacgetc ..... 8760
accggctcca gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg ..... 8820
tcctgcaact ttatccgcct ccatccagtc tattaattgt tgcegggaag ctagagtaag ..... 8880
tagttcgeca gttaatagtt tgcgcaacgt tgttgccatt gctacaggea tegtggtgtc ..... 8940
acgctcgtcg tttggtatgg cttcattcag ctccggttcc caacgatcaa ggcgagttac ..... 9000
atgatccccc atgttgtgaa aaaageggt tagctccttc ggtcctcoga togttgtcag ..... 9060
aagtaagttg gecgeagtgt tatcactcat ggttatggca gcactgcata attctcttac ..... 9120
tgecatgeca tccgraagat gettttctgr gactggtgag tactcaacca agrcattceg ..... 9180
agaatagtgt atgcggegac egagttgctc ttgccoggcg tcaatacggg ataataccgc ..... 9240
gecacatagc agaactttaa aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact ..... 9300
ctcaaggatc ttaccgetgt rgagatccag ttcgatgtaa cccactcgtg cacccaacrg ..... 9360
atcttcagca tettttactt tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa ..... 9420
tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac tcttcetttt ..... 9480
tcaatattat tgaagcattt atcagggtta ttgtctcatg ageggataca tatttgaatg ..... 9540
tatttagaaa aataaacaaa taggggttec gcgcacattt ccccgaaaag tgecacctga ..... 9600
cgtctaagaa accatt9617
<210> SEQ ID NO 13
<211> LENGTH: 787
<213> ORGANISM: Artificial Sequenc <220> FEATURE:
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 13
aacctataaa aataggegta tcacgaggec ctttcgtctc gcgegtttcg gtgatgacgg ..... 60
tgaaaacctc tgacacatge agcteccgga gacggtcaca gettgtctgt aagcggatge ..... 120
cgggagcaga caagcecgtc agggcgegtc agcgggtgtt ggcgggtgtc ggggetgget ..... 180
taactatgcg gcatcagagc agattgtact gagagtgcac cacgettttc aattcaattc ..... 240
atcattttt tttattctt ttttttgatt teggtttct tgaaatttet ttgatcoggt ..... 300
aatctccgaa cagaaggaag aacgaaggaa ggagcacaga cttagattgg latatatacg ..... 360
catatgtagt gttgaagaaa catgaaattg cccagtattc ttaacccaac tgcacagaac ..... 420
aaaacctgc aggaaacgaa gataaatcat gtcgaaagct acatataagg aacgtgctgc ..... 480
tactcatcct agtcctgttg ctgccaagct atttaatatc atgcacgaaa agcaaacaaa ..... 540
ctgtgtget teattggatg ttegtaccac caaggaatta ctggagttag ttgaageatt ..... 600
aggtcceaaa atttgttac taaaacaca tgtggatatc ttgactgatt tttccatgga ..... 660
gggcacagtt aagcogctaa aggcattatc cgccaagtac aattttttac tcttcgaaga ..... 720
cagaaaattt getgacattg gtaatacagt caaattgcag tactetgcgg gtgtatacag ..... 780
aatagcagaa tgggcagaca ttacgaatgc acacggtgtg gtgggeccag gtattgttag ..... 840
cggtttgaag caggeggcag aagaagtaac aaaggaacct agaggcettt tgatgttagc ..... 900
agaattgtca tgcaagggct ccctatctac tggagaatat actaagggta etgttgacat ..... 960
tgcgaagagc gacaaagatt ttgttatcgg ctttattgct caaagagaca tgggtggaag ..... 1020
agatgaaggt tacgattggt tgattatgac acccggtgtg ggtttagatg acaagggaga ..... 1080
cgcattgggt caacagtata gaacegtgga tgatgtggtc tctacaggat ctgacattat ..... 1140
tattgttgga agaggactat ttgcaaaggg aagggatgct aaggtagagg grgaacgrea ..... 1200
cagaaaagca ggctgggaag catatttgag aagatgcggc cagcaaaact aaaaactgt ..... 1260
attataagta aatgcatgta tactaaactc acaaattaga gettcaatt aattatatca ..... 1320
grtattacce tgeggtgrga aataccgcac agatgcgtaa ggagaaaata ccgeatcagg ..... 1380
aaattgtaaa cgttaatatt ttgttaaaat tegcgttaaa ttttgttaa atcagctcat ..... 1440
tttttaacca ataggcegaa atcggcaaaa tccettataa atcaaaagaa tagaccgaga ..... 1500
tagggttgag tgttgttcea gtttggaaca agagtccact attaaagaac gtggactcca ..... 1560
acgtcaaagg gegaaaaace gtctatcagg gegatggece actacgtgaa ccatcacect ..... 1620
aatcaagttt tttggggteg aggtgecgta aagcactaaa tcggaaccet aaagggagec ..... 1680
cccgatttag agettgacgg ggaaagecgg egaacgtgge gagaaaggaa gggaagaaag ..... 1740
cgaaaggage gggegetagg gegetggcaa gtgtageggt eacgergege graaccacca ..... 1800
cacccgecge gettaatgeg cegctacagg gegcgtcgcg ceattegeca ttcaggctge ..... 1860
gcaactgttg ggaagggega teggtgcggg cetcttcget attacgccag etggcgaagg ..... 1920
ggggatgtge tgcaaggega ttaagttggg taacgecagg gttttcocag tcacgacgrt ..... 1980
gtaaaacgac ggccagtgaa ttgtaatacg actcactata gggcgaattg gagctetagt ..... 2040
acggattaga agccgcegag cgggcgacag ccctccgacg gaagactctc ctcegtgcgt ..... 2100
cctcgtettc aceggtegeg ttcctgaaac gcagatgtge ctcgegcoge actgctcoga ..... 2160
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac ..... 2220
ctggccecac aaaccttcaa attaacgaat caaattaaca accataggat gataatgega ..... 2280
ttagttttt agecttattt ctggggtaat taatcagega agcgaigatt tttgatctat ..... 2340
taacagatat ataaatggaa aagctgcata accactttaa ctaatacttt caacattetc ..... 2400
agtttgtatt acttcttatt caaatgtcat aaaagtatca acaaaaaatt gttaatatac ..... 2460
ctctatactt taacgtcaag gagaaaaaac cccggattct agaactagtg gatcatgaac ..... 2520
catttgagag cegaaggtcc tgcctcogta ttagceatag gtacagceaa cecagaaaac ..... 2580
atattgatcc aagatgaatt tcctgattat tacttcagag ttaccaagag tgaacacatg ..... 2640
actcaattga aggaaaagtt tagaaaaata tgtgataagt ctatgatcag aaagagaaac ..... 2700
tgcttcttga acgaagaaca tttgaagcaa aatccaagat tggtagaaca cgaaatgcaa ..... 2760
acattggatg ccagacaaga catgttagtt gtcgaagttc ctaaattggg taaagatgct ..... 2820
tgtgcaaaag ccattaagga atggggtcaa ccaaagtcaa agatcactca tttgatttt ..... 2880
acaagtgcat ctactacaga tatgcctggt gcagactacc actgtgccaa attgttaggt ..... 2940
ttgtcaccat cegttaagag agtcatgatg tatcaattag gttgctacgg tggtggtact ..... 3000
gttttgagaa tegctaagga tattgeagaa aacaacaagg gtgecagagt attagctgtt ..... 3060
tgttgcgaca ttatggcttg cttgtttaga ggtccaagtg attctgactt ggaattgtta ..... 3120
gttggtcaag ctatcttcgg tgacggtgct gctgctgtta ttgttggtgc agaacctgac ..... 3180
gaatctgttg gtgaaagacc aatatttgaa ttagtcagta caggtcaaac catcttgcct ..... 3240
aattctgaag gtacaattgg tggtcatata agagaagcag gtttgatctt egatttgcac ..... 3300
aaagacgttc caatgttaat ctctaacaac atagaaaagt gtttgataga agcattcact ..... 3360
cctataggta tctcagattg gaactctatt ttctggataa cacatccagg tggtaaagcc ..... 3420
-continued
attttggata aggttgaaga aaaattggat ttgaagaaag aaaagtttgt agatagtaga ..... 3480
catgttttat ctgaacacgg taacatgtct tcatccactg tcttgttcgt aatggatgaa ..... 3540
ttgagaaaga gatcattaga agagggtaaa tctactactg gtgacggttt tgaatggggt ..... 3600
gtcttatttg gtttcggtcc tggtttgacc gtcgaaagag tagttgtcag atcagtacca ..... 3660
attaaatatg aaggtagagg ttecttgtta acttgtggtg acgttgaaga aaacceaggt ..... 3720
cctatggccg tcaagcattt gatagtattg aagtttaaag atgaaatcac agaagctcaa ..... 3780
aaggaagaat ttttcaagac ctacgttaat ttggtcaaca ttatacctgc tatgaaagat ..... 3840
gtatactggg gtaaagacgt tacacaaaag aaagaagaag gttatacaca cattgtcgaa ..... 3900
gtaaccttcg aatcagttga aactatccaa gattacatca ttcatccage tcacgttggt ..... 3960
tttggtgacg tttacagatc ettctgggaa aaattgttga tcttcgatta caccccaaga ..... 4020
aagtgataac gagaataata tcaagaatac cttagaacaa catcgacaac aacaacaggc ..... 4080
attrtcggat atgagtcacg eggagtattc cagaattaca aaattrtttc aagaacaacc ..... 4140
actggaggga tatacecttt tetctcacag gtctgegcea tgggttatc atcegtetgt ..... 4200
acttcetcct tecaaactaa ctatcatace ttattgaatc ctcacaacaa caatecaaaa ..... 4260
acatcattgt tgtgttacag acatccaaag acacctatta agtactctta caacaacttt ..... 4320
ccatcaaaac attgttcaac caagtccttc cacttacaaa ataagtgcte egaaagtteg ..... 4380
tctatagcta agaactctat cagagetgca actacaaatc aaactgaace acctgaagt ..... 4440
gataatcact ctgttgccac aaaaattttg aacttcggta aagcatgttg gaagttgcaa ..... 4500
agaccataca ccataatcge ttttacttct tgtgcatgeg gtttattcgg taaagaattg ..... 4560
ttgcataaca ctaactaat ttcatggtcc ttgatgttca aggeattttt ctttttagtt ..... 4620
gccatcttgt gcatcgettc attcaccact acaattaatc aatatacga tttgcacatc ..... 4680
gacagaatta acaaaccaga tttgcctttg gettcaggtg aaatatcogt caatactgca ..... 4740
tggatcatgt ctatcatagt agcottgttc ggttgatca tcacaattaa aatgaagggt ..... 4800
ggtccattgt acatcttcgg ttactgtttc ggtatcttcg gtggtattgt ctattccgta ..... 4860
ccacctttta gatggaaaca aaaccctagt actgcctttt tgttgaattt cttagctcat ..... 4920
atcatcacaa acttcacctt ctactacgct tcaagagctg ctttaggttt gccattcgaa ..... 4980
ttgagacett cattcacatt tttgttggca ttcatgaaaa gtatgggttc tgcattagce ..... 5040
ttgatcaagg atgcctctga cgttgaaggt gacacaaagt tcggtattag taccttggct ..... 5100
tctaagtacg gttcaagaaa tttgactttg ttctgctccg gtatcgtttt gttaagtac ..... 5160
gtcgcagcca ttttggcagg tatcatttgg ccacaagcct ttaattctaa egttatgttg ..... 5220
ttgtcacatg ccatcttgge tttctggttg atcttgcaaa ctagagattt cgctttgaca ..... 5280
aattatgacc etgaagcagg tagaagattc tacgagttta tgtggaaatt gtactacget ..... 5340
gaatatttgg tatacgtttt tatttaacga taccgtcgac ctcgagtcat gtaattagtt ..... 5400
atgtcacgct tacattcacg $\operatorname{coctcccccc}$ acatccgctc taaccgaaaa ggaaggagtt ..... 5460
agacaacctg aagtctaggt ccctatttat tttttatag ttatgttagt attaagaacg ..... 5520
ttatttatat ttcaaactet tetttttttt ctgtacagac gegtgtacge atgtaacatt ..... 5580
atactgaaaa cettgcttga gaaggttttg ggacgetcga aggctttaat ttgeggcegg ..... 5640
tacccagctt ttgttccctt tagegagggt taattccgag cttggcgtaa tcatggtcat ..... 5700
agctgtttcc tgtgtgaaat tgttatccge tcacaattcc acacaacata ggagccggaa ..... 5760
gcataaagtg taaagcctgg ggtgectaat gagtgaggta actcacatta attgegttgc ..... 5820
gctcactgec cgetttccag tegggaaace tgtcgtgeca gctgeattaa tgaatcggce ..... 5880
aacgegeggg gagaggeggt tegcgtateg ggcgctettc cgettcctcg etcactgact ..... 5940
cgctgcgetc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ..... 6000
ggttatccac agatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaz ..... 6060
aggccaggaa cegraaaaag gccgegttge tggegttttt ccataggcte ggeccecctg ..... 6120
acgagcatca caaaatcga cgctcaagtc agaggtggeg aaacccgaca ggactataaa ..... 6180
gataccagge gttcceccet ggaagctcce tegtgegctc tcctgttccg accctgccgc ..... 6240
ttaccggata cetgtcegce tttctecett egggaagegt ggcgetttct caatgctcac ..... 6300
gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac ..... 6360
coccegttca gecegacege tgcgecttat ecggtaacta tegtettgag tccaaccogg ..... 6420
taagacacga cttatcgcca ctggcagcag ccactggtaa caggattage agagegaggt ..... 6480
atgtaggcgg tgctacagag etcttgaagt ggtggcctaa ctacggctac actagaagga ..... 6540
cagtatttgg tatctgcget etgetgaage cagttacctt cggaaaaaga gttggtaget ..... 6600
cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc aagcagcaga ..... 6660
ttacgegcag aaaaaagga tctcaagaag atcctttgat cttttctacg gggetgacg ..... 6720
ctcagtggaa cgaaaactca egttaaggga ttttggtcat gagattatca aaaaggatet ..... 6780
tcacctagat cettttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt ..... 6840
aacttggtc tgacagttac caatgettaa teagtgagge acctatctca gegatctgtc ..... 5900
tatttcgttc atccatagtt gectgactgc ecgtcgtgta gataactacg atacgggagg ..... 6960
gcttaccatc tggccecagt gctgcaatga taccgegaga cccacgctca ecggctceag ..... 7020
atttatcagc aataaaccag ccagceggaa gggcegagcg cagaagtggt ectgcaactt ..... 7080
tatccgectc catccagtct attaattgtt gccgggaagc tagagtaagt agttcgccag ..... 7140
ttaatagttt gegcaacgtt gttgccattg ctacaggeat cgtggrgtca egctegtegt ..... 7200
ttggtatgge ttcattcagc tccggttccc aacgatcaag gcgagttaca tgatccccca ..... 7260
tgttgtgaaa aaagcggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg ..... 7320
cogcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat ..... 7380
ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta ..... 7440
tgcggcgace gagttgctet tgcecggegt caatacggga taataccgcg ccacatagca ..... 7500
gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct ..... 560
taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat ..... 7620
cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa ..... 680
agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatattatt ..... 7740
gaagcattta teagggttat tgtctcatga geggatacat atttgaatgt atttagaaaa ..... 7800
ataaacaaat aggggttccg cgcacatte cccgaaaagt gccacctgac gtctaagaaa ..... 7860
ccattattat catgacatt ..... 7879
<210> SEQ ID NO 1
<211> LENGTH: 335
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 14
actagtatgg gtaaaaacta taagtccttg gattcagtcg ttgectcaga tttcatcgea ..... 60
ttgggtatca cctcagaagt agcagaaaca ttacatggta gattggcaga aatcgtttgt ..... 120
aattatggtg ctgcaaccec tcaaacttgg atcaacatcg ctaaccatat cttgtcacca ..... 180
gatttgectt tetccttaca ccaaatgttg ttttatggtt gctacaagga tttcggtcca ..... 240
gccccacctg cttggattcc agaccctgaa aaagtcaagt caactaattt gggtgctttg ..... 300
ttggaaaaga gaggtaaaga attrttgggt gtaaagtaca aagatccaat ttcttcrttt ..... 360
tctcacttcc aagaattte tgttagaaac cetgaagtct attggagaac agtattgatg ..... 420
gatgaaatga aaattagttt etctaaggac ccagaatgta tcttgagaag agatgacatc ..... 480
aacaacceag gtggttctga atggttacct ggtggttact tgaactcagc taaaaat tgc ..... 540
ttgaacgtaa actccaataa gaattgaac gatactatga tcgtttggag agacgagggt ..... 600
aacgatgact tgectrtgaa raagttgaca ttagatcaat tgagaaagag agrttggerg ..... 660
gttggttatg cattggaaga aatgggttta gaaaaggtt gtgcaatagc catcgatatg ..... 720
ccaatgcatg ttgatgctgt tgttatatat ttggccatag tattggctgg ttacgtagtt ..... 780
gtctctatag cagattcatt ttcogecect gaaatctcaa ctagattgag artatccaaa ..... 840
gctaaggcaa ttttcacaca agatcacatc atcagaggta aaaagagaat accattgtat ..... 900
tcaagagtag ttgaagctaa atccceaatg geaatagtta tccettgtag tggttctaac ..... 960
attggtgcag aattgagaga tggtgacata tcttgggatt actttttaga aagagccaag ..... 1020
gagtttaaaa actgcgagtt tactgccaga gaacaacctg ttgatgctta tactaacatc ..... 1080
ttattctcca gtggtactac aggtgaacca aaagcaattc cttggacaca agccaccoca ..... 1140
ttgaaggctg ctgctgatgg ttggtctcat ttggatatta gaaaaggtga cgttatagta ..... 1200
tggccaacta atttgggttg gargatgggr ccttggttgg tttatgctag tttgttaaat ..... 1260
ggtgcatcta ttgccttgta caacggtagt cctttagtct ctggtttcge taaatttgtt ..... 1320
caagatgcaa aggtcacaat gttgggtgtc gtaccatcta ttgtaagatc atggaaatcc ..... 1380
acaaattgtg tttcaggtta egattggtcc accataagat gcttttcttc atcoggtgaa ..... 1440
gcctctaatg tagacgaata tttgtggtta atgggtagag ctaactacaa gccagttata ..... 1500
gaaatgtgtg gtggtacaga aatcggtggt gctttttctg ctggttcatt tttgcaagct ..... 1560
caatctttaa gttctttttc atcccaatgt atgggttgca ccttgtacat attagataag ..... 1620
aacggttacc caatgcctaa aaataagcca ggtatcggtg aattggcatt aggtcctgtt ..... 1680
atgtttggtg cctcaaaaac attgttaaac ggtaatcatc acgatgtcta tttcaagggt ..... 1740
atgccaacct tgaatggtga agtattgaga agacatggtg acattttcga attgacctct ..... 1800
aacggttact accatgcaca cggtagagce gatgacacta tgaacatcgg tggtatcaaa ..... 1860
attagttcta tegaaatcga aagagtetgt aatgaagtag atgacagagt ttttgaaacc ..... 1920
actgctattg gtgttccacc tttgggtggt ggtccagaac aattggtcat atttttcgta ..... 1980
ttgaaggatt caaacgacac aaccattgat ttgaaccaat tgagattatc ctttaacttg ..... 2040
ggtttgeaaa agaaattgaa cccattatte aaagttacta gagttgtcec attgtcatcc ..... 2100
ttacctagaa ctgcaacaaa caagatcatg agaagagttt tgagacaaca attcagtcat ..... 2160
ttcgaagaag gtagaggctc tttgttaaca tgtggtgacg ttgaagaaaa tccaggtcct ..... 2220
atggcttcag aaaaggaaat aagaagagaa agattcttga acgtattccc aaagttagtt ..... 280
gaagaattga acgctagttt gttagcttat ggtatgccta aagaagcctg cgattggtat ..... 2340
gctcactctt taaactacaa tactccaggt ggtaaattga atagaggttt gagtgtaget ..... 2400
gatacttatg ctatcttgtc taacaaaacc gttgaacaat taggtcaaga agaatacgaa ..... 2460
asggtcgeta tettgggttg gtgtattgas ttgttgcaag catacttttt ggttgecgat ..... 2520
gacatgatgg ataagtctat aacaagaaga ggtcaaccat gctggtacaa agttccagaa ..... 2580
gttggtgaaa tagccataaa rgatgcttrt atgrtggaag ccgctatcta taaattgrtg ..... 2640
aagtcacatt tcagaaacga aaagtactac atcgatatta ccgaattatt ccacgaagtt ..... 2700
actttccaaa cagaattggg tcaattgatg gatttgataa ctgcacctga agataaagtt ..... 2760
gacttgtcaa agttttcctt gaagaaacat tcattcatcg tcacctttga aactgcttat ..... 2820
tactccttct atttgecagt cgecttggct atgtacgtag ctggtattac tgatgaaaaa ..... 2880
gacttgaage aagcaagaga tgttttgata cctttgggtg aatacttcca aatccaagat ..... 2940
gactacttag actgtttcgg tactccagaa caaataggta aaatcggtac agatattcaa ..... 3000
gacaataagt geagttgggt tattaacaag getteggaat tagcatctge egaacaaaga ..... 3060
aagactttgg atgaaaacta eggtaaaaag gactcagttg ctgaagcaaa gtgtaagaaa ..... 3120
atttttaatg atttgaagat tgaacaattg taccatgaat acgaagaatc catcgctaaa ..... 3180
gacttaaagg caaagattag tcaagttgat gaatcaagag gttttaaage egacgtterg ..... 3240
acagctttct tgaataaggt ctacaagaga tcaaaggatt acaaggatca tgacggtgac ..... 3300
tataaagacc acgatattga ctacaaagat gacgatgaca agtaagcgge cge ..... 3353
<210> SEQ ID NO 15<211> LENGTH: 155
<212> TYPE: DNA<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: COdon optimized
<400> SEQUENCE: 15
actagtatga accatttgag agccgaagge cetgcctccg tattagccat aggtacagce ..... 60
aacccagaaa acatattgat ccaagatgaa tttcctgatt attacttcag agttaccaag ..... 120
agtgaacaca tgactcaatt gaaggaaaag tttagaaaaa tatgtgataa gtctatgatc ..... 180
agaaagagaa actgcttctt gaacgaagaa catttgaagc aaaatccaag attggtagaa ..... 240
cacgaaatgc aaacattgga tgccagacaa gacatgttag ttgtcgaagt tcctaaattg ..... 300
ggtaaagatg cttgtgcaaa agccattaag gaatggggtc aaccaaagtc aaagatcact ..... 360
catttgattt ttacaagtgc atctactaca gatatgcctg gtgcagacta ccactgtgcc ..... 420
aattgttag gtttgtcacc atccgttaag agagtcatga tgtatcaatt aggttgctac ..... 480
ggtggtggta ctgttttgag aatcgctaag gatattgcag aaaacaacaa gggtgccaga ..... 540
gtattagctg tttgttgcga cattatggct tgcttgttta gaggtccaag tgattctgac ..... 600
ttggaattgt tagttggtca agctatettc ggtgacggtg ctgetgctgt tattgttggt ..... 660
gcagaacctg acgaatctgt tggtgaaga ccaatatttg aattagtcag tacaggtcaa ..... 720
accatcttgc ctaattctga aggtacaatt ggtggtcata taagagaage aggtttgatc ..... 780
ttcgatttgc acaaagacgt tccaatgtta atctctaaca acatagaaaa gtgtttgata ..... 840
gaagcattca ctcctatagg tatctcagat tggaactcta ttttctggat aacacatcca ..... 900
ggtggtaaag ccattttgga taaggttgaa gaaaaattgg attgaagaa agaaaagttt ..... 960
gragatagta gacatgttt atctgaacac ggtaacatgt ottcatccac tgtctgttc ..... 1020
gtaatggatg aattgagaaa gagatcatta gaagagggta aatctactac tggtgacggt ..... 1080
tttgaatggg gtgtcttatt tggtttcggt cetggtttga ccgtcgaaag agtagttgtc ..... 1140
agatcagtac caattaaata tgaaggtaga ggttccttgt taacttgtgg tgacgttgaa ..... 200
gaaaacceag gtcctatggc cgtcaagcat ttgatagtat tgaagtttaa agatgaaatc ..... 1260
acagaagctc aaaaggaaga atttttcaag acctacgtta atttggtcaa cattatacct ..... 1320
gctatgaaag atgtatactg gggtaaagac gttacacaaa agaaagaaga aggttataca ..... 1380
cacattgtcg aagtaacctt egaatcagtt gaaactatcc aagattacat cattcatcca ..... 1440
gctcacgttg gttttggtga cgtttacaga tccttctggg aaaaattgtt gatcttcgat ..... 1500
tacaccecaa gaaagracce etacgatgrt ccagactatg cataagegge ege ..... 1553
<210> SEQ ID NO 1<212> TYPE: DNA<212> TYPE: DNA
<213> ORGANISM:220> FEATURE:<223> OTHER INFORMATION: COdon Optimized
400> SEQUENCE: 16
actagtatgg gtttatcatc ogtctgtact ttctccttcc aaactaacta tcataccta ..... 60
ttgaatcctc acaacaacaa tccaaaaaca tcattgttgt gttacagaca tccaaagaca ..... 120
cctattaagt actettacaa caactteca tcaaaacatt gttcaaccaa gtcoctccac ..... 180
ttacaaaata agtgctccga aagtttgtct atagctaaga actctatcag agctgcaact ..... 240
acaaatcaaa ctgaaccacc tgaaagtgat aatcactctg ttgecacaaa aattttgaac ..... 300
ttcggtaaag catgttggaa gttgcaaaga ccatacacca taatcgcttt tacttcttgt ..... 360
gcatgcggtt tattcggtaa agaattgttg cataacacta acttaatttc atggtccttg ..... 420
atgttcaagg catttttctt tttagttgcc atcttgtgca tcgettcatt caccactaca ..... 480
attaatcaaa tatacgattt gcacatcgac agaattaaca aaccagattt gcetttggct ..... 540
tcaggtgaaa tatccgtcaa tactgcatgg atcatgtcta tcatagtage ettgttcggt ..... 600
ttgatcatca caartaaaat gaagggtggt ccattgtaca tcttcggtta ctgtttcggt ..... 650
atcttcggtg gtattgtcta ttccgtacca ccttttagat ggaaacaaaa ccctagtact ..... 720
gcctttttgt tgaatttctt agctcatatc atcacaaact tcacettcta etacgcttca ..... 780
agagctgctt taggtttgcc attcgaattg agaccttcat tcacattttt gttggcatte ..... 840
atgaaaagta tgggttctgc attagccttg atcaaggatg cctctgacgt tgaaggtgac ..... 900
acaaagttcg gtattagtac cttggcttct aagtacggtt caagaaattt gactttgttc ..... 960
tgctccggta tcgttttgtt aagttacgtc gcagceattt tggcaggtat catttggcca ..... 1020
caagccttta attctaacgt tatgttgttg tcacatgcea tottggcttt otggttgatc ..... 1080
ttgcaaacta gagatttcgc tttgacaaat tatgaccotg aagcaggtag aagattctac ..... 140
gagtttatgt ggaaattgta ctacgctgaa tatttggtat acgtttttat tgaaggtaga ..... 1200
ggttctttgt tgacctgtgg tgacgttgaa gaaaatccag gtcctatgaa atgttcaact ..... 1260
ttctcctttt ggttcgtatg caagatcatc ttettttet ttcecttaa catccaaaca ..... 320
agtatcgcaa acccaagaga aaactttttg aagtgcttct cacaatacat acctaataac ..... 380
gccaccaatt tgaagttggt ttacactcaa aacaacccat tgtacatgtc egtcttgaac ..... 440
agtacaatcc ataatttgag attcacttct gataccactc caaaaccttt ggtcattgta ..... 500
acccctagtc atgtatctca catccaaggt actatcttat gttctaaaaa ggttggtttg ..... 1560
caaattagaa ctagatccgg tggtcatgat agtgaaggca tgtcatacat ctcccaagtt ..... 1620
ccattcgtta tcgrtgattt gagaaacatg agatcaatta aaatagacgt acactcacaa ..... 168
actgcttggg ttgaagctgg tgcaacattg ggtgaagtat actactgggt taacgaaaag ..... 1740
aatgaaaact tatcattggc tgctggttac tgtccaacag tttgcgcagg tggtcattt ..... 1800
ggtggtggtg gttatggtcc ettaatgaga aactacggtt rggecgctga taacataatc ..... 1860
gacgctcatt tggtaaatgt tcacggtaaa gttttggata gaaagtctat gggtgaagac ..... 1920
ttattttggg ctttgagagg tggtggtgca gaatcattcg gtatcatagt tgcttggaag ..... 1980
ataagattag tegcagtacc aaagtctact atgttctcag tcaaaaagat aatggaaatc ..... 2040
catgaattag ttaaattggt caataagtgg caaaacatcg catacaagta cgataaggac ..... 2100
ttgttgttga tgactcattt catcacaaga aacatcaccg ataaccaagg taaaaataag ..... 2160
actgctatcc acacatactt tettcagtt tettgggtg gtgtegattc ettagtagac ..... 2220
trgatgaata agtertttcc agaactaggt attaagaaaa ctgategtag acaattgret ..... 2280
tggatcgaca ccatcatett ttattcaggt gttgtcaact acgatacaga caacttcaac ..... 2340
aagaaatat tattggatag atccgcaggt caaaacggtg cctttaaaat taagttagac ..... 2400
tacgttaaaa agecaatacc tgaatcagtt ttcgtccaaa tcttagaaaa atcgtacgaa ..... 2460
gaagatattg gtgcaggcat gtacgecttg tatccatacg gtggtataat ggacgaaatc ..... 2520
agtgaatctg ccattccatt tcctcataga gctggtatct tatacgaatt gtggtacatt ..... 2580
tgttcatggg aaaagcaaga agataacgaa aagcacttaa actggattag aaacatctat ..... 2640
aacttcatga ctccatacgt ttctaaaaac cctagattgg catatttgaa ctacagagat ..... 2700
ttggacatcg gtattaacga tccaaagaat cctaacaact atacccaage tagaatttgg ..... 2760
ggtgaaaaat acttcggtaa aaatttcgat agattagtaa aggttaagac attggttgac ..... 2820
ccaaacaact tctttagaaa cgaacaatcc attccacctt tacctagaca tagacacgaa ..... 2880
caaaaattaa taagtgaaga agatttgtaa geggecgc ..... 2918
<210> SEQ ID NO 1

<211> LENGTH: 167
<212> TYPE: DNA
213> ORGANISM: Artificial sequence
<220> FEATURE
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 17
agccaaaata atgataacga gaataatatc aagaatacct tagaacaaca tcgacaacaa ..... 60
aacaggcat tttcggatat gagtcacgeg gagtattcca gaattacaaa attttttcaa ..... 120
gaacaaccac tggagggata taccettttc tctcacaggt ctgcgcc ..... 167
<210> SEQ ID NO 18 <211> LENGTH: 1518

$212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Codon optimized

$<400>$ SEQUENCE: 18atggtttcca atcacttgtt tgacgcaatg agagecgetg cccetggtaa cgeccottc60
ataagaatag ataatactag aacttggaca tacgatgacg ccttgcttt atctggtaga ..... 120
atagcatcag ctatggatgc tttgggtatc agaccaggtg acagagtcge agttcaagta ..... 180
gaaaaatccg ctgaagcatt gatctegtat ttggctegtt tgagaagtgg tgcagtteat ..... 240
ttgccattga atactgccta cacattagct gaattggatt acttcatagg tgacgcagaa ..... 300
ctagattgg ttgtagtcge ctcttcagcc agagctggtg tagaaacaat tgctaaacca ..... 360
agaggtgcaa tagtcgaaac cttagatgct gctggttctg gtagttgtt agatttggcc ..... 420
agagacgaac ctgctgattt tgttgacget tcaagatcag ccgatgactt agcegctatt ..... 480
ttgtacacct ctggtactac aggtagatca aagggtgcta tgttgactca tggtaatttg ..... 540
ttgtcaaacg cattaacctt gagagatttc tggagagtta ctgceggtga cagattaatc ..... 600
cacgcttgc caatttttca tactcacggt ttattcgttg ctaccaacgt aactttgtta ..... 660
gcaggrgect ccargrtett gttgagraag ttcgatccag aagaaatatt arctttgarg ..... 720
cctcaagcta ctatgttgat gggtgtccca acattctacg ttagattgtt acaatcacct ..... 780
agattagata agcaagctgt tgcaaacatc agattgttta tatccggtag tgctccattg ..... 840
ttagcagaaa cccatactga atctcaagca agaacaggtc acgecatttt agaaagatac ..... 900
ggtatgacag aaaccaatat gaacacttct aacccttatg aaggtaaaag aatagctggt ..... 960
acagttggtt ttecattgec tgatgtcaca gttagagtaa cegacecage eactggttta ..... 1020
gctttgecac ctgaacaaac tggtatgatc gaaattaaag gtccaaacgt ttttaagggt ..... 1080
tactggagaa tgectgaaaa gactgctgct gagtttactg ctgatggttt ctttatctct ..... 1140
ggrgacttag gtaaaattga tagagacggt tatgtccata rtgttggtcg tggtaaagat ..... 200
ttggttatat ceggtggtta taacatctac cctaaggaag tagaaggtga aatagatcaa ..... 260
atcgaaggtg ttgtagaatc agctgtaata ggtgtcccac atcctgattt tggtgaaggt ..... 320
gttacagcag tegttgtaag aadaccaggt gctgcattag atgaaaaggc aattgtttct ..... 1380
gccttacaag acagattggc tagatacaag caaccaaaga gaataatctt cgeagaagat ..... 1440
ttgcctagaa atactatggg taaagtacaa aagaacatct tgagacaaca atacgccgac ..... 1500
ttatacacca gaacctga ..... 1518
210> SEQ ID NO 1

<211> LENGTH: 2092

<212> TYPE: DNA

213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Codon optimized

<400> SEQUENCE: 19
actagtatgg gtttatcatc cgtctgtact ttctccttcc aaactaacta tcatacctta60
ttgaatcctc acaacaacaa tccaaaaaca tcattgttgt gttacagaca tccaaagaca ..... 120
cctattaagt actcttacaa caactttcca tcaaaacatt gttcaaccaa gtccttccac ..... 180
ttacaaata agtgctccga aagtttgtct atagctaaga actctatcag agctgcaact ..... 240
acaaatcaaa ctgaaccacc tgaaagtgat aatcactctg ttgecacaaa aattttgaac ..... 300
ttcggtaaag catgttggaa gttgcaaaga ccatacacca taatcgcttt tactectgt ..... 360
gcatgcggtt tattcggtaa agaattgttg cataacacta acttaatte atggtcctat ..... 420
gaactgetcc geattctctt tctggttcgt ctgtaaaata atcttctect tetgecctt ..... 480
caacatccaa atctccatcg caaatccaca agaaaacttt ttgaagtgtt tctccgaata ..... 540
catcccaaac aaccctgcta acccaaagtt tatatatact caacatgatc aattgtacat ..... 600
gtccgttttg aacagtacca tccaaaattt gagattcact tctgacacta caccaaaacc ..... 660
tttagtcatt gttacacctt ccaatgttag tcacattcaa gcttctatat tgtgctctaa ..... 720
gaaagtaggt ttgcaaatca gaactagatc aggtggtcat gatgcagaag gcatgtctta ..... 780
catctcacaa gttccatteg ttgtagtcga ttgagaaat atgcatccea taaagatcga ..... 840
cgttcacagt caaacagcat gggtagaage aggtgccacc ttgggtgaag tttactactg ..... 900
gatcaacgaa aagaatgaaa actttectt ccctggtggt tactgtccaa cagtaggtgt ..... 960
cggtggtcac tttectggtg gtggttatgg tgcattgatg agaaactacg grttagergc ..... 1020
agataatatt atagacgece atttggttaa cgtagatggt aaagttttgg acagaaagtc ..... 1080
tatgggtgaa gatttgtttt gggccataag aggtggtggt ggtgaaaatt tcggtatcat ..... 1140
tgccgcttgg aaaattaagt tagtcgctgt tccttccaaa agtactattt tctctgtcaa ..... 1200
aaagaacatg gaaatccacg gtttggttaa gttgtttaat aagtggcaaa acatcgetta ..... 1260
caagtacgat aaggacttgg ttttgatgac ccatttcatc actaaaaata ttacagataa ..... 1320
ccatggtaaa aataagacca ctgttcacgg ttattttet tcaattttce atggtggtgt ..... 1380
agattetteg gttgatttga tgaataagtc atteceagaa etgggtatta aaaagacaga ..... 1440
ttgcaaggaa ttttcttgga tagacacaac catcttctat tcaggtgttg taaacttcaa ..... 1500
caccgetaac ttcaaaaagg aaatcttgtt ggatagatcc gctggtaaaa agaccgettt ..... 1560
ttctattaaa ttggactacg ttaagaaace aatccetgaa actgeaatgg tcaagatart ..... 1620
ggaaaagttg tacgaagaag atgtaggtgt cggcatgtac gttttgtatc catacggtgg ..... 1680
tattatggaa gaatatctg aatcagccat accatttcct cacagagctg gtatcatgta ..... 1740
tgaattatgg tacacagcet catgggaaaa gcaagaagat aacgaaaage atatcaactg ..... 800
ggtcagatce gtttacaact tcactacace ttacgttagt caaaacccaa gattggcata ..... 1860
tttgaactac agagatttgg acttaggtaa aactaaccet gaatctccaa ataactatac ..... 1920
acaagcaaga atttggggtg aaaagtactt tggtaaaaat ttcaacagat tagttaaagt ..... 1980
aaagactaaa gecgacccta acaacttttt cagaaacgaa caatccatcc cacctttgec ..... 2040
acctcaccac cacgaacaaa aattaataag tgaagaagat ttgtaagtcg ac ..... 2092
<210> SEQ ID NO 20

<211> LENGTH: 7904

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: COdon optimized

<400> SEQUENCE: 20
tcgcgegtt cggtgatgac ggtgaaaacc tctgacacat gcagctcceg gagacggtca 60
cagcttgtct gtaageggat gecgggagea gacaagcecg tcagggegcg tcagegggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatcga ctacgtcgta aggccgtttc tgacagagta aaattcttga gggaactttc 240
accattatgg gaatggttc aagaaggtat tgacttaaac tccatcaaat ggtcaggtca 300
ttgagtgttt tttattegtt gtatttttt tetttagag aaaatcctcc aatatcaaat 360
taggaatcgt agttcatga ttttctgtta cacctaactt tttgtgtggt gecctcctcc 420
tgtcaatat taatgttaaa gtgcaattct tettccttat cacgttgage cattagtatc $\quad 480$
aattgetta cetgrattcc tttactatce tecttttet cettettgat aaatgtatgt 540
agattgegta tatagtttcg tetaccetat gaacatattc cattttgtaa tttcgtgteg 600
tttctattat gaatttcatt tataagttt atgtacaaat atcataaaaa aagagaatct 660
ttttaagcaa ggattttctt aacttcttcg gcgacagcat caccgacttc ggtggtactg ..... 720
ttggaaccac ctaaatcacc agttctgata cetgcatcca aaaccttttt aactgcatct ..... 780
tcaatggect taccttcttc aggcaagttc aatgacaatt tcaacatcat tgcagcagac ..... 840
aagatagtgg cgatagggtc aaccttattc tttggcaaat ctggagcaga accgtggcat ..... 900
ggttcgtaca aaccaaatge ggtgttcttg tetggeaaag aggccaagga cgeagatggc ..... 960
aacaaaccca aggaacctgg gataacggag gcttcatcgg agatgatatc accaaacatg ..... 1020
ttgctggtga ttataatacc atttaggtgg gttgggttct taactaggat catggeggea ..... 1080
gaatcaatca attgatgttg aaccttcaat gtagggaatt cgttcttgat ggtttcetcc ..... 1140
acagttttec tccataatct tgaagaggec aaaacattag ctttatccaa ggaccaaata ..... 1200
ggcaatggtg gctcatgttg tagggccatg aaageggcca ttcttgtgat tctttgcact ..... 1260
tctggaacgg tgtattgttc actatcccaa gcgacaccat caccatcgtc ttcctttctc ..... 1320
ttaccaaagt aaatacctcc cactaattet ctgacaacaa cgaagtcagt acctttagca ..... 1380
aattgtggct tgattggaga taagtctaaa agagagtegg atgcaaagtt acatggtctt ..... 1440
aagttggegt acaattgaag ttctttacgg atttttagta aaccttgttc aggtctaaca ..... 1500
ctaccggtac cecatttagg accacccaca gcacctaaca aaacggcatc aaccttcttg ..... 1560
gaggcttcca gegcctcatc tggaagtggg acacctgtag catcgatage agcaccacca ..... 1620
attaaatgat tttcgaaatc gaacttgaca ttggaacgaa catcagaaat agctttaaga ..... 1680
accttaatgg cttcggctgt gatttcttga ccaacgtggt cacctggcaa aacgacgatc ..... 1740
ttcttagggg cagacatagg ggcagacatt agaatggtat atccttgaaa tatatatata ..... 1800
tattgctgaa atgtaaaagg taagaaaagt tagaaagtaa gacgattgct aaccacctat ..... 1860
tggaaaaac aataggtcct taaataatat tgtcaacttc aagtattgtg atgcaagcat ..... 1920
ttagtcatga acgettctct attctatatg aaaagccggt tccggcctct cacctttcct ..... 1980
ttttctccea atttttcagt tgaaaaaggt atatgcgtca ggcgacctct gaaattaaca ..... 2040
aaaaatttcc agtcatcgaa tttgattctg tgegatageg cocetgtgtg ttctcgttat ..... 2100
gtrgaggaaa aaaataatgg ttgctaagag attcgaactc ttgcatctta cgatacctga ..... 2160
gtattcccac agttaactgc ggtcaagata tetcttgaat caggcgcctt agaccgetcg ..... 2220
gccaaacaac caattacttg ttgagaaata gagtataatt atcctataaa tataacgtt ..... 2280
ttgaacacac atgaacaagg aagtacagga caattgattt tgaagagaat gtggattttg ..... 2340
atgtaattgt tgggattcca ttttaataa ggcaataata ttaggtatgt ggatatacta ..... 2400
gaagttctcc tegagggteg atatgcggtg tgaaataccg cacagatgcg taaggagaaa ..... 2460
ataccgcatc aggaaattgt aaacgttaat atttgttaa aattcgcgtt aaattttegt ..... 2520
taaatcagct cattttttaa ccaataggce gaaateggea aaatecctta taaatcaaaa ..... 2580
gaatagaccg agatagggtt gagtgttgtt ccagtttgga acaagagtcc actattaaag ..... 2640
aacgtggact ccaacgtcaa agggcgaaaa accgtctatc agggcgatgg eccactacgt ..... 2700
gaaccatcac cetaatcaag ttttttgggg tegaggtgec gtaaagcact aaatcggaac ..... 2760
cctaaaggga geccecgatt tagagettga cggggaaage cggcgaacgt ggegagaaag ..... 2820
gaagggaaga aagcgaaagg agcgggcget agggcgctgg caagtgtagc ggtcacgctg ..... 2880
cgcgtaacca ccacaccegc egcgcttaat gcgccgctac agggcgegtc gegccattcg ..... 2940
ccattcaggc tgcgcaactg ttgggaaggg cgatcggtgc gggcetcttc gctattacgc ..... 3000
cagctggcga aggggggatg tgctgcaagg egattaagtt gggtaacgec agggttttcc ..... 3060
cagtcacgac gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ..... 3120
ttggagcter agtacggatt agaagecgec gagegggcga cagcectccg acggaagact ..... 3180
ctcctcegtg cgtcctcgtc ttcaceggtc gegttcctga aacgcagatg tgectegegc ..... 3240
cgcactgctc cgaacaataa agattctaca atactagctt ttatggttat gaagaggaaa ..... 330
aattggeagt aacctggccc cacaaacctt caaattaacg aatcaaatta acaaccarag ..... 336
gatgataatg cgattagttt tttagectta tttctggggt aattaatcag egaagcgatg ..... 3420
atttttgatc tattaacaga tatataaatg gaaaagctgc ataaccactt taactaatac ..... 3480
tttcaacatt ttcagttgt attacttctt attcaaatgt cataaaagta tcaacaaaaa ..... 3540
attgttaata tacctctata ctttaacgtc aaggagaaaa aaccecggat tctagaacta ..... 3600
gtggatcccc catcacaagt ttgtacaaaa aagctgaacg agaaacgtaa aatgatataa ..... 3660
atatcaatat attaaattag atttgcata aaaaacagac tacataatac tgtaaacac ..... 3720
aacatatcca gtcactatgg eggccgcatt aggcacceca ggctttacac tetatgctec ..... 3780
cggctcgtat aatgtgtgga ttttgagtta ggatcogtcg agattttcag gagctaagga ..... 3840
agctaaaatg gagazaaaaa tcactggata taccaccgtt gatatatccc aatggcatcg ..... 3900
taaagaacat tttgaggcat etcagtcagt tgctcaatgt acctataacc agacegteca ..... 3960
gctggatatt acggcetttt taaagacegt aaagaaaaat aagcacaagt tttatccggc ..... 4020
ctttattcac attcttgcec gectgatgaa tgctcatccg gaattccgta tggcaatgaa ..... 4080
agacggtgag ctggtgatat gggatagtgt tcacccttgt tacaccgttt tccatgagca ..... 140
aactgaaacg ttttcatcge tetggagtga ataccacgac gatttccgge agtttctaca ..... 200
catatattcg caagatgtgg egtgttacgg tgaaaacctg gcctatttce ctaaagggtt ..... 260
tattgagaat atgtttttcg tctcagccaa tcectgggtg agtttcacca gttttgattt ..... 4320
aaacgtggcc aatatggaca acttcttcgc cccegttttc accatgggca aatattatac ..... 4380
gcaaggegac aaggrgctga tgcegctggc gattcaggtt catcatgceg tetgtgatgg ..... 4440
cttccatgtc ggcagaatgc ttaatgaatt acaacagtac tgcgatgagt ggcagggcgg ..... 4500
ggcgtaaacg cegcgtggat ccggcttact aaaagccaga taacagtatg cgtatttgcg ..... 4560
egctgatttt tgeggtataa gaatatatac tgatatgtat accegaagta tgecaaaaag ..... 4620
aggtatgcta tgaagcagcg tattacagtg acagttgaca gcgacagcta tcagttgctc ..... 4680
aggcatata tgatgtcaat atctecggtc tggtaagcac aaccatgcag aatgaagecc ..... 4740
gtcgtctgcg tgccgaacge tggaaagcgg aaaatcagga agggatggct gaggtcgccc ..... 4800
ggtttattga aatgaacggc tctttgctg acgagaacag gggetggtga aatgcagtte ..... 4860
aaggtttaca cctataaaag agagagccgt tatcgtctgt ttgtggatgt acagagtgat ..... 4920
attattgaca cgccegggcg acggatggtg atccccctgg ccagtgcacg tctgctgtca ..... 4980
gataaagtet cecgtgaact ttacecggtg gtgcatatcg gggatgaaag etggegcatg ..... 5040
atgaccaccg atatggccag tgtgccggtc tccgttatcg gggaagaagt ggctgatctc ..... 5100
agccaccgcg aaatgacat caaaacgec attaacctga tgttctgggg aatataaty ..... 5160
tcaggctccc ttatacacag ccagtctgca ggtcgaccat agtgactgga tatgttgtgt ..... 5220
tttacagtat tatgtagtct gtttttatg caaaatctaa tttaatatat tgatatttat ..... 5280
atcatttac gttetcget cagctttct gtacaaagtg gtgatgggct gcaggaatec ..... 5340
gatatcaagc ttatcgatac egtegacctc gagtcatgta attagttatg teacgettac ..... 5400
-continued
attcacgcce tccccccaca tccgetctaa ccgaaagga aggagttaga caacctgaag ..... 5460
tctaggtccc tatttattt tttatagtta tgttagtatt aagaacgtta tttatatte ..... 5520
aaatttect tttttttctg tacagacgeg tgtacgcatg taacattata ctgaaaacct ..... 5580
tgcttgagaa ggttttggga cgctcgaagg ctttaatttg cggccggtac ccagcttteg ..... 5640
ttcectttag tgagggttaa ttcegagett ggegtaatca tggtcatage tgttectgt ..... 5700
gtgaaattgt tatccgctca caattccaca caacatagga gccggaagca taaagtgtaa ..... 5760
agectggggt gectaatgag tgaggtaact cacattaatt gcgttgcget cactgcecgc ..... 5820
tttccagtcg ggaaacctgt egtgccagct gcattaatga atcggccaac gcgeggggag ..... 5880
aggeggtteg cgtattgggc getettccge ttccecgetc actgactcgc tgegcteggt ..... 5940
cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga ..... 6000
atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg ..... 6060
taaaaggce gegttgetgg egtttttcca taggetcggc cecectgacg agcatcacaa ..... 6120
aaatcgacgc tcaagtcaga ggtggegaaa cecgacagga ctataaagat accaggcgtt ..... 6180
ccecectgga agetcecteg tgegetetce tgttecgace etgeegctta ecggatacct ..... 6240
gtcogcettt cteccttcgg gaagegtgge getttctcaa tgcteacget gtaggtatct ..... 6300
cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaaccec ecgttcagcc ..... 6360
cgaccgetge gecttatcog gtaactatcg tettgagtcc aaccoggtaa gacacgactt ..... 6420
atcgccactg gcagcagcea ctggtaacag gattagcaga gcgaggtatg taggeggtgc ..... 6480
tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat ..... 6540
ctgcgctetg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa ..... 6600
acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta egcgeagaaa ..... 6660
aaaaggatct caagaagatc ctttgatctt ttctacgggg tetgacgctc agtggaacga ..... 6720
aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cotagatcct ..... 6780
tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa ettggtctga ..... 6840
cagttaccaa tgettaatca gtgaggcacc tatctcagcg atctgtctat ttegttcatc ..... 6900
catagttgcc tgactgcceg tegtgtagat aactacgata cgggagggct taccatctgg ..... 6960
ccccagtgct gcaatgat ac egcgagacce acgctcaccg gctccagatt tatcagcaat ..... 7020
aaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat ..... 7080
ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgecagtta atagtttgeg ..... 7140
aacgttgtt gceattgcta caggcatcgt ggtgtcacge tcgtcgtttg gtatggcttc ..... 7200
ttcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt tgtgaaaaaa ..... 7260
ageggttage tectteggtc ctecgategt tgtcagaagt aagttggecg eagtgttatc ..... 320
actcatggtt atggcagcac tgcataattc tcttactgtc atgceatccg taagatgctt ..... 7380
ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc ggegaccgag ..... 7440
ttgctcttgc ceggcgtcaa tacgggataa taccgcgcca catagcagaa ctttaaaagt ..... 7500
getcatcatt ggaaaacgtt ettcggggeg aaaactctca aggatcttac egctgttgag ..... 7560
atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac ..... 7620
cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc ..... 7680
gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca ..... 7740
gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg ..... 7800
ggttcegege acatttccec gaaaagtgce acctgacgtc taagaaacca ttattatcat ..... 7860
gacattaace tataaaaata ggegtatcac gaggecertt egtc ..... 7904
<210> SEQ ID NO 21
$<212>$ TYPE. DNA
<213> ORGANISM <220> FEATURE:
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 21
tegegegttt eggtgatgac ggtgaaaace tetgacacat gcagetcecg gagacggtca ..... 60
cagcttgtct gtaageggat gecgggagca gacaagcecg teagggcgeg tcagcgggtg ..... 120
ttggegggtg teggggetgg cttaactatg oggcatcaga gcagattgta ctgagagegc ..... 180
accacgettt tcaattcaat tcatcatttt tttttattc ettttttga tttcggtte ..... 240
tetgaaatet tttegattcg gtaatctccg aacagaagga agaacgaagg aaggagcaca ..... 300
gacttagatt ggtatatata egcatatgta gtgttgaaga aacatgaaat tgeccagtat ..... 360
tcttaaccea actgcacaga acaaaaacct gcaggaaacg aagataaatc atgtcgaaag ..... 420
ctacatataa ggaacgegct getactcatc ctagecctgt tgcegceaag ctacttaata ..... 480
tcatgcacga aaagcaaaca aacttgtgtg ettcattgga tgttegtace accaaggaat ..... 540
tactggagtt agttgaagca ttaggtccca aaatttgttt actaaaaaca catgtggata ..... 600
tcttgactga tttttccatg gagggcacag ttaagccgct aaaggcatta tocgccaagt ..... 660
acaattttt actcttcgaa gacagaaaat ttgctgacat tggtaataca gtcaaattgc ..... 720
agtactctgc gggtgtatac agaatagcag aatgggcaga cattacgaat gcacacggrg ..... 780
tggtgggece aggtattgtt agcggtttga agcaggcggc agaagaagta acaaaggaac ..... 840
ctagaggect tttgatgtta gcagaattgt catgcaaggg ctccetatct actggagaat ..... 900
atactaaggg tactgttgac attgcgaaga gegacaaaga ttttgttatc ggctttattg ..... 960
ctcaaagaga catgggtgga agagatgaag gttacgattg gttgattatg acacccggtg ..... 1020
tggytttaga tgacaaggga gacgcattgg gtcaacagta tagaaccgtg gatgatgtgg ..... 1080
tctctacagg atctgacatt attattgttg gaagaggact atttgcaaag ggaagggatg ..... 1140
ctaaggtaga gggtgaacgt tacagaaaag caggctggga agcatatttg agaagatgcg ..... 1200
gccagcaaaa ctaaaaact gtattataag taaatgcatg tatactaaac tcacaaatta ..... 1260
gagcttcaat ttaattatat cagttattac cctgcggtgt gaaataccgc acagatgcgt ..... 1320
aaggagaaaa taccgcatca ggaaattgta aacgttaata ttttgttaaa attcgcgtta ..... 1380
aatttttgtt aaatcagctc attttttaac caataggccg aaatcggcaa aatcccttat ..... 1440
aatcaaaag aatagaccga gatagggttg agtgttgttc cagtttggaa caagagtcca ..... 1500
ctattaaaga acgtggacts caacgtcaaa gggegaaaaa ccgtetatca gggegatggc ..... 1560
ccactacgtg aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta ..... 1620
aatcggaacc ctaaagggag ccccegattt agagcttgac ggggaaagce ggegaacgtg ..... 1680
gcgagaaagg aagggaagaa agcgaaagga gcgggcgeta gggegctgge aagtgtagcg ..... 1740
gtcacgetge gegtaaccac cacaccegec gegcttaatg egcegctaca gggegegteg ..... 1800
cgccattcge cattcaggct gcgcaactgt tgggaaggge gatcggrgcg ggcctcttcg ..... 1860
ctattacgce agctggegaa ggggggatgt getgcaagge gattaagttg ggtaacgeca ..... 1920
gggttttccc agtcacgacg ttgtaaaacg acggccagtg aattgtaata cgactcacta ..... 1980
tagggcgaat tggagcteta gtacggatta gaagecgceg agcgggegac agecctcoga ..... 2040
cggaagactc tectccgtgc gtcctcgtct tcaccggtcg cgttcctgaa acgcagatgt ..... 2100
gcctcgcgec gcactgctcc gaacaataaa gattctacaa tactagcttt tatggttatg ..... 2160
aagaggaaaa attggeagta acctggccec acaaaccttc aaattaacga atcaaattaa ..... 2220
caaccatagg atgataatgc gattagtttt ttagccttat ttctggggta attaatcagc ..... 2280
gaagcgatga $t t t t t g a t c t$ attaacagat atataaatgg aaaagctgca taaccacttt ..... 2340
aactaatact ttcaacattt tcagttgta ttacttctta ttcaaatgtc ataaaagtat ..... 2400
caacaaaaaa ttgrtaatat acctctatac tttaacgtca aggagaaaaa accccggat ..... 2460
ctagaactag tggatccccc atcacaagtt tgtacaaaaa agctgaacga gaaacgtaaa ..... 2520
atgatataaa tatcaatata ttaaattaga ttttgcataa aaaacagact acataatact ..... 2580
graaaacaca acatatccag tcactatggc ggecgcatta ggcaccecag getttacact ..... 2640
ttatgettce ggctcgtata atgtgtggat tttgagttag gatcegtega gattttcagg ..... 2700
agctaaggaa getaaaatgg agaaaaaaat cactggatat accaccgttg atatatccea ..... 2760
atggcatcgt aaagaacatt ttgaggeatt tcagtcagtt getcaatgta cerataacca ..... 2820
gaccgttcag ctggatatta cggccttttt aaagaccgta aagaaaaata agcacaagtt ..... 880
ttatccggce tttattcaca thettgeccg cetgatgat gcteatcogg aattccgtat ..... 2940
ggcaatgaaa gacggtgage tggtgatatg ggatagtgtt caccettgtt acaccgttet ..... 3000
ccatgagcaa actgaaacgt tttcatcget ctggagtgaa taccacgacg atttccggca ..... 3060
gtttctacac atatattcgc aagatgtggc gtgttacggt gaaaacctgg cctatttcce ..... 3120
taaagggttt attgagaata tgtttttcgt ctcagccaat ccctgggtga gtttcaccag ..... 3180
ttttgattta aacgtggeca atatggacaa cttcttcgec eccgttttca ceatgggeaa ..... 3240
atattatacg caaggegaca aggtgctgat gcegctggcg attcaggttc atcatgcogt ..... 3300
ctgtgatgge ttccatgtcg gcagaatgct taatgaatta caacagtact gegatgagtg ..... 3360
gcagggeggg gegtaaacge cgegtggate cggcttacta aaagccagat aacagtatge ..... 3420
gtatttgcge gctgattttt geggtataag aatatatact gatatgtata cccgaagtat ..... 3480
gtcaaaaaga ggtatgctat gaagcagcgt attacagtga cagttgacag egacagctat ..... 3540
cagttgctca aggcatatat gatgtcaata tctccggtct ggtaagcaca accatgcaga ..... 3600
atgaagcceg tegtctgcgt gccgaacgct ggaaagcgga aaatcaggaa gggatggetg ..... 3660
aggtcgeccg gtttattgaa atgaacggct cttttgctga cgagaacagg ggctggtgaa ..... 3720
atgcagttta aggtttacac ctataaaaga gagagccgtt atcgtctgtt tgtggatgta ..... 3780
cagagtgata ttattgacac gecegggega cggatggtga tececetggc cagtgcacgt ..... 3840
ctgctgtcag ataaagtctc cegtgaactt tacceggtgg tgcatatcgg ggatgaaagc ..... 3900
tggcgcatga tgaccaccga tatggceagt gtgccggtct cogttatcgg ggaagaagtg ..... 3960
getgatctca gecacegcga aaatgacatc aaaaacgeca ttaacctgat gttetgggga ..... 4020
atataaatgt caggetccet tatacacagc cagtctgcag gtcgaccata gtgactggat ..... 4080
atgttgtgtt ttacagtatt atgtagtctg tttttatgc aaaatctaat ttaatatatt ..... 4140
gatatttata tcattttacg tttctcgttc agctttcttg tacaaagtgg tgatgggctg ..... 4200
caggaattcg atatcaagct tatcgatacc gtcgacctcg agtcatgtaa ttagttatgt ..... 4260
cacgcttaca ttcacgccet cccccacat ccgctctaac cgaaaaggaa ggagttagac ..... 4320
aacctgaagt ctaggtccct atttattttt ttatagttat gttagtatta agaacgttat ..... 4380
ttatattrca aatctetctt efttttetge acagacgegt gtacgeatgt aacattatac ..... 4440
tgaaaacett gettgagaag gttttgggac getegaagge tttaattge ggecggtacc ..... 4500
cagcttttgt tccctttagt gagggttaat tccgagcttg gcgtaatcat ggtcatagct ..... 456
grtecctgrg tgaaattgtt atccgetcac aatcecacac aacataggag coggaageat ..... 4620
aaagtgtaaa gcetggggtg cctaatgagt gaggtaactc acattaattg egttgcgctc ..... 4680
actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa tcggccaacg ..... 4740
cgeggggaga ggeggtttge gtattgggeg ctcttcegct tcctegctca ctgactcget ..... 4800
gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt ..... 4860
atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggce agcaaaaggc ..... 4920
caggaacegt aaaaaggcec egttgetggc gtttttccat aggetcggce cecctgacga ..... 4980
gcatcacaaa aatcgacget caagtcagag grggcgaaac ccgacaggac tataaagata ..... 5040
ccaggegttc cecectggaa gctccetegt gegctetcct gttecgacce tgecgettac ..... 5100
cggatacctg tccgcctttc tccettcggg aagegtggeg ctttctcaat gctcacgctg ..... 5160
taggtatctc agttcggegt aggtcgrteg ctccaagetg ggctgtgtgc acgaaccocc ..... 5220
cgttcagcce gaccgctgcg ccttatcogg taactatcgt cttgagtcca acceggtaag ..... 5280
acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt ..... 5340
aggeggtgct acagagttct tgaagtggrg gcctaactac ggctacacta gaaggacagt ..... 5400
atttggtatc tgegctctgc tgaagecagt taccttcgga aaaagagttg gtagctcttg ..... 5460
atceggcaaa caaaccaccg etggtagegg tggttttttt gtttgcaage agcagattac ..... 5520
gcgeagaaaa aaaggatctc aagaagatce tttgatcttt tctacggggt ctgacgetca ..... 5580
gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac ..... 5640
ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat atgagtaaac ..... 5700
ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga tctgtctatt ..... 5760
tcgttcatcc atagttgcct gactgccegt cgtgtagata actacgatac gggagggctt ..... 5820
accatctggc cccagtgctg caatgatacc gegagaccea cgctcaccgg ctccagattt ..... 5880
atcagcaata aaccagccag ceggaagggc cgagcgcaga agtggtcctg caactttatc ..... 5940
egcctccatc cagtctatta attgttgecg ggaagctaga gtaagtagtt egccagttaa ..... 6000
tagtttgcgc aacgttgttg ccattgctac aggcatcgtg gtgtcacget cgtcgtttgg ..... 6060
tatggcttca ttcagctceg gttcccaacg atcaaggcga gttacatgat eccccatgtt ..... 6120
gtgaaaaaaa gcggttagct ccttcggtcc tccgatcgtt gtcagaagta agttggccgc ..... 6180
agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca tgccatccgt ..... 6240
aagatgettt tetgtgactg gtgagtactc aaccaagtca ttctgagaat agtgtatgeg ..... 6300
gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac atagcagaac ..... 6360
tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga aaactctcaa ggatcttacc ..... 6420
gctgttgaga tccagttcga tgtaacccac tegtgcaccc aactgatctt cagcatcttt ..... 6480
tactttcacc agegtttctg ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg ..... 6540
aataagggcg acacggaaat gttgaatact catactcttc ctttttcaat attattgaag ..... 6600
catttatcag ggttattgtc tcatgagegg atacatattt gaatgtattt agaaaaataa ..... 6660
acaataggg gttccgegca catttccecg aaaagtgcca cctgacgtct aagaaaccat ..... 6720
tattatcatg acattaacct ataaaaatag gcgtatcacg aggecctttc gtc ..... 6773
<210> SEQ ID NO 22<212> TYPE: DNA
<213> ORGANISM:<220> FEATURE<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 22
ttatcatgac attaacctat aaaatagge gtatcacgag gccetttcgt ctegcgegt ..... 60
tcggrgatga cggrgaaaac ctctgacaca tgeagctcce ggagacggtc acagcttgec ..... 120
tgtaagegga tgecgggage agacaagcec gtcagggege gtcagcgggt gttggegggt ..... 180
gtcggggetg gcttaactat gcggcatcag agcagattgt actgagagtg caccacgett ..... 240
tccaattcaa ttcatcattt ettttttatt cttetttttg atttcggttt etttgaaat ..... 300
tttttgattc ggtaatctcc gaacagaagg aagaacgaag gaaggagcac agacttagat ..... 360
tggtatatat acgeatatgt agtgttgaag aaacatgaaa ttgeccagta ttcttaacco ..... 420
aactgcacag aacaaaaacc tgcaggaaac gaagataaat catgtcgaaa getacatata ..... 480
aggaacgtgc tgetactcat cetagtcctg ttgctgccaa gctatttaat atcatgcacg ..... 540
aaaagcaaac aaacttgtgr gcttcattgg atgttcgtac caccaaggaa ttactggagt ..... 600
tagttgaagc attaggtccc aaaattgtt tactaaaaac acatgtggat atcttgactg ..... 660
atttttccat ggagggcaca gttaagcegc taaaggcatt atccgccaag tacaatttet ..... 720
tactcttcga agacagaaaa tttgctgaca ttggtaatac agtcaaattg cagtactctg ..... 780
cgggtgtata cagaatagca gatgggcag acattacgaa tgcacacggt gtggtgggcc ..... 840
caggtattgt tagcggtttg aagcaggcgg cagaagaagt aacaaaggaa cctagaggcc ..... 900
ttttgatgtt agcagaattg tcatgcaagg gctccotatc tactggagaa tatactaagg ..... 960
gtactgttga cattgegaag agcgacaaag attttgttat cggctttatt gctcaaagag ..... 1020
acatgggtgg aagagatgaa ggttacgatt ggttgattat gacacccggt gtgggtttag ..... 1080
atgacaaggg agacgcattg ggtcaacagt atagaaccgt ggatgatgtg gtctctacag ..... 1140
gatctgacat tattattgtt ggaagaggac tatttgcaaa gggaagggat gctaaggtag ..... 1200
agggtgaacg ttacagaaaa gcaggctggg aagcatattt gagaagatgc ggccagcaaa ..... 1260
actaaaaaac tgtattataa gtaaatgcat gtatactaaa ctcacaaatt agagcttcaa ..... 320
tttaattata tcagttatta coctgcggtg tgaaataccg cacagatgcg taaggagaaa ..... 1380
ataccgcatc aggaaattgt aaacgttaat attttgttaa aattcgcgtt aaattttge ..... 1440
taatcagct cattttttaa ccaataggce gaaatcggca aaatccctta taaatcaaaa ..... 1500
gaatagaccg agatagggtt gagtgttgtt ccagtttgga acaagagtcc actattaaag ..... 560
aacgtggact ccaacgtcaa agggcgaaaa accgtctatc agggegatgg eccactacgt ..... 1620
gaaccatcac cetaatcaag tttttgggg tegaggtgec gtaaagcact aaatcggaac ..... 1680
cctaaaggga geccccgatt tagagettga cggggaaage cggcgaacgt ggegagaaag ..... 1740
gaagggaaga aagcgaaagg agcgggcget agggcgctgg caagtgtagc ggtcacgctg ..... 1800
cgcgtaacca ccacaccegc cgcgcttaat gcgccgctac agggcgegtc gcgecattcg ..... 1860
ccattcaggc tgcgcaactg ttgggaaggg cgatcggtgc gggcctcttc gctattacgc ..... 920
cagctggcga aggggggatg tgctgcaagg cgattaagtt gggtaacgcc agggttttcc ..... 1980
cagtcacgac gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ..... 2040
ttggagetct agtacggatt agaagecgec gagegggcga cagcectceg acggaagact ..... 2100
ctcctccgtg cgtcctcgtc ttcaccggtc gcgttcctga aacgcagatg tgcctcgegc ..... 2160
cgcactgctc cgaacaataa agattctaca atactagctt ttatggttat gaagaggaaa ..... 2220
aattggcagt aacctggccc cacaaacctt caaattaacg aatcaaatta acaaccarag ..... 2280
gatgataatg cgattagttt tttagectta tttctggggt aattaatcag egaagcgatg ..... 2340
atttttgatc tattaacaga tatataaatg gaaagctgc ataaccactt taactaatac ..... 2400
tttcaacatt ttcagttgt attacttctt attcaaatgt cataaaagta tcaacaaaaa ..... 2460
attgttaata tacctctata ctttaacgtc aaggagaaaa aaccccggat tctagaacta ..... 2520
gtggatcccc catcatggtt tccaatcact tgtttgacgc aatgagagce gctgccectg ..... 2580
gtaacgeccc tttcataaga atagataata ctagaacttg gacatacgat gacgectttg ..... 2640
ctetatctgg tagaatagca tcagctatgg atgctttggg tatcagacca ggtgacagag ..... 2700
tcgcagttca agtagaaaaa tccgctgaag cattgatctt gtatttggct tgtttgagaa ..... 2760
gtggtgcagt ttatttgeca ttgaatactg cctacacatt agctgaattg gattacttca ..... 2820
taggtgacge agaacctaga ttggttgtag tegcctcttc agccagaget ggtgtagaaa ..... 2880
caattgctaa accaagaggt gcaatagtcg aaaccttaga tgctgctggt tctggtagtt ..... 2940
tgttagattt ggccagagac gaacctgctg attttgttga cgcttcaaga tcagccgatg ..... 3000
acttagcegc tattttgtac acctctggta ctacaggtag atcaaagggt gctatgttga ..... 3060
ctcatggtaa tttgttgtca aacgeattaa cettgagaga tttetggaga gttactgceg ..... 3120
gtgacagatt aatccacget ttgccaattt ttcatactca cggtttattc gttgetacca ..... 3180
acgtaacttt gttagcaggt gcctccatgt tettgttgag taagttegat ccagaagaaa ..... 3240
tattatcttt gatgcctcaa gctactatgt tgatgggtgt cccaacattc tacgttagat ..... 3300
tgttacaatc acctagatta gataagcaag ctgttgcaaa catcagattg tttatatceg ..... 3360
gtagtgctcc attgttagca gaaacccata ctgaatttca agcaagaaca ggtcacgcca ..... 3420
ttttagaag atacggtatg acagaaacca atatgaacac ttctaaccct tatgaaggta ..... 3480
aagaatagc tggtacagtt ggttttccat tgcctgatgt cacagttaga gtaaccgacc ..... 3540
cagccactgg tttagctttg ccacctgaac aaactggtat gatcgaaatt aaaggtccaa ..... 3600
acgttttaa gggttactgg agaatgectg aaaagactge tgetgagttt actgetgatg ..... 3660
gtttctttat ctctggtgac ttaggtaaaa ttgatagaga cggttatgtc catattgttg ..... 3720
gtcgtggtaa agatttggtt atatccggtg gttataacat ctaccctaag gaagtagaag ..... 3780
gtgaaataga tcaaatcgaa ggtgttgtag aatcagctgt aataggtgtc ccacatcctg ..... 8840
attttggtga aggtgttaca gcagtcgttg taagaaaacc aggtgctgca ttagatgaaa ..... 3900
aggcaattgt ttetgectta caagacagat tggctagata caageaacca aagagaataa ..... 3960
tcttcgcaga agatttgcct agaaatacta tgggtaaagt acaaaagaac atcttgagac ..... 4020
aacaatacgc cgacttatac accagaaccg aaggtagagg ttctttgtta acatgtggtg ..... 4080
acgttgaaga aaatccaggt cctatggctt cagaaaagga aataagaaga gaaagattct ..... 4140
tgaacgtatt cccaaagtta gttgaagaat tgaacgctag tttgttagct tatggtatgc ..... 4200
ctaaagaagc ctgcgattgg tatgctcact ctttaaacta caatactcca ggtggtaaat ..... 4260
tgaatagagg tttgagtgta gttgatactt atgctatctt gtctaacaaa accgttgaac ..... 4320
-continued
aattaggtca agaagaatac gaaaaggtcg ctatcttggg ttggtgtatt gaattgttgc ..... 4380
aagcatactt tttggttgcc gatgacatga tggataagtc tataacaaga agaggtcaac ..... 4440
catgctggta caaagttcca gaagttggtg aaatagccat aaatgatgct tttatgttgg ..... 4500
aagccgetat ctataattg ttgaagtcac atttcagaaa cgaaagtac tacatcgata ..... 4560
ttaccgaatt attccacgaa gttactttcc aaacagaatt gggtcaattg atggatttga ..... 4620
taactgcacc tgaagataaa gttgacttgt caaagttttc cttgaagaaa cattcattca ..... 4680
tcgtcacctt tgaaactgct tattactcct tetatttgcc agtegccttg gctatgtacg ..... 4740
tagctggtat tactgatgaa aaagacttga agcaagcaag agatgttttg atacctttgg ..... 4800
grgaatacte ccaaatccaa gatgactact tagactgttt cggtactcca gaacaaatag ..... 4860
gtaaaatcgg tacagatatt caagacaata agtgeagttg ggttattaac aaggctttgg ..... 4920
aattagcatc tgccgaacaa agaagactt tggatgaaaa ctacggtaaa aaggactcag ..... 4980
ttgctgaagc aaagrgtaag aaaattttta atgatttgaa gattgaacaa ttgtaccarg ..... 5040
aatacgaaga atccatcget aaagacttaa aggcaaagat tagtcaagtt gatgaatcaa ..... 5100
gaggttttaa agecgacgtt ttgacagett tettgaataa ggtetacaag agatcaaagt ..... 5160
gatgggetge aggaartcga tatcaagctt atcgataceg tcgacctcga gtcatgtaat ..... 5220
tagttatgtc acgettacat tcacgecctc cccceacatc cgctctaacc gaaaaggaag ..... 5280
gagttagaca acctgaagte taggtcceta tttatttett tatagttatg ttagtattaa ..... 5340
gaacgttatt tatatttcaa atttttcttt tttttctgta cagacgcgtg tacgcatgta ..... 5400
acattatact gaaaaccttg cttgagaagg ttttgggacg ctegaaggct ttaatttgeg ..... 5460
gecggtacce agcttttgtt cectttagtg agggttaatt cegagcttgg egtaatcatg ..... 5520
gtcatagctg tttcctgtgt gaaattgtta tecgetcaca attccacaca acataggagc ..... 5580
cggaagcata aagtgtaaag cctggggtgc ctaatgagtg aggtaactca cattaattgc ..... 5640
gttgcgetca ctgccogctt tccagtcggg aaacctgtcg tgceagctgc attaatgaat ..... 5700
cggceaacge geggggagag geggtttgeg tattgggege tettecgett ectcgetcac ..... 5760
tgactcgetg cgetcggtcg ttcggctgeg gegagcggta tcagctcact caaaggcggt ..... 5820
aatacggtta tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca ..... 5880
gcaaaaggce aggaaccgta aaaaggccge gttgctggcg tttttccata ggcteggccc ..... 5940
ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ..... 6000
ataaagatac caggcgttcc cccctggaag ctccctcgtg cgetctcctg ttccgaccct ..... 6060
gccgcttace ggatacctgt cegcctttct cccttcggga agcgtggcge tttctcaatg ..... 6120
ctcacgetgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca ..... 6180
cgaaccecce gttcagcceg accgetgcge cttatccggt aactatcgtc ttgagtccaa ..... 6240
cocggtaaga cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc ..... 3300
gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag ..... 6360
aaggacagta tttggtatct gegctetgct gaagccagtt accttcggaa aaagagttgg ..... 6420
tagctcttga tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca ..... 6480
gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc ..... 6540
tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag ..... 6600
gatcttcacc tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata ..... 6660
tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat ..... 6720
ctgtctattt cgttcatcca tagttgcetg actgcecgtc gtgtagataa ctacgatacg ..... 6780
ggagggetta ceatcrggec ecagtgetge aatgataccg cgagacceac getcaccggc ..... 6840
tceagattta teagcaataa accagecage cggaaggge gagegcagaa gtggtcetgc ..... 6900
aactttatcc gectccatcc agtctattaa ttgttgecgg gaagctagag taagtagttc ..... 6960
gccagttaat agtetgegca acgttgttgc cattgctaca ggcatcgtgg tgrcacgerc ..... 7020
gtcgtttggt atggcttcat tcagctccgg ttcccaacga tcaaggegag ttacatgatc ..... 7080
ccccatgttg tgaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa ..... 7140
gttggcegca gtgttatcac tcatggttat ggcagcactg cataattcte ttactgtcat ..... 7200
gccatccgta agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata ..... 7260
gtgratgegg egacegagtt getcttgece ggegtcaata cgggataata ecgegccaca ..... 7320
tagcagaact ttaaaagtge tcatcattgg aaaacgttct tcggggegaa aactctcaag ..... 7380
gatcttaceg etgetgagat ccagttcgat gtaacccact egtgeaccea actgatectc ..... 7440
agcatctttt actttcacca gcgtttetgg gtgagcaaaa acaggaagge aaaatgcegc ..... 7500
aaaaaggga ataagggcga cacggaaatg ttgaatactc atactcttcc tttttcaata ..... 7560
trattgaagc attratcagg getattgter catgagcgga tacatatttg aatgtatera ..... 7620
gaaaaataaa caaatagggg ttccgegcac atttcccoga aaagtgccac ctgacgtcta ..... 7680
gaaaccatt7690
<210> SEQ ID NO 23<211> LENGTH: 216
<212> TYPE: DNA<213> ORGANISM: Artificial sequence220> FEATURE
<223> OTHER INFORMATION: COdon optimized
<400> SEQUENCE: 23
atgggtaaaa actataagtc cttggattca gtegttgect cagatttcat egeattgggt ..... 60
atcacctcag aagtagcaga aacattacat ggtagattgg cagaaatcgt ttgtaattat ..... 120
ggtgctgcaa cecctcaaac ttggatcaac atcgctaacc atatcttgtc accagatttg ..... 180
cettcctcct tacaccaaat gttgttttat ggttgctaca aggatttcgg tecagccoca ..... 240
cctgcttgga ttccagaccc tgaaaaagtc aagtcaacta atttgggtgc tttgttggaa ..... 300
aagagaggta aagaattttt gggtgtaaag tacaaagatc caatttcttc tttttctcac ..... 360
ttccaagaat tttctgttag aaaccctgaa gtctattgga gaacagtatt gatggatgaa ..... 420
atgaaaatta gtttctctaa ggacccagaa tgtatcttga gaagagatga catcaacaac ..... 480
ccaggtggtt ctgaatggtt acctggtggt tacttgaact cagctaaaaa ttgcttgaac ..... 540
gtaaactcca ataagaaatt gaacgatact atgatcgttt ggagagacga gggtaacgat ..... 600
gacttgectt tgaataagtt gacattagat caattgagaa agagagtttg gttggttggt ..... 660
tatgcattgg aagaaatggg tttagaaaa ggttgtgcaa tagccatcga tatgccaatg ..... 720
catgttgatg ctgttgttat atatttggcc atagtattgg ctggtacgt agttgtctet ..... 780
atagcagatt cattttccgc ccctgaaatc tcaactagat tgagattatc caaagctaag ..... 840
gcaattttca cacaagatca catcatcaga ggtaaaaaga gaataccatt gtattcaaga ..... 900
gtagttgaag ctaaatccec aatggcaata gttatccctt gtagtggttc taacattggt ..... 960
gcagaattga gagatggtga catatcttgg gattactttt ragaaagage caaggagttt ..... 1020
aaaactgcg agtttactgc cagagaacaa cctgttgatg cttatactaa catcttattc ..... 1080
tccagtggta ctacaggtga accaaaagca attcettgga cacaagccac cccattgaag ..... 1140
gctgctgctg atggttggtc tcatttggat attagaaaag gtgacgttat agtatggcca ..... 1200
actaatttgg gttggatgat gggtccttgg ttggtttatg ctagtttgtt aatggtgca ..... 1260
tctattgect tgtacaacgg tagtcottta gtctctggtt tcgetaaatt tgttcaagat ..... 1320
gcaaaggtca caatgttggg tgtcgtacca tctattgtaa gatcatggaa atccacaaat ..... 1380
tgtgtttcag gttacgattg gtccaccata agatgctttt cttcatccgg tgaagcotct ..... 1440
aatgtagacg aatatttgtg gttaatgggt agagctaact acaagccagt tatagaaatg ..... 1500
tgtggrggta cagaaatcgg eggegetttt tetgetggtt catttetgca agctcaatct ..... 1560
ttaagttctt tttcatccca atgtatgggt tgcaccttgt acatattaga taagaacggt ..... 1620
tacceaatgc ctaaaataa gccaggtatc ggtgaattgg cattaggtcc tgttatgttt ..... 1680
ggtgcctcaa aaacartgtt aaacggtaat catcacgatg tctatttcaa gggtatgeca ..... 1740
accttgaatg gtgaagtatt gagaagacat ggtgacattt tcgaattgac ctctaacggt ..... 1800
tactaccatg cacacggtag agcegatgac actatgaaca tcggtggtat caaaattagt ..... 1860
tctatcgaaa tegaaagagt ctgtaatgaa gtagatgaca gagttttga aaccactgct ..... 1920
attggtgttc cacctttggg tggtggtcca gaacaattgg tcatattttt cgtattgaag ..... 1980
gattcaaacg acacaaccat tgattgaac caattgagat ratcctttaa ettgggttg ..... 2040
caaaagaaat tgaacccatt attcaaagtt actagagttg tcccattgtc atccttacct ..... 2100
agaactgcaa caaacaagat catgagaaga gttttgagac aacaattcag tcatttegaa ..... 2160
tga2163

<210> SEQ ID NO 2
<211> LENGTH: 1059
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 24
atggcttcag aaaaggaaat aagaagagaa agattcttga acgtattccc aaagttagtt 60
gaagaattga acgetagttt gttagettat ggtatgecta aagaagectg egattggtat $\quad 120$
gctcactctt taaactacaa tactccaggt ggtaaattga atagaggttt gagtgtagtt 180
gatacttatg ctatcttgtc taacaaaacc gttgaacaat taggtcaaga agaatacgaa 240
aaggtcgcta tcttgggttg gtgtattgaa ttgttgcaag catacttttt ggttgccgat 300
gacatgatgg ataagtctat aacaagaaga ggtcaaccat gctggtacaa agttccagaa 360
gttggtgaaa tagccataaa tgatgctttt atgttggaag ccgetatcta taaattgttg 420
aagtcacatt tcagaaacga aaagtactac atcgatatta cogaattatt coacgaagtt 480
actttccaaa cagaattggg tcaattgatg gatttgataa ctgcacctga agataaagtt 540
gacttgtcaa agtttecett gaagaaacat tcattcatcg tcacetttga aactgettat $\quad 600$
tactcettct atttgecagt egecttgget atgtacgtag ctggtattac tgatgaaaaa $\quad 660$
gacttgaage aagcaagaga tgttttgata cetttgggtg aatacttcca aatccaagat 720
gactacttag actgttcogg tactccagaa caaataggta aaatcggtac agatattcaa 780
gacaataagt gcagttgggt tattaacaag gctttggaat tagcatctgc cgaacaaaga 840
aagactttgg atgaaaacta cggtaaaaag gactcagttg ctgaagcaaa gtgtaagaaa 900
atttttaatg atttgaagat tgaacaattg taccatgaat acgaagaatc catcgctaaa ..... 960
gacttaaagg caaagattag tcaagttgat gaatcaagag gttttaaage egacgttreg ..... 1020
acagctttct tgaataaggt ctacaagaga tcaaagtag ..... 1059
<210> SEQ ID NO 2
211> LENGTH: 115
12> TYPE: DNA
120
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 25
atgaaccatt tgagagecga aggtectgec tecgtattag ccataggtac agccaaccea ..... 60
gaaaacatat tgatccaaga tgaatttcct gattattact tcagagttac caagagtgaa ..... 120
cacatgactc aattgaagga aaagtttaga aaaatatgtg ataagtctat gatcagaaag ..... 180
agaaactget tettgaacga agaacatteg aagcaaaatc caagattggt agaacacgaa ..... 240
atgcaaacat tggatgccag acaagacatg ttagttgtog aagttcctaa attgggtaaa ..... 300
gatgettgtg caaagccat taaggaatgg ggtcaaccaa agtcaaagat cactcatteg ..... 360
atttttacaa gtgcatctac tacagatatg cetggtgcag actaccactg tgccaaateg ..... 420
ttaggtttgt caccatccgt taagagagtc atgatgtatc aattaggttg ctacggtggt ..... 480
ggtactgttt tgagaatcge taaggatatt gcagaaaaca acaagggtge cagagtatta ..... 540
getgettget gegacattat ggettgettg tttagaggtc caagtgatte tgacttggaa ..... 600
ttgttagttg gtcaagctat cttcggtgac ggtgctgctg ctgttattgt tggtgcagaa ..... 660
cctgacgaat ctgttggtga aagaccaata tttgaattag tcagtacagg tcaaaccatc ..... 720
ttgcctaatt ctgaaggtac aattggtggt catataagag aagcaggttt gatcttcgat ..... 780
ttgcacaaag acgttccaat gttaatctct aacaacatag aaaagtgttt gatagaagca ..... 840
ttcactecta taggtatctc agattggaac tetartttct ggataacaca tccaggtggt ..... 900
aaggccattt tggataaggt tgaagaaaaa ttggatttga agaaagaaaa gtttgtagat ..... 960
agtagacatg ttttatctga acacggtaac atgtcttcat ccactgtctt gttcgtaatg ..... 1020
gatgaattga gaaagagatc attagaagag ggtaaatcta ctactggtga cggtttegaa ..... 1080
tggggtgtct tatttggttt cggtcctggt ttgaccgtcg aaagagtagt tgtcagatca ..... 140
gtaccaatta aatattag ..... 158
<210> SEQ ID NO 26

<211> LENGTH: 315

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE

<223> OTHER INFORMATION: Codon optimized

<400> SEQUENCE: 26
atggccgtca agcatttgat agtattgaag tttaagatg aaatcacaga agctcaaaag 60
$\begin{array}{lll}\text { gaagaattt tcaagaccta cgttaatteg gtcaacatta tacctgctat gaaagatgta } & 120\end{array}$
tactggggta aagacgttac acaaagaaa gaagaaggtt atacacacat tgtcgaagta 180
accttcgaat cagttgaaac tatccaagat tacatcattc atccagctca egttggtttt 240
ggtgacgttt acagatcctt ctgggaaaaa ttgttgatct tcgattacac cccaagaaag 300
ttaaagecaa aataa 315
<210> SEQ ID NO 2

<211> LENGTH: 118
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Codon optimized
<400> SEQUENCE: 27
atgggtttat catccgtctg tactttctcc ttccaaacta actatcatac cttattgaat 60
cetcacaaca acaatccaaa aacatcattg ttgtgttaca gacatccaaa gacacctatt $\quad 120$
aagtactctt acaacaactt tecatcaaaa cattgttcaa ccaagtcctt ccacttacaa 180
aataagrget cegaaagtt gectaraget aagaactcta tcagagctgc aactacaaat 240
caaactgaac cacctgaag tgataatcac tetgttgcca caaaaattt gaacttcggt $\quad 300$
aagcatgtt ggaagttgca aagaccatac accataatcg cttttactec ttgtgcatgc 360
$\begin{array}{ll}\text { ggrttatteg gtaaagaatt grtgeataac actaacttaa rttcatggtc evtgatgrec } & 420\end{array}$
aaggcatttt tcttttagt tgccatcttg tgcatcgctt cattcaccac tacaattaat 480
caaatatacg atttgcacat egacagaatt aacaaaccag atttgccttt ggcttcaggt $\quad 540$
gaaatatcog tcaatactgc atggatcatg tetatcatag tagecttgtt eggtttgatc 600
atcacaatta aatgaaggg tggtccattg tacatcttcg gttactgttt cggtatcttc 660
ggtggtateg tetattcegt accacctttt agatggaaac aaaaccetag tactgcettt $\quad 720$
ttgttgaatt tettagctca tatcatcaca aacttcacct tctactacge ttcaagagct 780
getttaggtt tgecattcga attgagacct tcattcacat ttttgttgge attcatgaaa 840
agtatgggtt ctgcattagc cttgatcaag gatgcetctg acgttgaagg tgacacaaag 900
ttcggtatta gtaccttgge ttctaagtac ggttcaagaa atttgacttt gttctgctcc 960
ggtatcgttt tgttaagtta egtcgeagec attttggeag gtatcattg gecacaagec 1020
$\begin{array}{ll}\text { ttaattcta acgttatgtt gttgtcacat gecatcttgg ctttctggtt gatcttgcaa } & 1080\end{array}$
actagagatt tegetttgac aaattatgac ectgaagcag gtagaagatt etacgagttt 1140
atgtggaaat tgtactacge tgaatattg gtatacgttt ttattag 1188
<210> SEQ ID NO

<211> LENGTH: 1635

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE

<223> OTHER INFORMATION: Codon Optimized

<400> SEQUENCE: 28
atgaaatgtt caactttctc cttttggttc gtatgeaaga tcatcttctt tttcttttcc 60
tttaacatce aaacaagtat egcaaaceca agagaaaact ttttgaagtg ettctcacaa 120
tacataccta ataacgccac caatttgaag ttggtttaca ctcaaaacaa cocattgtac 180
atgtcegtct tgaacagtac aatccataat ttgagattca cttctgatac cactccaaaa 240
cotttggtca ttgtaaccec tagtcatgta tctcacatcc aaggtactat ettatgttct $\quad 300$
aaaaggttg gtttgcaat tagaactaga tecggtggtc atgatagtga aggcatgtca $\quad 360$
tacatctecc aagttecatt egttatcgtt gatttgagaa acatgagatc aattaaaata $\quad 420$
gacgtacact cacaaactgc ttgggttgaa getggtgcaa cattgggtga agtatactac 480
tgggttaacg aaaagaatga aaacttatca ttggctgctg gttactgtcc aacagtttgc 540
gcaggtggtc attttggtgg tggtggttat ggtcctttaa tgagaacta cggtttggcc 600
gctgataaca taatcgacgc tcatttggta aatgttcacg gtaaagtttt ggatagaaag ..... 660
tctatgggtg aagacttatt ttgggerttg agaggtggtg gtgcagaatc attcggtacc ..... 720
atagttgett ggaagataag attagtcgea gtaccaaagt ctactatgtt ctcagtcaas ..... 780
aagataatgg aaatccatga attagttaaa ttggtcaata agtggcaaaa catcgcatac ..... 840
aagtacgata aggacttgtt grtgatgact catctcatca caagaaacat caccgataac ..... 900
caaggtaaaa ataagactge tatccacaca tacttttctt cagttttctt gggtggtgec ..... 960
gattccttag tagacttgat gaataagtct tttccagaat taggtattaa gaaaactgat ..... 1020
tgtagacaat tgtcteggat egacaccatc atcttttatt caggtgttgt caactacgat ..... 1080
acagacaact tcaacaaaga aatattattg gatagatecg caggtcaaaa cggtgcettt ..... 1140
aaaattaagt tagactacgt taaaagcca atacctgaat cagttttcgt ecaaatctea ..... 1200
gaaaaattgt acgaagaaga tattggtgca ggcatgtacg ccttgtatcc atacggtggt ..... 1260
ataatggacg aaatcagtga atctgccart ccatetcctc atagagetgg tatcttatac ..... 1320
gaattgtggt acatttgttc atgggaaaag caagaagata acgaaaagca cttaaactgg ..... 1380
attagaaca tctataactt catgactcca tacgtttcta aaaccctag attggcatat ..... 1440
ttgaactaca gagatttgga catcggtatt aacgatccaa agaatcctaa caactatacc ..... 1500
caagctagaa tttggggtga aaaatacttc ggtaaaaatt tcgatagatt agtaaaggtt ..... 1560
aagacattgg ttgacceaaa caacttcttt agaaacgaac aatccattcc acctttacct ..... 1620
agacatagac actga ..... 1635
$<210>$ SEQ ID NO 29
<211> LENGTH: 163
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE <223> OTHER INFORMATION : COdon optimized
<400> SEQUENCE: 29
atgaactgct ccgcattctc tttctggttc gtctgtaaaa taatcttctt cttcttgtcc ..... 60
ttcaacatcc aaatctccat cgcaaatcca caagaaaact ttttgaagtg tttctccgaa ..... 120
tacatcccaa acaaccctgc taaccoaaag tttatatata ctcaacatga tcaattgtac ..... 180
atgtccgttt tgaacagtac catccaaaat ttgagattca cttctgacac tacaccaaaa ..... 240
cctttagtca ttgttacacc ttccaatgtt agtcacattc aagettctat attgtgctet ..... 300
aagaaagtag gtttgcaaat cagaactaga tcaggtggtc atgatgcaga aggcatgtct ..... 360
tacatctcac aagttccatt egttgtagtc gatttgagaa atatgcattc cataaagatc ..... 420
gacgttcaca gtcaaacagc atgggtagaa gcaggtgcca ccttgggtga agtttactac ..... 480
tggatcaacg aaaagaatga aaacttttct ttccctggtg gttactgtcc aacagtaggt ..... 540
gtcggtggtc acttttctgg tggtggttat ggtgcattga tgagaaacta cggtttagct ..... 600
gcagataata ttatagacgc ccatttggtt aacgtagatg gtaaagtttt ggacagaaag ..... 660
tctatgggtg aagatttgtt ttgggccata agaggtggtg gtggtgaaas tttcggtatc ..... 720
attgccgett ggaaaattaa gttagtcgct gttccttcca aaagtactat tttctctgtc ..... 780
aaaaagaaca tggaaatcca cggtttggtt aagttgttta ataagtggca aaacatcget ..... 840
tacaagtacg ataaggactt ggttttgatg acccatttca ccactaaaaa tattacagat ..... 900
aaccatggta aaaataagac cactgttcac ggttatttt cttcaacttt ccatggtggt ..... 960

<210> SEQ ID NO 30
211> LENGTH: 42
212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 30
aggaaacgaa gataaatctc gagtttatca ttatcaatac tg

```
<210> SEQ ID NO 31
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: }3
```

ggaaaaatca gtcaaggcaa attaaagect tegagcg

```
*210> SEQ ID NO 32
<211> LENGTH: 27
212> IYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 32
```

gatgggggat ceactagttc tagaatc
<210> SEQ ID NO 33
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 33
tgatgggetg eaggaatteg atacc

[^1]```
<400> SEQUENCE: 34
gaactagrgg atcccccatc atgaaccatr rgagagcc
```38
<210> SEQ ID NO 3
<211> LENGTH: 32
\(<212>\) TYPE: DNA
<213> ORGANISM:
<220> FEATURE:
\[
\begin{aligned}
& \text { <220> FEATERE: } \\
& \text { <223> OTHER INFORMATION: Primer }
\end{aligned}
\]
400> SEQUENCE: 35tattttgget ttaactttet tggggtgtaa to
210 \(>\) SEQ ID NO 36

211> LENGTH: 43

212 \(\rightarrow\) TPPE: DMA

<220> FEATURE.

<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 36
agaaagttaa agccaaaata atgataacga gaataatatc agg
<210> SEQ ID NO 37
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 37
ataaacecat ggegcagace tgtgagag
\(<210>S E Q\) ID NO 38
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 38
ggtctgegec atgggtttat catcegtc
<210> SEQ ID NO 39
<211> LENGTH: 41
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 39
cgaattcctg cagcccatca gtgtctatgt ctaggtaaag g
<210> SEQ ID NO 40
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Prime
<400> SEQUENCE: 40
tgargggerg caggaatteg atarc
```

<211> LENGTH: 27
<213> ORGANISM: Artificial Sequence
<220> FEATUURE
<223> OTHER INFORMATION: PrimeI
<400> SEQUENCE: 41

```
gatgggggat ceactagtte tagaate
<210> SEQ ID NO 42
<211> LENGTH: 33
TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Pr1mer
<400> SEQUENCE: 42caccagaacc gaaggtagag gttctttgtt aac
<210> SEQ ID NO 43
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 43
cgaattcetg cageceatca etttgatete ttgtagacct tate
\(<210>\) SEQ ID NO 44
\(<211>\) LENGTH: 42
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE;
\(<223>\) OTHER INFORMATION: Primer
\(<400>\) SEQUENCE: 44
gaactagtgg ateccecatc atggtteca atcacttgtt tg
<210> SEQ ID NO 45
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 45
ctctaccttc ggttctggtg tataagteg
<210> SEQ ID NO 46
<211> LENGTH: 22
<212> TYPE: DNA:
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 46gatccactag ttctagaatc cg22
<210> SEQ ID NO 47

<211> LENGTH: 35

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE

<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 47
tctagaacta gtggatcatg aaccatttga gagce
```

<210> SEQ ID NO 4
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 48

```
tcgttatcac tttcttgggg tgtaatcg
<210> SEQ ID NO 49
<211> LENGTH: 36
212 \(>\) TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 49
ccaagaaagt gataacgaga ataatatcaa gaatac
\(<210>S E Q\) ID NO 50
<211> LENGTH: 4
\(<212>\) TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 50
aggtcgacgg tatcgttaaa taaaaacgta taccaaatat tcag
\(<210>S E Q\) ID NO 51
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 51
cgataccgtc gacctcga
18
<210> SEQ 1D NO 52
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primet
<400> SEQUENCE: 52
ggttaaacta gtatgggtaa aaactataag tc

<210> SEQ ID NO 5

<211> LENGTH: 3

<213> ORGANISM: Artificial Sequence

\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Primer

<400> SEQUENCE: 53
transforming the \(S\). cervisiae with a second nucleotide sequence comprising the nucleotide sequence of SEQ. ID. NO. 22 expressing a mutant prenyltransferase;
transforming the \(S\). cervisiae with a third nucleotide sequence comprising the nucleotide sequence of SEQ. 5 ID. NO. 25 expressing olivetolic synthase;
transforming the \(S\). cenvisiae with a fourth nucleotide sequence comprising the nucleotide sequence of SEQ ID. NO. 26 expressing olivetolic acid cyclase;
transforming the \(S\). cervisiae with a fifth nucleotide 10 sequence comprising the nucleotide sequence of SEQ ID. NO. 27 expressing aromatic prenyltransferase; and transforming the \(S\). cervisiae with a sixth nucleotide sequence comprising the nucleotide sequence of SEQ ID. NO. 28 expressing cannabidiolic acid synthase.

\section*{EXHIBIT B - PART 2}

Begins on the following page


The new extract is made from humulus, a variety of hop plant that naturally cross-pollinated with wild cannabis in India, and thus is entirely legal to sell.

\section*{Shoto via isrock/ Targrid}

Cannabidiol, more popularly known as CBD, is one of the hottest new trends in medicine and wellness, and patients and physicians across the country are uncovering new uses for this natural extract, ranging from the treatment of epilepsy to pain relief and anxiety. Although the medical evidence confirming the safety and efficacy of these treatments is overwhelming, the DEA still classifies CBD as a Schedule I drug in the U.S, since it's typically derived from prohibited cannabis or hemp plants. This has left CBD in a legal grey area, as it has been approved in some form by 30 US. states, and is widely available for sale throughout the rest of the country despite the federal ban.

The U.S. Food and Drug Administration has even aporoved a CBD-based epilepsy medication, but it seems likely that the price of this drug will be exponentially higher than other commercially-available CBD products. There are currently several different bills circulating in Congress that would authorize most forms of CBD federally by way of legalizing hemp, protecting states' rights to legalize marijuana. or by completely legalizing cannabis nationwide, but conservative Republicans have been finding ways to block all avenues of cannabis reform

While these bills slowly make their way through the legislative process, a San Francisco-based company just discovered another interesting way around the problem - by creating a new CBD extract sourced from unquestionably legal plants

Peâk Health Foundation just unveiled Real Scientific Humulus Oil (RHSO-K), a CBD oll derived from a new strain of the humulus plant. Humulus is a variety of hop, not cannabis or hemp, and hence this oil is entirely legal in the U5. Dr. Bomi Joseph, director of Peak Health, discovered the plant in the Silk Road region of India. Although hop plants do not traditionally contain cannabinoids, this parricular variety of humulus has naturally cross-pollinated with wild cannabis, leading to


Breaking Cannabis News
 some humulus strains with high concentrations of CBD and even THC.

Joseph told Westword that John Sullivan, a British governor of India in the mid1800 s, ordered his soldiers to collect and farm a variety of piants used for natural medicine. including hops, from around the country. This bit of history provided a

Warm Brew Talks Movies to Watch on Mushrooms a
Legal Weed in Canada The Southern California crew joined us for the latest edition of About
That Time" with Noah Rubin, our 42

clue, and Joseph headed to India to lacate the noted plant "I knew that there was a chance of this [cannabis-humulus cross-pollination] actually happening.' said Joseph, who began to take samples of humulus plants in order to test his hypothesis. "We looked at thousands of samples before we found one or two that had CBD in it," Joseph said, but once identifying them, "we were in good shape"

Peak Health selected the humulus strains with the largest natural quantities of CBD, and then cross-bred them in order to arrive at a new varlety of hops with even higher amounts of cannabidiol, the kriya brand humulus. This specific plant which is patented by Joseph, has an \(18 \%\) concentration of CBD. making it nipe for production of medicinal oils, "This is certainly going to help change the dialogue for not only many parents whose children have epilepsy, but various other worid markets which still, of course, consider cannabis part of the United Nations single convention treaty on narcotics.' Stuart Titus. CEO of Medical Marijuana Inc., the company that is distributing this new product, said to Westword


Fublished on August 1, 20ie
Chris Moore :-
Chuis Moore is a New York-based writer who has written for Mass Appeal whille also mixing records and producing electronic music

The Latest Vids


From the Web


Gross Things That
Shouldn't Surnrise You About McDonald's

Powered by ZergNel


Science Soys This Body. Type Is the Most Attractive

How the Hemp Industry Is Being Reshaped by Canadian Pot Legalization
What challenges are to come as the reat White North goes green and the U.S. Hemp Farming Act of 2018 .


Kodie Shane Talks Lobsters for Thanksgiving and Teaches Us to Roll a Backwoods
The Atlanta rapper joined us for the latest edition of "About That Time"


Add to favorites




his time, Joseph says: "He believed in natural health; he believed in natural curing. And he was powerful, right, he had the British government, they ruled India. He could do what he wanted. He made an estate called Stone House in a place called Ooty - it's a cool-climate, hilled station in the southern part of India - and he had the British soldiers bring plants from all over the country and plant them there."

Sullivan's Stone House became a sanatorium for the British. When they felt sick or in need of some rest and relaxation, they would go there, taking solace in the hills. Years later, researchers identified a variety of humulus yunnanensis at Stone House that was useful in treating malaria.
"That got my attention," Joseph says, "because normally when people talk about yunnanensis, they talk about China, the Yunnan province. So the fact that in the southern part of India, where my family is historically from, you find this humulus yunnanensis, I was hike, 'How the hell did it get there?'"

He was determined to find out. Then Ari Cohen, one of his colleagues at Peak Health, found a reference to the yunannensis plant at a symposium given by India's Central Food Technological Research Institute. Their analysis of the plant discovered traces of cannabinoids.

Joseph cites this as his first tip. "I knew that there was a chance of this [cannabis-humulus cross-pollination] actually happening," Joseph recalls, so he headed to northern India and started searching. "In the beginning it was hard, because the native tribes people there, they're all sitting and looking at me like, 'What is this crazy guy doing?' They're like the porters, we had hired them and they're wandering around chewing betel nut, drinking their rice wine and sitting around looking at me. For a few weeks it was crazy, but then I finally showed them what we're looking for: Once they got it, they were just taking me here, taking me there, showing me this, showing me that. I was like, 'No, no, no,' but then we found it. It started getting faster and faster. Once they found some and we found some, then we started getting samples. But we looked at thousands of samples before we found one or two that had CBD in it."


After that, though, "We were in good shape," Joseph says. "Then it was just a matter of grunt work and effort," cross-breeding the plants (in which CBD is a recessive trait) until they'd created a dependable, high-CBD concentration variety.

Joseph's kriya brand humulus is a variety of humulus yunnanensis, one of three species of the humulus genus. Distinct from humulus lupulus - a different species of hop, the one from which the female flowers (known as hops, plural) are used to make beer - humulus yunnanensis

IF YOU LIKE THIS STORY, CONSIDER SIGNING UP FOR OUR EMAIL NEWSLETTERS.
SHOW ME HOW is native to the Yunnan province in southern China, along the Indian border. Here, the plant was able to cross-pollinate with wild cannabis, as both genera are members of the same family of flowering plants, cannabaceae. This endowed kriya brand humulus with trace amounts of CBD and, in some cases, THC. Avoiding the latter, Joseph and his team meticulously selected and cross-bred plants with high concentrations of CBD until they arrived at a variety - kriya brand humulus - with an 18 percent CBD concentration. Joseph holds a patent for this as well as the
modification of any other humulus plant to produce CBD and cannabinoids.

Through a partnership with distributor Medical Marijuana Inc. (which previously made headlines as the first publicly traded cannabis company in the U.S.), what's now known as ImmunAG is combined with medium-chain triglyceride oil to form RSHO-K. Last month, Medical Marijuana Inc. made the product available to consumers nationwide via its online store.

Since it's free of THC and the cumbersome legal baggage of cannabis, RSHO-K gives Stuart Titus, CEO of Medical Marijuana Inc., high hopes. Beyond simply filling gaps in the U.S. CBD market, he expects the product to have an international impact. "This is certainly going to help change the dialogue for not only many parents whose children have epilepsy," he says, "but various other world markets which still, of course, consider cannabis part of the United Nations single convention treaty on narcotics."

Looking back, Joseph is grateful for his luck. "If John Sullivan hadn't planted it and if a mention had not been made of it, I don't know if we would have had a clue," he says. "He did something that made it stick out and that led us to it. I'm sitting here in my office in Los Gatos, a fancy little place. I've got 500 megabit WiFi speeds; I can Google anything. But the reality is, we haven't studied more than 4 percent of all the plants that are out there. If I want to go beyond the 4 percent, I've got to go to the Amazon jungles, the Himalayan mountains; there's no other way. We've got to go get bitten by mosquitoes, chewed up by leeches and deal with the heat and humidity, there's no other way."


Nick Maahs is an editonial Intern for Westword during summer 2018 Raised in Denver, he attends Whitman College in Walla Walla, Washington, where he tries to escape his small-town blues by studying English and writing for the student-run paper, The Wire

CONTACT: Nick Maahs
FOLLOW: Twitter: deermandown

POPULAR STORIES
- Colorado Marfijana Will Likely Require Heavy Metals Testing.
- Why Colorado Tokers Love Mango Kush
- Aska Stoner: Should I Tell My Landlord I Smoke Weedi?
- Former House Repubilicans Policy Director Jons Terrapin

DENVER DEALS NEAR YOU
maryland
Shop Name

New Device Stuns Attacker
SafePersconailiarn cor

Anyone can easily use this to \& \(x\) defend themselves, no matte the age or physical ability.


\section*{Tokers of the Old-School: Dispensaries Carrying Classic Strains}

\author{
herbert fuego october 22, 2018 | \(9: 25\) am
}

Thanks to legalization, we've never had more choices when buying pot; commercial breeders are constantly toying with the boundless combinations of cannabis genetics, looking for a way to get an edge up on the competition. But all these new options can make strain shopping tricky, especially for newcomers to this state encountering an embarrassment of riches.

Unlike in Colorado, tokers in non-legal states have had to purchase whatever was available where they grew up, giving someone from Illinois or Nebraska a larger affinity for Northern Lights, for example, than someone from the West Coast. And for anyone getting back into cannabis use after taking off for a few decades, such classic strains as AK-47, Hindu Kush or Maui Wowie provide a sense of comfort... if they can find them.

\section*{RELATED STORIES}
- Hemp Sold in Dispensaries? DORA Recommende That and More!
- Colorado Marijuana Will Likely Require Heavy Metals Testing in 2019
- Ghostly Ganja: Ten Weed Strains for Halloween Lovers

Fortunately, despite the wide array of strains available in Colorado, a lot of the old, reliable strains are more available than you might think. Here are ten dispensaries that carry a boatload of classic buds, from Colombian Gold to East Coast Sour Diesel.

Botanico
3054 Larimer Street
303-297-2273
botanicommi.com
Diego Pellicer
2949 West Alameda Avenue
720-787-4909
co.diego-pellicer.com
Good Chemistry
Three metro locations
goodchem.org
Green Cross of Cherry Creek
3400 South Oneida Way
303-321-4201
greencrosscc.com
Healing House Denver
2383 South Downing Street
720-379-3816
healinghousefamily.com



The Joint by Cannabis
4735 West 38th Avenue
303-455-0079
thejoint.life
The Kind Room
1881 South Broadway
720-266-3136
thekindroom.org
L'Eagle
380 Quivas Street
303-825-0497
leagledenver.com
\begin{tabular}{ll} 
IF YOU LIKE THIS STORY, & Sacred Seed \\
CONSIDER SIGNING UP FOR OUR & 5885 East Evans Avenue \\
\hline EMAIL NEWSLETTERS. & \(303-756-3762\) \\
\hline SHOW ME HOW & sacredseed.co \\
\hline & Silver Stem Fine Cannabis \\
\hline
\end{tabular}

Seven metro locations
silverstemcannabis.com
Oasis Cannabis Superstore
5440 West 44th Avenue
303-333-3338
6359 East Evans Avenue
303-756-1494
oasissuperstore.com
幽

\section*{POPULAR STORIES}
- Colorado Marijuana Will Likely Require Heavy Metals Testing.
- Aska Stoner: Should I Tell My Landlord Smoke Weed?
- Former House Republicans Policy Director Joins Terrapin
- Op Ed Vote No on Amendment X, Keep Hemp Legal and Constitutional
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{UPCOMING EVENTS} \\
\hline Casey Donahew & & Denver Broncos & \\
\hline Wed. Nov. 21. 8.30pm & nckas & Sun. Nov 25, 225pm & nctas \\
\hline \multicolumn{2}{|l|}{Smiltrield and Evve Shane} & Mark Chesnutf & \\
\hline Ff. Nov 23, 830pm & покетs & Ffi. Nov. 30.8 .30 pm & текат \\
\hline \multicolumn{2}{|l|}{Chris Lane} & \multicolumn{2}{|l|}{Alice 105.9 s Alice in Winteriond} \\
\hline Sol. Nov 24.8.30pm & пскті5 & Tue. Dec \(4,600 \mathrm{pm}\) & пcmas \\
\hline \multicolumn{2}{|l|}{Comedian Alonzo Bodden} & \multicolumn{2}{|l|}{A Drog Queen Christmos- The N .} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{ff. Nov. 30. 7:30pm \(=\) - goldstar}} & Ff. Dece 7700pm & nckars \\
\hline & & & \\
\hline & & & See More > \\
\hline
\end{tabular}

US 20180153948A1

\section*{(19) United States}
\({ }_{(12)}\) Patent Application Publication
(10) Pub. No.: US 2018/0153948 A1 Murphy
(43) Pub. Date:

Jun. 7, 2018
(54) SYSTEMS AND METHODS FOR EXTRACTION OF NATURAL PRODUCTS
(71) Applicant: METAGREEN, Los Angeles, CA (US)
(72) Inventor: Randall B. Murphy, Glenmoore, PA (US)
(21) Appl. No.: 15/469,311
(22) Filed: Mar. 24, 2017 Related U.S. Application Data
(60) Provisional application No. 62/431,351, filed on Dec. 7, 2016.

\section*{Publication Classification}
(51) Int. Cl.

A61K 36/185 (2006.01)
A6IK 31/352 (2006.01) B01D 11/02
(2006.01)
(52) U.S. Cl.

СРС .......... A61K 36/185 (2013.01); A61K 31/352 (2013.01); A61K 2236/37 (2013.01); A61K \(2236 / 333\) (2013.01); B01D 11/0288 (2013.01)

\section*{ABSTRACT}

Described herein, inter alia, are processes, methods, and compositions useful for the extraction of natural products from source materials.

\section*{FLGURE 1}

\section*{Extraction Efficiency of Mixtures of R22/DME}


FIGURE 2

Effects of different gases on extraction efficiency


\section*{SYSTEMS AND METHODS FOR EXTRACTION OF NATURAL PRODUCTS}

\section*{CROSS-REFERENCES TO RELATED APPLICATIONS}
[0001] This application claims the benefit of U.S. Provisional Application No. 62/431,351, filed Dec. 7, 2016, which is incorporated herein by reference in entirety and for all purposes.

\section*{BACKGROUND OF THE INVENTION}
[0002] A major problem in pharmaceutical chemistry relates to extraction of useful substances from plants or animals where such useful substances are employed for the formulation of a pharmaceutical or a nutraceutical. Various processes exist for the extraction of natural products from plant, animal, fungi, bacteria, or virus, but each of these processes suffer from one or more deficiencies. There is an unmet need for a new methodology which can safely and selectively extract desired medicinally or nutritionally valuable components from natural materials.

BRIEF SUMMARY OF THE INVENTION
[0003] In a first aspect, is provided a method of extracting a natural organic compound from a natural material, the method including contacting the natural material with an extraction fluid thereby extracting the natural organic compound from the natural material into the extraction fluid to form an extracted fluid solution. The extraction fluid includes a fluorophilic compound and a hydrofluorocarbon. [0004] In another aspect, is provided a fluid including chlorodifluoromethane and dimethylether.

\section*{BRIEF DESCRIPTION OF THE DRAWINGS}
[0005] FIG. 1 Graph depicting the efficiency of mixtures of fluorocarbon R22 and dimethyl ether (DME) to extract total cannabinoids in a single 30 -minute extraction at \(26^{\circ} \mathrm{C}\).
[0006] FIG. 2 Graph demonstrating that the efficiency of pure materials to extract camabinoids in a single 30 -minute procedure at \(26^{\circ} \mathrm{C}\). can be determined

\section*{DETAILED DESCRIPTION OF THE INVENTION}

\section*{I. DEFINITIONS}
[0007] The abbreviations used herein have their conventional meaning within the chemical and biological arts. The chemical structures and formulae set forth herein are constructed according to the standard rules of chemical valency known in the chemical arts.
[0008] Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents that would result from writing the structure from right to left, e.g., \(-\mathrm{CH}_{2} \mathrm{O}\) - is equivalent to \(-\mathrm{OCH}_{2}\) -
[0009] The term "alkyl," hy itself or as part of another substituent, means, unless otherwise stated, a straight (i.e., unbranched) or branched carbon chain (or carbon), or combination thereof, which may be fully saturated, mono- or polyunsaturated and can include mono-, di- and multivalent radicals, having the number of carbon atoms designated (i.e., \(\mathrm{C}_{1}-\mathrm{C}_{10}\) means one to ten carbons). Alkyl is an uncyclized
chain. Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, (cyclohexyl) methyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. An alkoxy is an alkyl attached to the remainder of the molecule via an oxygen linker ( -O -) An alkyl moiety may be an alkenyl moiety. An alkyl moiety may be an alkynyl moiety. An alkyl moiety may be fully saturated. An alkenyl may include more than one double bond and/or one or more triple bonds in addition to the one or more double bonds. An alkynyl may include more than one triple bond and/or one or more double bonds in addition to the one or more triple bonds.
[0010] The term "alkylene," by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from an alkyl, as exemplified, but not limited by, \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\). Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred herein. A"lower alkyl" or "lower alkylene" is a shorter chain alkyl or alkylene group, generally having eight or fewer carbon atoms. The term "alkenylene," by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from an alkene.
[0011] The term "heteroalkyl," by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched cham, or combinations thereof, including at least one carbon atom and at least one heteroatom (e.g., O, N, P, Si, and S), and wherein the nitrogen and sulfur atoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quatemized. The heteroatom(s) (e.g., \(\mathrm{N}, \mathrm{S}, \mathrm{Si}\), or P ) may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Heteroalkyl is an uncyclized chain. Examples include, but are not limited to: \(\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{3}\), \(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{3}, \quad \mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\), \(-\mathrm{CH}_{2}-\mathrm{CH}_{2}, \quad-\mathrm{S}(\mathrm{O})-\mathrm{CH}_{3}, \quad-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}(\mathrm{O})_{2}-\) \(\mathrm{CH}_{3},-\mathrm{CH}=\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{3},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}, \quad-\mathrm{CH}_{2}\) \(\mathrm{CH}=\mathrm{N}-\mathrm{OCH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{3},-\mathrm{O}-\mathrm{CH}_{3}\), \(-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\), and -CN . Up to two or three heteroatoms may be consecutive, such as, for example, \(-\mathrm{CH}_{2}\) -\(\mathrm{NH}-\mathrm{OCH}_{3}\) and \(-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\). A heteroalkyl moiety may include one heteroatom (e.g., O, N, S, Si, or P). A heteroalkyl moiety may include two optionally different heteroatoms (e.g., \(\mathrm{O}, \mathrm{N}, \mathrm{S}, \mathrm{Si}\), or P ). A heteroalkyl moiety may include three optionally different heteroatoms (e.g., O, \(\mathrm{N}, \mathrm{S}, \mathrm{Si}\), or P). A heteroalkyl moiety may include four optionally different heteroatoms (e.g., O, N, S, Si, or P). A heteroalkyl moiety may include five optionally different heteroatoms (e.g., O, N, S, Si, or P). A heteroalkyl moiety may include up to 8 optionally different heteroatoms (e.g., \(\mathrm{O}, \mathrm{N}, \mathrm{S}, \mathrm{Si}\), or P ). The term "heteroalkenyl," by itself or in combination with another tenn, means, unless otherwise stated, a heteroalkyl including at least one double bond. A heteroalkenyl may optionally include more than one double bond and/or one or more triple bonds in additional to the one or more double bonds. The term "heteroalkynyl," by itself or
in combination with another term, means, unless otherwise stated, a heteroalkyl including at least one triple bond. A heteroalkynyl may optionally include more than one triple bond and/or one or more double bonds in additional to the one or more triple bonds.
[0012] Similarly, the term "heteroalkylene," by itself or as part of another substituent, means, unless otherwise stated, a divalent radical derived from heteroalkyl, as exemplified, but not limited by, \(\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\) and \(-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\). For heteroalkylene groups, heteroatoms can also occupy either or both of the chain ternini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). Still further, for alkylene and heteroalkylene linking groups, no orientation of the linking group is implied by the direction in which the formula of the linking group is written. For example, the formula - \(\mathrm{C}(\mathrm{O})_{2} \mathrm{R}^{\prime}\) - represents both \(-\mathrm{C}(\mathrm{O})_{2} \mathrm{R}^{\mathrm{\prime}}\) - and \(-\mathrm{R}^{\prime} \mathrm{C}(\mathrm{O})_{2}\)-. As described above, heteroalkyl groups, as used herein, include those groups that are attached to the remainder of the molecule through a heteroatom, such as - \(\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{C}(\mathrm{O}) \mathrm{NR}^{\prime},-\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{OR}^{\prime}\), - \(\mathrm{SR}^{\prime}\), and/or - \(\mathrm{SO}_{2} \mathrm{R}\) '. Where "heteroalkyl" is recited, followed by recitations of specific heteroalkyl groups, such as - NR'R" or the like, it will be understood that the terms heteroalkyl and -NR'R" are not redundant or mutually exclusive. Rather, the specific heteroalkyl groups are recited to add clarity. Thus, the term "heteroalkyl" should not be interpreted herein as excluding specific heteroalkyl groups, such as -NR'R" or the like.
[0013] The terms "cycloalkyl" and "heterocycloalkyl," by themselves or in combination with other terms, mean, unless otherwise stated, cyclic versions of "alkyl" and "heteroalkyl," respectively. Cycloalkyl and heterocycloalkyl are not aromatic. Additionally, for heterocycloalkyl, a heteroatom can occupy the position at which the heterocycle is attached to the renainder of the molecule. Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like. Examples of heterocycloalkyl include, but are not limited to, 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetra-hydrofuran-3-yl, tetrahydrothien-2-yl, tetrahydrothien-3-yl, 1-piperazinyl, 2-piperazinyl, and the like. A "cycloalkylene" and a "heterocycloalkylene," alone or as part of another substituent, means a divalent radical derived from a cycloalkyl and heterocycloalkyl, respectively.
[0014] The terms "halo" or "halogen," by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. Additionally, terms such as "haloalkyl" are meant to include monohaloalkyl and polyhaloalkyl. For example, the term "halo( \(\mathrm{C}_{1}\) \(\mathrm{C}_{4}\) )alkyl" includes, but is not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like.
[0015] The term "acyl" means, unless otherwise stated, - \(\mathrm{C}(\mathrm{O}) \mathrm{R}\) where R is a substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
[0016] The term "aryl" means, unless otherwise stated, a polyunsaturated, aromatic, hydrocarbon substituent, which can be a single ring or multiple rings (preferably from 1 to

3 rings) that are fused together (i.e., a fused ring aryl) or linked covalently. A fused ring aryl refers to multiple rings fused together wherein at least one of the fused rings is an aryl ring. The term "heteroaryl" refers to aryl groups (or rings) that contain at least one heteroatom such as \(\mathrm{N}, \mathrm{O}\), or S , wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom(s) are optionally quaternized. Thus, the term "heteroaryl" includes fused ring heteroaryl groups (i.e., multiple rings fused together wherein at least one of the fused rings is a heteroaromatic ring). A 5,6 -fused ring heteroarylene refers to two rings fused together, wherein one ring has 5 members and the other ring has 6 members, and wherein at least one ring is a heteroaryl ring. Likewise, a 6,6 -fused ring heteroarylene refers to two rings fused together, wherein one ring has 6 members and the other ring has 6 members, and wherein at least one ring is a heteroaryl ring. And a 6,5 -fused ring heteroarylene refers to two rings fused together, wherein one ring has 6 members and the other ring has 5 members, and wherein at least one ring is a heteroaryl ring. A heteroaryl group can be attached to the remainder of the molecule through a carbon or heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, naphthyl, pyrrolyl, pyrazolyl, pyridazinyl, triazinyl, pyrimidinyl, imidazolyl, pyrazinyl, purinyl, oxazolyl, isoxazolyl, thiazolyl, furyl, thienyl, pyridyl, pyrimidyl, benzothiazolyl, benzoxazoyl benzimidazolyl, benzofuran, isobenzofuranyl, indolyl, isoindolyl, benzothiophenyl, isoquinolyl, quinoxalinyl, quinolyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazoly1, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidyl, 4-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1 -isoquinolyl, 5 -isoquinolyl, 2-quinoxalinyl, 5 -quinoxalinyl, 3-quinolyl, and 6 -quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below. An "arylene" and a "heteroarylene," alone or as part of another substituent, mean a divalent radical derived from an aryl and heteroaryl, respectively. A heteroaryl group substituent may be - O - bonded to a ring heteroatom nitrogen.
[0017] Spirocyclic rings are two or more rings wherein adjacent rings are attached through a single atom. The individual rings within spirocyclic rings may be identical or different. Individual rings in spirocyclic rings may be snbstituted or unsubstituted and may have different substituents from other individual rings within a set of spirocyclic rings. Possible substituents for individual rings within spirocyclic rings are the possible substituents for the same ring when not part of spirocyclic rings (e.g. substituents for cycloalkyl or heterocyclualkyl rings). Spirocylic rings may be substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkyl or substituted or unsubstituted heterocycloalkylene and individual rings within a spirocyclic ring group may be any of the immediately previous list, including having all rings of one type (e.g. all rings being substituted heterocycloalkylene wherein each ring may be the same or different substituted heterocycloalkylene). When referring to a spirocyclic ring system, heterocyclic spirocyclic rings means a spirocyclic rings wherein at least one ring is a heterocyclic ring and wherein each ring may be a different ring. When referring to
a spirocyclic ring system, substituted spirocyclic rings means that at least one ring is substituted and each substituent may optionally be different.
[0018] The term "oxo," as used herein, means an oxygen that is double bonded to a carbon atom.
[0019] The term "alkylarylene" as an arylene moiety covalently bonded to an alkylene moiety (also referred to herein as an alkylene linker). In embodiments, the alkylarylene group has the formula:

[0020] An alkylarylene moiety may be substituted (e.g. with a substituent group) on the alkylene moiety or the arylene linker (e.g. at carbons 2, 3, 4, or 6 ) with halogen, oxo, \(-\mathrm{N}_{3},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},-\mathrm{CBr}_{3},-\mathrm{CI}_{3},-\mathrm{CN},-\mathrm{CHO}\), \(-\mathrm{OH},-\mathrm{NH}_{2},-\mathrm{COOH},-\mathrm{CONH}_{2},-\mathrm{NO}_{2},-\mathrm{SH}\), \(-\mathrm{SO}_{2} \mathrm{CH}_{3}-\mathrm{SO}_{3} \mathrm{H},-\mathrm{OSO}_{3} \mathrm{H},-\mathrm{SO}_{2} \mathrm{NH}_{2}\), \(-\mathrm{NHNH}_{2}\), \(-\mathrm{ONH}_{2},-\mathrm{NHC}(\mathrm{O}) \mathrm{NHNH}_{2}\), substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{5}\) alkyl or substituted or unsubstituted 2 to 5 membered heteroalkyl). In embodiments, the alkylarylene is unsubstituted.
[0021] Each of the above terms (e.g., "alkyl," "heteroalkyl," "cyclalkyl," "heterocycloalkyl," "aryl," and "heteroaryl") includes both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
[0022] Substituents for the alkyl and heteroalkyl radicals (including those groups often referred to as alkylene, alkenyl, heteroalkylene, heteroalkenyl, alkynyl, cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl) can be one or more of a variety of groups selected from, but not limited to, \(-\mathrm{OR}^{\prime},=\mathrm{O},=\mathrm{NR}^{\prime},=\mathrm{N}-\mathrm{OR}^{\prime},-\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{SR}^{\prime}\), -halogen, -SiR'R"R'", \(\mathrm{OC}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{CO}_{2} \mathrm{R}^{\prime}\), -CONR'R", -OC(O)NR'R", -NR"C(O)R', -NR' \({ }^{\prime}{ }^{\prime}\) (O)NR"R'", -NR"C(O) \({ }_{2} \mathrm{R}^{\prime},-\mathrm{NR}-\mathrm{C}\left(\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}\right)=\mathrm{NR}^{\prime \prime \prime}\), - \(\mathrm{NR}-\mathrm{C}\left(\mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime}\right)=\mathrm{NR}^{\prime \prime \prime},-\mathrm{S}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})\) \({ }_{2} \mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{NRSO}_{2} \mathrm{R}^{\prime},-\mathrm{NR}^{\prime} \mathrm{NR}^{\prime \prime} \mathrm{R}^{\prime \prime \prime},-\mathrm{ONR} \mathrm{R}^{\prime}{ }^{\prime \prime},-\mathrm{NR}^{\prime} \mathrm{C}\) (O) \(\mathrm{NR}^{\prime \prime} \mathrm{NR}^{\prime \prime \prime} \mathrm{R}^{\prime \prime \prime \prime},{ }^{2} \mathrm{CN},-\mathrm{NO}_{2},-\mathrm{NR}^{\prime} \mathrm{SO}_{2} \mathrm{R}^{\prime \prime},-\mathrm{NR} \mathrm{C}(\mathrm{O})\) \(\mathrm{R}^{\prime \prime},-\mathrm{NR} \mathrm{K}^{\prime} \mathrm{C}(\mathrm{O})-\mathrm{OR}^{\prime \prime},-\mathrm{NR}^{\prime} \mathrm{OR}{ }^{\prime \prime}\), in a number ranging from zero to ( \(2 \mathrm{~m}^{\prime}+1\) ), where \(\mathrm{m}^{\prime}\) is the total number of carbon atoms in such radical. \(\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime \prime}\), and \(\mathrm{R}^{\prime \prime \prime}\) each preferably independently refer to hydrogen, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl (e.g., aryl substituted with 1-3 halogens), substituted or unsubstiruted heteroaryl, substituted or unsubstituted alkyl, alkoxy, or thioalkoxy groups, or arylalkyl groups. When a compound described herein includes more than one R group, for example, each of the R groups is independently selected as are each \(\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime}\), and \(\mathrm{R}^{\prime \prime \prime}\) group when more than one of these groups is present. When \(\mathrm{R}^{\prime}\) and
\(R^{\prime \prime}\) are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a \(4-, 5-, 6\)-, or 7 -membered ring. For example, -NR'R" includes, but is not limited to, 1-pyrrolidinyl and 4-morpholinyl. From the above discussion of substituents, one of skill in the art will understand that the term "alkyl" is meant to include groups including carbon atoms bound to groups other than hydrogen groups, such as haloalkyl (e.g., \(-\mathrm{CF}_{3}\) and \(-\mathrm{CH}_{2} \mathrm{CF}_{3}\) ) and acyl (e.g., \(-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3},-\mathrm{C}(\mathrm{O}) \mathrm{CF}_{3},-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{OCH}_{3}\), and the like).
[0023] Similar to the substituents described for the alkyl radical, substituents for the aryl and heteroaryl groups are varied and are selected from, for example: - OR', -NR'R', \(-\mathrm{SR}^{\prime}\), -halogen, - \(\mathrm{SiR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}\), \(\mathrm{OC}(\mathrm{O}) \mathrm{R}^{\prime},-\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime}\), \(-\mathrm{CO}_{2} \mathrm{R}^{\prime}, \quad \mathrm{CONR}{ }^{\prime} \mathrm{R}^{\prime \prime}\), OC(O)NR'R", -NR"C(O)R', \(-\mathrm{NR}^{\prime}-\mathrm{C}(\mathrm{O}) \mathrm{NR}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}, \quad-\mathrm{NR}{ }^{\prime \prime} \mathrm{C}(\mathrm{O})_{2} \mathrm{R}^{\prime}, \quad-\mathrm{NR}-\mathrm{C}\) \(\left(N^{\prime} R^{\prime \prime} R^{\prime \prime}\right)=N R " ' ",-N R-C\left(R^{\prime} R^{\prime \prime}\right)=N^{\prime \prime \prime},-S(O) R^{\prime}\), \(-\mathrm{S}(\mathrm{O})_{2} \mathrm{R}^{\prime},-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\prime} \mathrm{R}^{\prime \prime},-\mathrm{NRSO}_{2} \mathrm{R}^{\prime},-\mathrm{NR}^{\prime} \mathrm{NR}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}\), —ONR'R", -NR'C(O)NR"NR'"R"", - \(\mathrm{CN},-\mathrm{NO}_{2},-\mathrm{R}^{\prime}\), \(-\mathrm{N}_{3},-\mathrm{CH}(\mathrm{Ph})_{2}\), fluoro \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) alkoxy, and fluoro \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) alkyl, - \(\mathrm{NR}^{\prime} \mathrm{SO}_{2} \mathrm{R}^{\prime \prime}\), - \(\mathrm{NR}^{\prime} \mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime \prime}\), \(-\mathrm{NR} \mathrm{N}^{\prime} \mathrm{C}(\mathrm{O})-\mathrm{OR}^{\prime \prime}\), - \(\mathrm{NR}^{\prime} \mathrm{OR}^{\prime \prime}\), in a number ranging from zero to the total number of open valences on the aromatic ring system; and where \(\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime \prime}\), and \(\mathrm{R}^{\prime \prime \prime \prime}\) are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl. When a compound described herein includes more than one R group, for example, each of the R groups is independently selected as are each \(\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}, \mathrm{R}^{\prime \prime \prime}\), and \(\mathrm{R}^{\prime \prime \prime}\) groups when more than one of these groups is present.
[0024] Substituents for rings (e.g. cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene) may be depicted as substituents on the ring rather than on a specific atom of a ring (commonly referred to as a floating substituent). In such a case, the substituent may be attached to any of the ring atoms (obeying the rules of chemical valency) and in the case of fused rings or spirocyclic rings, a substituent depicted as associated with one member of the fused rings or spirocyclic rings (a floating substituent on a single ring), may be a substituent on any of the fused rings or spirocyclic rings (a floating substituent on multiple rings). When a substituent is attached to a ring, but not a specific atom (a floating substituent), and a subscript for the substituent is an integer greater than one, the multiple substituents may be on the same atom, same ring, different atoms, different fused rings, different spirocyclic rings, and each substituent may optionally be different. Where a point of attachment of a ring to the remainder of a molecule is not limited to a single atom (a floating substituent), the attachment point may be any atom of the ring and in the case of a fused ring or spirocyclic ring, any atom of any of the fused rings or spirocyclic rings while obeying the rules of chemical valency. Where a ring, fused rings, or spirocyclic rings contain one or more ring heteroatoms and the ring, fused rings, or spirocyclic rings are shown with one more floating substituents (including, but not limited to, points of attachment to the remainder of the molecule), the floating substituents may be bonded to the heteroatoms. Where the ring heteroatoms are shown bound to one or more hydrogens (e.g. a ring nitrogen with two bonds to ring atoms and a third bond to a hydrogen) in the
structure or formula with the floating substituent, when the heteroatom is bonded to the floating substituent, the substituent will be understood to replace the hydrogen, while obeying the rules of chemical valency.
[0025] Two or more substituents may optionally be joined to form aryl, heteroaryl, cycloalkyl, or heterocycloalkyl groups. Such so-called ring-forming substituents are typically, though not necessarily, found attached to a cyclic hase structure. In one embodiment, the ring-forming substituent are attached to adjacent members of the base structure. For example, two ring-forming substituents attached to adjacent members of a cyclic base structure create a fused ring structure. In another embodiment, the ring-forming substituents are attached to a single member of the base structure. For example, two ring-forming substituents attached to a single member of a cyclic base structure create a spirocyclic structure. In yet another embodiment, the ring-forming substituents are attached to non-adjacent members of the base structure.
[0026] Two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally form a ring of the formula -T-C(O) - (CRR')q-U-, wherein T and U are independently -NR-, \(\mathrm{O}-,-\mathrm{CRR}^{\prime}-\), or a single bond, and q is an integer of from 0 to 3 . Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula - \(\mathrm{A}-\left(\mathrm{CH}_{2}\right) \mathrm{r}\) - B , wherein A and B are independently \(-\mathrm{CRR}^{\prime}-, \mathrm{O}-\mathrm{NR}-, \mathrm{S}-\mathrm{S}(\mathrm{O})-, \mathrm{S}(\mathrm{O})_{2}-\) \(-\mathrm{S}(\mathrm{O})_{2} \mathrm{NR}^{\prime}-\), or a single bond, and r is an integer of from 1 to 4 . One of the single bonds of the new ring so formed may optionally be replaced with a double bond. Alternatively, two of the substituents on adjacent atoms of the aryl or heteroaryl ring may optionally be replaced with a substituent of the formula - \(\left(\mathrm{CRR}^{\prime}\right)_{s}-\mathrm{X}^{\prime}-\left(\mathrm{C}^{\prime \prime} \mathrm{R}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}\right)_{d}\) where \(s\) and \(d\) are independently integers of from 0 to 3 , and \(\mathrm{X}^{\prime}\) is \(-\mathrm{O}-,-\mathrm{S}-,-\mathrm{S}(\mathrm{O})-\mathrm{S}(\mathrm{O})_{2}-\), or \(-\mathrm{S}(\mathrm{O})\) \({ }_{2} \mathrm{NR}^{\prime}-\). The substituents \(\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}\), and \(\mathrm{R}^{\prime \prime \prime}\) are preferably independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl.
[0027] As used herein, the terms "heteroatom" or "ring heteroatom" are meant to include oxygen \((\mathrm{O})\), nitrogen ( N ), sulfur ( S ), phosphorus ( P ), and silicon ( Si ).
[0028] A "substituent group," as used herein, means a group selected from the following moieties:
[0029] (A) oxo, halogen, \(\mathrm{CF}_{3}, \mathrm{CN}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{COOH}\) \(\mathrm{CONH}_{2}, \quad \mathrm{NO}_{2}, \quad \mathrm{SH}, \quad \mathrm{SO}_{3} \mathrm{H},-\mathrm{SO}_{4} \mathrm{H},-\mathrm{SO}_{2} \mathrm{NH}_{2}\), \(-\mathrm{NHNH}_{2},-\mathrm{ONH}_{2},-\mathrm{NHC}=(\mathrm{O}) \mathrm{NHNH}_{2},-\mathrm{NHC}=\) \((\mathrm{O}) \mathrm{NH}_{2},-\mathrm{NHSO}_{2} \mathrm{H},-\mathrm{NHC}=(\mathrm{O}) \mathrm{H},-\mathrm{NHC}(\mathrm{O})-\mathrm{OH}\), \(\mathrm{NHOH}, \mathrm{OCF}_{3}, \mathrm{OCHF}_{2}\), unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and
[0030] (B) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, substituted with at least one substituent selected from:
[0031] (i) oxo, halogen, \(\mathrm{CF}_{3}, \mathrm{CN}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{COOH}\), \(\mathrm{CONH}_{2}, \mathrm{NO}_{2}, \mathrm{SH}, \quad \mathrm{SO}_{3} \mathrm{H},-\mathrm{SO}_{4} \mathrm{H},-\mathrm{SO}_{2} \mathrm{NH}_{2}\), \(-\mathrm{NHNH}_{2},-\mathrm{ONH}_{2},-\mathrm{NHC}=(\mathrm{O}) \mathrm{NHNH}_{2},-\mathrm{NHC}=\) (O) \(\mathrm{NH}_{2},-\mathrm{NHSO}_{2} \mathrm{H},-\mathrm{NHC}=(\mathrm{O}) \mathrm{H},-\mathrm{NHC}(\mathrm{O})-\) \(\mathrm{OH}, \mathrm{NHOH}, \mathrm{OCF}_{3}, \mathrm{OCHF}_{2}\), unsubstituted alkyl, unsub-
stituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and
[0032] (ii) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, substituted with at least one substituent selected from:
[0033] (a) oxo, halogen, \(\mathrm{CF}_{3}, \mathrm{CN}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{COOH}\), \(\mathrm{CONH}_{2}, \mathrm{NO}_{2}, \mathrm{SH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{SO}_{4} \mathrm{H},-\mathrm{SO}_{2} \mathrm{NH}_{2}\), \(-\mathrm{NHNH}_{2},-\mathrm{ONH}_{2},-\mathrm{NHC}=(\mathrm{O}) \mathrm{NHNH}_{2},-\mathrm{NHC}=\) (O) \(\mathrm{NH}_{2},-\mathrm{NHSO}_{2} \mathrm{H},-\mathrm{NHC}=(\mathrm{O}) \mathrm{H},-\mathrm{NHC}(\mathrm{O})-\) \(\mathrm{OH} . \mathrm{NHOH}, \mathrm{OCF}_{3}, \mathrm{OCHF}_{2}\), unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, and
[0034] (b) alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, substituted with at least one substituent selected from: oxo, halogen, \(\mathrm{CF}_{3}, \mathrm{CN}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{COOH}\), \(\mathrm{CONH}_{2}, \mathrm{NO}_{2}, \mathrm{SH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{SO}_{4} \mathrm{H},-\mathrm{SO}_{2} \mathrm{NH}_{2}\), \(-\mathrm{NHNH}_{2},-\mathrm{ONH}_{2},-\mathrm{NHC}=(\mathrm{O}) \mathrm{NHNH}_{2},-\mathrm{NHC}=\) (O) \(\mathrm{NH}_{2},-\mathrm{NHSO}_{2} \mathrm{H},-\mathrm{NHC}=(\mathrm{O}) \mathrm{H},-\mathrm{NHC}(\mathrm{O})\) \(\mathrm{OH}, \mathrm{NHOH}, \mathrm{OCF}_{3}, \mathrm{OCHF}_{2}\), unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl.
[0035] A "size-limited substituent" or " size-limited substituent group," as used herein, means a group selected from all of the substituents described above for a "substituent group," wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted \(\mathrm{C}_{3}-\mathrm{C}_{8}\) cycloalkyl, each suhstituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted \(\mathrm{C}_{6}-\mathrm{C}_{10}\) aryl, and each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 10 membered heteroaryl.
[0036] A "lower substituent" or "lower substituent group," as used herein, meaus a group selected from all of the substituents described above for a "substituent group," wherein each substituted or unsubstituted alkyl is a substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{8}\) alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted \(\mathrm{C}_{3}-\mathrm{C}_{7}\) cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 7 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted \(\mathrm{C}_{6}-\mathrm{C}_{10}\) aryl, and each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 9 membered heteroaryl.
[0037] In some embodiments, each substituted group described in the compounds herein is substituted with at least one substituent group. More specifically, in some embodiments, each substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene described in the compounds herein are substituted with at least one substituent group. In other embodiments, at least one or all of these groups are substituted with at least one size-limited substituent group.

In other embodiments, at least one or all of these groups are substituted with at least one lower substituent group.
[0038] In other embodiments of the compounds herein, each substituted or unsubstituted alkyl may be a substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl, each substituted or unsubstituted heteroalkyl is a suhstituted or unsubstituted 2 to 20 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted \(\mathrm{C}_{3}-\mathrm{C}_{8}\) cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 8 membered heterocycloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted \(\mathrm{C}_{6}-\mathrm{C}_{10}\) aryl, and/or each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 10 membered heteroaryl. In some embodiments of the compounds herein, each substituted or unsubstituted alkylene is a substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkylene, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 20 membered heteroalkylene, each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted \(\mathrm{C}_{3}-\mathrm{C}_{8}\) cycloalkylene, each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 3 to 8 membered heterocycloalkylene, each substituted or unsubstituted arylene is a substituted or unsubstifuted \(\mathrm{C}_{6}-\mathrm{C}_{10}\) arylene, and/or each substituted or unsubstituted heteroarylene is a substituted or unsubstituted 5 to 10 membered heteroarylene.
[0039] In some embodiments, each substituted or unsubstituted alkyl is a substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{8}\) alkyl, each substituted or unsubstituted heteroalkyl is a substituted or unsubstituted 2 to 8 membered heteroalkyl, each substituted or unsubstituted cycloalkyl is a substituted or unsubstituted \(\mathrm{C}_{3}-\mathrm{C}_{7}\) cycloalkyl, each substituted or unsubstituted heterocycloalkyl is a substituted or unsubstituted 3 to 7 membered heterocyeloalkyl, each substituted or unsubstituted aryl is a substituted or unsubstituted \(\mathrm{C}_{6}-\mathrm{C}_{10}\) aryl, and/or each substituted or unsubstituted heteroaryl is a substituted or unsubstituted 5 to 9 membered heteroaryl. In some embodiments, each substituted or unsubstituted alkylene is a substituted or unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{8}\) alkylene, each substituted or unsubstituted heteroalkylene is a substituted or unsubstituted 2 to 8 membered heteroalkylene, each substituted or unsubstituted cycloalkylene is a substituted or unsubstituted \(\mathrm{C}_{3}-\mathrm{C}_{7}\) cycloalkylene, each substituted or unsubstituted heterocycloalkylene is a substituted or unsubstituted 3 to 7 membered heterocycloalkylene, each substituted or unsubstituted arylene is a substituted or unsubstituted \(\mathrm{C}_{6}-\mathrm{C}_{10}\) arylene, and/or each substituted or unsubstituted heteroarylene is a substituted or unsubstituted 5 to 9 membered heteroarylene. In some embodiments, the compound is a chemical species set forth in the Examples section, figures, or tables below.
[0040] In embodiments, a substituted or unsubstituted moiety (e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, and/or substituted or unsubstituted heteroarylene) is unsubstituted (e.g., is an unsubstituted alkyl, unsubstituted heteroalkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, unsubstituted alkylene,
unsubstituted heteroalkylene, unsubstituted cycloalkylene, unsubstituted heterocycloalkylene, unsubstituted arylene, and/or unsubstituted heteroarylene, respectively). In embodiments, a substituted or unsubstituted moiety (e.g., substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl. substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, and/or substituted or unsubstituted heteroarylene) is substituted (e.g., is a substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkyl ene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene, respectively).
[0041] In embodiments, a substituted moiety (e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene) is substituted with at least one substituent group, wherein if the substituted moiety is substituted with a plurality of substituent groups, each substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of substituent groups, each substituent group is different.
[0042] In embodiments, a substituted moiety (e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene) is substituted with at least one size-limited substituent group, wherein if the substituted moiety is substituted with a plurality of size-limited substituent groups, each size-limited substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of size-limited substituent groups, each size-limited substituent group is different.
[0043] In embodiments, a substituted moiety (e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene) is substituted with at least one lower substituent group, wherein if the substituted moiety is substituted with a plurality of lower substituent groups, each lower substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of lower substituent groups, each lower substituent group is different.
[0044] In embodiments, a substituted moiety (e.g., substituted alkyl, substituted heteroalkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted alkylene, substituted heteroalkylene, substituted cycloalkylene, substituted heterocycloalkylene, substituted arylene, and/or substituted heteroarylene) is substituted with at least one substituent group, size-limited substituent group, or lower substituent group; wherein if the
substituted moiety is substituted with a plurality of groups selected from substituent groups, size-limited substituent groups, and lower substituent groups; each substituent group, size-limited substituent group, and/or lower substituent group may optionally be different. In embodiments, if the substituted moiety is substituted with a plurality of groups selected from substituent groups, size-limited substituent groups, and lower substituent groups; each substituent group, size-limited substituent group, and/or lower substituent group is different.
[0045] Certain compounds of the present invention possess asymmetric carbon atoms (optical or chiral centers) or double bonds; the enantiomers, racemates, diastereomers, tautomers, geometric isomers, stereoisometric forms that may be defined, in terms of absolute stereochemistry, as (R)-or (S)-or, as (D)- or (L)- for amino acids, and individual isomers are encompassed within the scope of the present invention. The compounds of the present invention do not include those that are known in art to be too unstable to synthesize and/or isolate. The present invention is meant to include compounds in racemic and optically pure forms Optically active (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. When the compounds described herein contain olefinic bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both \(E\) and Z geometric isomers.
[0046] As used herein, the term "isomers" refers to compounds having the same number and kind of atoms, and hence the same molecular weight, but differing in respect to the structural arrangement or configuration of the atoms.
[0047] The term "tautomer," as used herein, refers to one of two or more structural isomers which exist in equilibrium and which are readily converted from one isomeric form to another. It will be apparent to one skilled in the art that certain compounds of this invention may exist in tautomeric forms, all such tautomeric forms of the compounds being within the scope of the invention.
[0048] Unless otherwise stated, structures depicted herein are also meant to include all stereochemical forms of the structure; i.e., the R and S configurations for each asymmetric center. Therefore, single stereochemical isomers as well as enantiomeric and diastereomeric mixtures of the present compounds are within the scope of the invention.
[0049] Unless otherwise stated, structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by \({ }^{13} \mathrm{C}\) - or \({ }^{14} \mathrm{C}\)-enriched carbon are within the scope of this invention.
[0050] The compounds of the present invention may also contain unnatnral proportions of atomic isotopes at one or more of the atoms that constifute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium ( \({ }^{3} \mathrm{H}\) ), iodine-125 ( \({ }^{125} \mathrm{I}\) ), or carbon-14 \(\left({ }^{14} \mathrm{C}\right)\). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.
[0051] It should be noted that throughout the application that alternatives are written in Markush groups, for example, each amino acid position that contains more than one
possible amino acid. It is specifically contemplated that each member of the Markush group should be considered separately, thereby comprising another embodiment, and the Markush group is not to be read as a single unit.
[0052] The terms "a" or "an," as used in herein means one or more. In addition, the phrase "substituted with a[n]," as used herein, means the specified group may be substituted with one or more of any or all of the named substituents. For example, where a group, such as an alkyl or heteroaryl group, is "substituted with an unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl, or unsubstituted 2 to 20 membered heteroalkyl," the group may contain one or more unsubstituted \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyls, and/or one or more unsubstituted 2 to 20 membered heteroalkyls.
[0053] Moreover, where a moiety is substituted with an \(R\) substituent, the group may be referred to as " \(R\)-substituted." Where a moiety is R-substituted, the moiety is substituted with at least one R substituent and each R substituent is optionally different. Where a particular R group is present in the description of a chemical genus (such as Formula (I)), a Roman alphabctic symbol may be used to distinguish each appearance of that particular R group. For example, where multiple \(\mathrm{R}^{13}\) substituents are present, each \(\mathrm{R}^{13}\) substituent may be distinguished as \(\mathrm{R}^{13 A,}, \mathrm{R}^{13 B}, \mathrm{R}^{13 C}, \mathrm{R}^{13 D}\), etc., wherein each of R13A, \(\mathrm{R}^{13 B}, \mathrm{R}^{13 C}, \mathrm{R}^{13 D}\), etc. is defined within the scope of the definition of \(\mathrm{R}^{13}\) and optionally differently.
[0054] Descriptions of compounds of the present invention are limited by principles of chemical bonding known to those skilled in the art. Accordingly, where a group may be substituted by one or more of a number of substituents, such substitutions are selected so as to comply with principles of chemical bonding and to give compounds which are not inherently unstable and/or would be known to one of ordinary skill in the art as likely to be unstable under ambient conditions, such as aqueous, neutral, and several known physiological conditions. For example, a heterocycloalkyl or heteroaryl is attached to the remainder of the molecule via a ring heteroatom in compliance with principles of chemical bonding known to those skilled in the art thereby avoiding inherently unstable compounds.
[0055] The compounds of the present invention may exist as salts, such as with pharmaceutically acceptable acids. The present invention includes such salts. Non-limiting examples of such salts include hydrochlorides, hydrobromides, phosphates, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, proprionates, tartrates (e.g., (+)-tartrates, (-)-tartrates, or mixtures thereof including racemic mixtures), succinates, benzoates, and salts with amino acids such as glutamic acid, and quaternary ammonium salts (e.g. methyl iodide, ethyl iodide, and the like). These salts may be prepared by methods known to those skilled in the art.
[0056] The neutral forms of the compounds are preferably regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The pareut form of the compound may differ from the various salt forms in certain physical properties, such as soluhility in polar solvents.
[0057] Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are encompassed within the scope of the present invention. Certain compounds of the present invention may exist in multiple crystalline or amor-
phous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
[0058] "Contacting" is used in accordance with its plain ordinary meaning and refers to the process of allowing at least two distinct species (e.g. chemical compounds including biomolecules or cells) to become sufficiently proximal to react, interact or physically touch. It should be appreciated; however, the resulting reaction product can be produced directly from a reaction between the added reagents or from an intermediate from one or more of the added reagents that can be produced in the reaction mixture.
[0059] The term "contacting" may include allowing two species to react, interact, or physically touch, wherein the two species may be a compound as described herein and a protein or enzyme. In some embodiments contacting includes allowing a compound described herein to interact with a protein or enzyme that is involved in a signaling pathway.
[0060] "Selective" or "selectivity" or the like of a compound refers to the compound's ability to discriminate between molecular targets.
[0061] "Specific", "specifically", "specificity", or the like of a compound refers to the compound's ability to cause a particular action, such as inhibition, to a particular molecular target with minimal or no action to other proteins in the cell. [0062] "Fungi" are defined as any of a kingdom (Fungi) of saprophytic and parasitic spore-producing eukaryotic typically filamentous organisms formerly classified as plants that lack chlorophyll and include molds, rusts, mildews, smuts, mushrooms, and yeasts. Several other groups that historically have been associated with fungi, such as the slime molds and water molds are now not considered to be fungi. The phyla of fungi are distinguished primarily by their sexual reproductive structures. Yeasts do not form a single taxonomic or phylogenetic grouping. Some yeast such as Candida albicans are human pathogens.
[0063] Bacteria constitute a large domain of prokaryotic microorganisms. Bacteria have a number of shapes, ranging from spheres to rods and spirals. Bacterial cells are typically \(0.5-5 . \mu \mathrm{m}\) in length. The bacterial cell is surrounded by a cell membrane, which encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell. In some bacteria, a cell wall is present on the outside of the cell membrane. As they are prokaryotes, bacteria do not usually have membrane-bound organelles in their cytoplasm, and thus contain few large intracellular structures. They lack a true nucleus, mitochondria, chloroplasts and the other organelles present in eukaryotic cells.
[0064] A virus is a small infectious agent that replicates only inside the living cells of other organisms. Viruses can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea.
[0065] The term "animal" is used in accordance with its well understood common meaning and represents a multicellular, eukaryotic organism of the kingdom Animalia (also called Metazoa). Animals are divided into various subgroups, some of which are: vertebrates (birds, mammals, amphibians, reptiles, fish); molluscs (clams, oysters, octopuses, squid, snails); arthropods (millipedes, centipedes, insects, spiders, scorpions, crabs, lobsters, shrimp); annelids (eartbworms, leeches); sponges; and jellyfish.
[0066] The term "aromatic compound" refers to an organic compound including at least one aromatic moiety (e.g., aryl or heteroaryl).
[0067] As used herein, a "fluorophilic" component is any fluorinated compound such as a linear, branched, cyclic, saturated, or unsaturated fluorinated hydrocarbon. The fluorophilic component can optionally include at least one heteroatom (e.g., \(\mathrm{O}, \mathrm{N}, \mathrm{S}, \mathrm{P}, \mathrm{Si}\); in the backbone of the component). In some cases, the fluorophilic compound may be highly fluorinated, i.e., at least \(30 \%\), at least \(50 \%\), at least \(70 \%\), or at least \(90 \%\) of the hydrogen atoms of the component are replaced by fluorine atoms. The fluorophilic component may include a fluorine to hydrogen ratio of, for example, at least \(0.2: 1\), at least \(0.5: 1\), at least \(1: 1\), at least \(2: 1\), at least \(5: 1\), or at least \(10: 1\). In some such embodiments, at least \(30 \%\), at least \(50 \%\), at least \(70 \%\), or at least \(90 \%\) but less than \(100 \%\) of the hydrogen atoms of the component are replaced by fluorine atoms. In other cases, the fluorophilic component is perfluorinated, i.e., the component contains fluorine atoms but contains no hydrogen atoms. Fluorophilic components compatible with the present invention may have low toxicity, low surface tension, and the ability to dissolve and transport gases. Examples of types of fluorophilic components include but are not limited to hydrofuorocarbons. chlorofluorocarbons, and perfluorocarbons.
[0068] As used herein, a "fluorophilic compound" refers to a class of compounds that includes hydrocarbon and fluorocarbon. In embodinents, fluorophilic compounds does not include the chlorofluorocarbon (e.g. R-11 (Trichlorofluoromethane), \(\quad \mathrm{CCl}_{3} \mathrm{~F} ; \quad \mathrm{R}-12\) (Dichlorodifluoromethane), \(\mathrm{CCl}_{2} \mathrm{~F}_{2}\); or \(\mathrm{R}-13\) (Chlorotrifluoromethane), \(\mathrm{CClF}_{3}\) ). In embodiments, the fluorophilic compound is dimethyl ether, methyl ethyl ether, methyl n-propyl ether, methyl isopropyl ether, methyl-n-butyl ether, diethyl etber, methyl tert-butyl ether, or ethyl tert-butyl ether.
[0069] A "fluorocarbon compound" is a compound including fluorine and carbon, but not hydrogen (e.g., no carbonhydrogen bonds). In embodiments, a fluorocarbon compound is an FC-fluorocarbon compound ("FC"), which consists solely of fluorine and carbon. In embodiments, a fluorocarbon compound is a chlorofluorocarbon (CFC) compound, wherein FC and CFC are common terms used to define refrigerants [see, for example, Downing, Ralph C. Fluorocarbon refrigerants handbook Prentice Hall (1988)]. Examples of fluorocarbon compounds include fluoroether compounds, fluoroketone compounds, fluoroaromatic compounds and fluoroolefin compounds. In emhodiments, fluorocarbon compounds also include compounds wherein one or more optional substituents therein may be selected from one or more of bromine, chlorine and iodine. Fluorocarbon molecules may have various structures, including straight or branched chain or cyclic structures. The chemical properties of certain of these compounds, because of the unusual polarity of the carbon-fluorine bond, are unexpected. For example, perfluorotrimethyl iodide, a gas which boils at \(-22.5^{\circ} \mathrm{C}\)., is relatively stable in the absence of light (which can produce heterolysis and subsequent free radical formation) even in the presence of water below \(100^{\circ} \mathrm{C}\). or moderately basic solutions. Brominated perfluorocarbons such as 1 -bromo-heptadecaflurooctane ( \(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{Br}\) ), sometimes designated perfluorooctyl bromide \(\alpha\), \(\omega\)-dibromo-Fbutane; 1-bromopenta-decafluoroheptane ( \(\left.\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{Br}\right)\); 1-bromo-nonafluorobutane ( \(\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{Br}\) ); and 1-bromotridecafluorohexane ( \(\left.\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{Br}\right)\) are quite stable under extraction
conditions. It is also contemplated that fluorocarbons having nonfluorinated substituents, such as perfluorooctyl chloride, or perfluorooctyl hydride may be used in the apparatus, methods, and compositions described herein, as well as similar compounds having different numbers of carbon atoms, e.g., 2-8 carbon atoms. Those skilled in the art will appreciate that esters, thioesters, amines, amides, and other variously modified fluorocarbon-hydrocarbon compounds are also encompassed within the definition of fluorocarbon materials suitable for use in the present invention. Certain perfluorinated compounds are relatively inert and have unexpected properties; for example perfluorotributylamine is not at all basic. See, for example, Hong, Angela C., Cora J. Young, Michael D. Hurley, Timothy J. Wallington, and Scott A. Mabury. "Perfluorotributylamine: A novel longlived greenhouse gas." Geophysical Research Letters 40, no. 22 (2013): 6010-6015, which is incorporated herein by reference for all purposes.
[0070] A "hydrofluorocarbon compound" is a compound including fluoriue, carbon and at least one hydrogen atom (e.g., at least one carbon-hydrogen bond). In embodiments, a hydrofluorocarbon compound is an HFC-hydrofluorocarbon compound ("HFC"), which consists solely of fluorine, carbon and hydrogen. In embodiments, a hydrofluorocarbon compound is a hydrochlorofluomearbon (HCFC) compound. HFC and HCFC are common terms used to define refrigerants (see Downing, Ralph C. supra.). Non-limiting examples of hydrofluorocarbons include triftuoromethane (HFC-23), difluoromethane (HFC-32), pentafluoroethane (HFC-125), 1, 1,2,2-tetrafluoroethane (HFC-134), 1,1,1,2tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC143a), 1,1-difluorocthane (HFC-152a) and fluoroethane (HFC-161). Hydrofluorocarbon compounds may be hydrofluoroether compounds, hydrofluoroketone compounds, hydrofluoroaromatic compounds or hydrofluoroolefin compounds. Non-limitiug examples of hydrofluorocarbon compounds include methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, ethyl uonafluorobutyl ether, and 3 -ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecatluoro-2-trifluoromethylhexane. In embodiments, hydrofluorocarbon compounds include compounds wherein one or more optional substituents may be oue or more bromine, chlorine, or iodine. In embodiments, the hydroflurocarbon is chlorodifluoromethane, methyl nonaftuoroisobutyl ether, methyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, 3-ethoxy-1, 1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethylhexane. trifluoromethane (HFC-23), ditluoromethane (HFC-32), pentafluoroethane (HFC-125), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a), (1,1,1,3,3,3-hexafluoro-2-(fluoromethoxy)propane, 1,2,2,2tetrafluoroethyl difluoromethyl ether, 2-chloro-1,1,2,-trifluoroethyl difluoromethyl ether, 1-chloro-2,2,2-trifluoroethyl difluoromethyl ether, 2,2-dichloro-1,1-difluoromethyl ether, or fluoroethane (HFC-161).
[0071] Within the class of fluorophilic compounds, hydrofluorocarbon compounds, and fluorocarbon compounds, "optionally substituted" indicates that one or more fluorine or hydrogen atoms may be replaced with an independently selected alkane, alkene, alkoxy, fluoroalkoxy, perfluoroalkoxy, fluoroalkyl, perfluoroalkyl, aryl or heteroaryl group or compound (e.g., one or more hydrogens on the carbon chain of the group or compound may be independently
substituted with one or more of independently selected substitutents (e.g., substituent groups). For example, a substituted \(\mathrm{C}_{2} \mathrm{H}_{5}\) group may, without limitation, be \(-\mathrm{CF}_{2} \mathrm{CF}_{3}\), \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\) or \(-\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{I}\).
[0072] A "refrigerant" is a substance that is capable of removing heat from its surroundings (e.g., when it changes phase from liquid to vapor (i.e. when it evaporates)). Refrigerants may add heat to its surroundings in a complementary reaction (e.g., when it changes phase from vapor to liquid (i.e. when it condenses)) (e.g., FC-fluorocarbon, an HFChydrofluorocarbon, a chlorofluorocarbon, a hydrochlorofluorocarbon, an alkane, an alkene, or an aromatic compound; or ammonia, carbon dioxide or other gases such as hydrogen, oxygen, nitrogen and argon). Refrigerant substances may contain oxygen, or bromine, chlorine or iodine, as described above, for example, in relation to hydrofluorocarbon and fluorocarbon compounds.
[0073] An "azeotrope", or an "azeotropic" or "constant boiling" is a mixture of two or more components whose proportions cannot be altered by simple distillation. When boiled, the vapor has the same proportions of the constituents as the un-boiled mixture. In embodiments, a constant boiling mixture is a "near-azeotropic" mixture, which is a mixture that maintains a substantially constant vapor pressure even after evaporative losses, thereby exhibiting constant boiling behavior. Azeotropic and constant boiling mixtures also include mixtures wherein the boiling points of two or more of the components thereof are separated by only about \(5^{\circ} \mathrm{C}\). or less.
[0074] The "critical pressure" of a substance is the pressure required to liquefy a gas at its critical temperature, which is the temperature at and above which vapor of the substance cannot be liquefied, regardless of how much pressure is apphed.
[0075] As used herein, "nonaqueous" is meant to define material such as a fluid that is immiscible with water. That is, a liquid that when mixed with water will form a stable two-phase mixture. The non-aqueous phase need not be liquid, but can be a solid or semi-solid lipid or other nonpolar substance that is not soluble in water. In some instances, the nonaqueous phase can include a lipophilic component (e.g., a hydrocarbon) or a fluorinated component (e.g., a fluorocarbon). The aqueous phase can be any liquid miscible with water; that is, any liquid that, when admixed with water, can form a room-temperature, single-phase solution that is stable. In some cases, the aqueous phase can comprise one or more physiologically acceptable reagents and/or solvents, etc. Non-limitiug examples of aqueous phase materials include (besides water itself) methanol, ethanol, DMF (dimethylformamide), or DMSO (dimethyl sulfoxide).
[0076] The term "chirality" refers to the geometric property of a rigid object (or spatial arrangement of points or atoms) of being non-superimposable on its mirror image. If the object is superimposable on its mirror image the object is described as being achiral.
[0077] The term "chiral center" refers to an atom holding a set of ligands in a spatial arrangement, which is not superpimosable on its mirror image. A chirality center may be considered a generalized extension of the concept of the asymmetric carbon atom to central atoms of any element. Each chiral center ( \({ }^{*} \mathrm{C}\) ) is labeled R or S according to a system by which its substituents are each designated a
priority according to the Cahn Ingold Prelog priority rules (CIP), based on atomic number.
[0078] The term, "enantiomer" refers to one of a pair of optical isomers containing one or more asymmetric carbons whose molecular configurations have left- and right-hand (chiral) forms. Enantiomers have identical physical properties, except for the direction of rotation of the plane of polarized light. Enantiomers have identical chemical properties except toward optically active reagents.
[0079] An "ionic liquid" is a salt in liquid form. In embodiments, an ionic liquid includes an organic compound (e.g., and counter ion), typically a salt of an organic acid and an organic base, which may exist in a zwitterionic form, wluich is present in a liquid state (e.g., at room temperature or substantially close to room temperature, wherein room temperature is defined as a range of temperatures from about \(4^{\circ} \mathrm{C}\). to about \(50^{\circ} \mathrm{C}\)., and most typically between \(15^{\circ} \mathrm{C}\). and \(30^{\circ} \mathrm{C}\)., and more typically about \(25^{\circ} \mathrm{C}\).). In embodiments, an ionic liquid differs from most salts in that it has a very low melting point, and tends to be liquid over a wide temperature range. In embodiments, an ionic liquid is not soluble in non-polar hydrocarbons; is immiscible with water, depending on the amion; or is highly ionizing (but has a low dielectric strength). In embodiments, an ionic liquid has essentially no vapor pressure, most are air and water stable, and they can either be neutral, acidic or basic. In embodiments, the properties of an ionic liquid can be tailored by varying the cation and anion. In embodiments, the cation or anion of an ionic liquid can be any cation or anion such that the cation and anion together form an organic salt that is liquid at or below about \(100^{\circ} \mathrm{C}\). In embodiments, an ionic liquid is formed by reacting a nitrogen-containing heterocyclic ring, preferably a heteroaromatic ring, with an alkylating agent (for example, an alkyl halide) to form a quaternary ammonium salt, and performing ion exchange or other suitable reactions with various Lewis acids or their conjugate bases to form the ionic liquid. Examples of suitable heteroaromatic rings include substituted pyridines, imidazole, substituted imidazole, pyrrole and substittited pyrroles. In embodiments, these rings can be alkylated with virtually any straight, branched or cyclic \(\mathrm{C}_{1}-\mathrm{C}_{20}\) alkyl group (e.g., the alkyl groups are \(\mathrm{C}_{1}-\mathrm{C}_{16}\) groups). In embodiments, various triarylphosphines, thioethers and cyclic and noncyclic quaternary ammonium salts may also be used for this purpose. In embodiments, counterions that may be used include chloroaluminate, bromoaluminate, gallium chloride, tetrafluoroborate, tetracbloroborate, hexafluorophospbate, nitrate, trifluoromethane sulfonate, methylsulfonate, p -toluenesulfonate, hexafluoroantimonate, hexafluoroarsenate, tetrachloroaluminate, tetrabromoalurninate, perchlorate, hydroxide anion, copper dichloride anion, iron trichloride anion, zinc trichloride anion, as well as various lanthanum, potassium, lithium, nickel, cobalt, manganese, or other metal-containing anions. In embodiments, ionic liquids may be synthesized by salt metathesis, by an acid-base neutralization reaction or by quaternizing a selected nitrogencontaining compound; or they may be obtained commercially from several companies such as Merck (Darmstadt, Germany) or BASF (Mount Olive, N.J.). Representative examples of useful ionic liquids are described in sources such as Clare, Bronya, Amal Sirwardana, and Douglas R. MacFarlane. "Synthesis, purification and characterization of ionic liquids." In Ionic Liquids, pp. 1-40. Springer Berlin Heidelberg, 2010; Valderrama, J. O., and P. A. Robles.
"Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids." Industrial \& Engineering Chemistry Research 46, no. 4 (2007): 1338-1344; Kan, Huang-Chuan, Ming-Chung Tseng, and Yen-Ho Chu. "Bicyclic imidazolium-based ionic liquids: synthesis and characterization." Tetrahedron 63, no. 7 (2007): 1644-1653; Tsunashima, Katsuhiko, Yuki Sakai, and Masahiko Matsumiya. "Physical and electrochemical properties of phosphonium ionic liquids derived from trimethylphosphine." Electrochemistry Communications 39 (2014): 30-33; Poole, Colin F., and Salwa K. Poole. "Extraction of organic compounds with room temperature ionic liquids." Journal of Chromatography A 1217, no. 16 (2010): 2268-2286; Rabari, Dharamashi, and Tamal Banerjee. "Biobutanol and n-propanol recovery using a low density phosphonium based ionic liquid at T \(=298.15 \mathrm{~K}\) and \(\mathrm{p}=\mathrm{latm}\)." Fluid Phase Equilibria 355 (2013): 26-33; Gonzalez, Begoña, and Sandra Corderi. "Capacity of two 1-butyl-1-methylpyrrolidinium-based ionic liquids for the extraction of ethanol from its mixtures with heptane and hexane." Fluid Phase Equilibria 354 (2013): 89-94; Lago, Sara, Hector Rodriguez, Alberto Arce, and Ana Soto. "Improved concentration of citrus essential oil by solvent extraction with acetate ionic liquids." Fluid Phase Equilibria 361 (2014): 37-44; see also Jiao, Jiao, Qing-Yan Gai, Yu-Jie Fu, Yuan-Gang Zu, Meng Luo, Wei Wang, and Chun-Jian Zhao. "Microwave-assisted ionic liquids pretreatment followed by hydro-distillation for the efficient extraction of essential oil from Dryopteris fragrans and evaluation of its antioxidant efficacy in sunflower oil storage." Journal of Food Engineering 117, no. 4 (2013): 477-485; Shiflett, Mark B., Mark A. Harmer, Christopher P. Junk, and A. Yokozeki. "Solubility and diffusivity of \(1,1,1\), 2-tetrafluoroethane in room-temperature ionic liquids." Fluid phase equilibria 242 , no. 2 (2006): 220-232, which are incorporated herein by reference for all purposes. A library, i.e. a combinatorial library, of ionic liquids nay be prepared, for example, by preparing various alkyl derivatives of the quaternary ammonium cation, and varying the associated amions. The acidity of the ionic liquids can be adjusted by varying the molar equivalents and type and combinations of Lewis acids.
[0080] The term "non-ideal mixture" or "non-ideal fluid" refers to a fluid mixture wherein the enthalpy of mixing is non-zero and the volume change upon mixing is non-zero. In embodiments, a non-ideal mixture displays a vapor pressure lower tban expected from Raoult's law (negative deviation), which may be evidence of adhesive forces between different components of the mixture being stronger than the average cohesive forces between the like components. When cohesive forces between like components are stronger than between different components, the vapor pressure is greater than expected from Raoult's law (positive deviation).
[0081] The term "supercritical fluid" refers to any substance at a temperature and pressure above its eritical point, where distinct liquid and gas phases do not exist. It can effuse through solids like a gas, and dissolve materials like a liquid.
[0082] The term "essential oil" refers to a concentrated liquid (e.g., hydrophobic) containing volatile aroma compounds from plants. Essential oils may also be called volatile oils, ethereal oils, aetherolea, or simply as the oil of the plant from which they were extracted, such as oil of clove. An oil
is "essential" in the sense that it contains the "essence of" the plant's fragrance - the characteristic fragrance of the plant from which it is derived.
[0083] The term "natural" as used for "natural product" and "natural organic compound" refers to something that is found in, or isolated from, nature and is not itself synthetic, artificial, and/or man-made. In some embodiments, a "natural product" is a molecule, compound, or substance that is produced by a living organism, i.e., is found in nature. In some embodiments, natural products are isolated from natural sources that are produced by pathways of primary and secondary metabolism. In some embodiments, natural products are isolated from natural sources that are produced where expression of the product is influenced artificially. In some embodiments, natural products are isolated from natural sources that are produced through over-expression of the natural product. In some embodiments, a "natural organic compound" is a purified organic (carbon-containing chemical) compound isolated from natural sources. In some embodiments, a natural organic compound is isolated from natural sources including plant, animal, fungus, virus, and bacteria. In some embodiments, natural organic compounds are isolated from natural sources that have been genetically modified or engineered, including plant, animal, fungus, virus, and bacteria. In some embodiments, natural organic compounds are isolated from natural sources through extraction. In some embodiments, natural organic compounds are isolated from natural sources through extraction methods as described herein.
[0084] The term "flavonoid" (or bioflavonoid) refers to a class of plant and fungus secondary metabolites. Flavonoids have the general structure of a 15 -carbon skeleton, which consists of two phenyl rings and a heterocyclic ring. In some embodiments, flavonoids are classified as flavonoids (or bioflavonoids), isoflavonoids (derived from 3-phenyl-chromen-4-one (3-phenyl-1,4-benzopyrone) structure), and neoflavonoids (derived from 4-phenylcoumarine (4-phenyl-1,2-benzopyrone) structure). The term "prenylliavonoid" (or prenylated flavonoids) refers to a subclass of flavonoids. Chemically, they have a prenyl group attached to the flavonoid backbone.
[0085] The term "kavalactone" refers to a class of lactone compounds found in the kava plant. In some embodiments, kavalactones possess a wide variety of pharmacological effects including analgesic, anticonvulsant, amnestic, nootropic, and sedative activity.
[0086] The term "salvorin" refers to a terpenoid with psychotropic properties found in the Salvia divinorum plant.
[0087] The term "terpene" refers to a large class of hydrocarbon organic compound found in a variety of plants, including conifers, and some insects, such as termites and swallowtail butterflies. Terpenes are derived biosynthetically from units of isoprene, which has the molecular formula \(\mathrm{C}_{5} \mathrm{H}_{8}\). The basic molecular formulae of terpenes are multiples of that, \(\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)_{n}\) where n is the number of linked isoprene units. This is called the isoprene rule or the C5 rule. In some embodiments, terpenes are the primary constituents of the essential oils of many flowers and plants. Terpenes may include monoterpenes, diterpenes, sesquiterpenes, triterpenes, sesterterpenes, norterpenes, nortriterpenes, and norsesquiterpenes. Diterpenes refers to diterpene acids, esters, alkaloids (such as indolo-terpenes) which are composed of two isoprene units.
[0088] In embodiments, the terpene is a camphor or a derivative, analog, or prodrug thereof

[0089] In embodiments, the terpene is a carvone or a derivative, analog, or prodrug thereof

[0090] In embodiments, the terpene is a limonene or a derivative, analog, or prodrug thereof

[0091] In embodiments, the terpene is a linalool or a derivative, analog, or prodrug thereof

[0092] In embodiments, the terpene is a geraniol or a derivative, analog, or prodrug thereof

[0093] In embodiments, the terpene is a pinene or a derivative, analog, or prodrug thereof

[0094] In embodiments, the terpene is a ionone or a derivative, analog, or prodrug thereof

[0095] In embodiments, the terpene is a inidoid or a derivative, analog, or prodrug thereof (e.g.,

[0096] In embodiments, the terpene is a abietane or a derivative, analog, or prodrug thereof

re.g.
).
[0097] In embodiments, the terpene is a atisane or a derivative, analog, or prodrug thereof

[0098] In embodiments, the terpene is a basmane or a derivative, analog, or prodrug thereof

[0099] In embodiments, the terpene is a briarane or a derivative, analog. or prodrug thereof

wherein Ac refers to an acetyl group; vin refers to a bond designating a mix of stereoisomers; \(\mathrm{R}_{1}\) refers to a moiety selected from - Cl and - OAc (acetic acid) and \(\mathrm{R}_{2}\) is a moiety selected from \(-\mathrm{OH},-\mathrm{OAc},-\mathrm{OCOCH}_{2} \mathrm{CH}\) \(\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{OCOCH}_{3},-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\) (propionate).
[0100] In embodiments, the terpene is a carophyliene or a derivative, analog, or prodrug thereof

[0101] In embodiments, the terpene is a casbane or a derivative, analog, or prodrug thereof

[0102] In embodiments, the terpene is a cassane or a derivative, analog, or prodrug thereof

[0103] In embodiments, the terpene is a cembranoid or a derivative, analog, or prodrug thereof

[0104] In embodiments, the terpene is a norcembranoid or a derivative, analog, or prodrug thereof

[0105] In embodiments, the terpene is a bicembrane or a derivative, analog, or prodrug thereof


0106 In embodiments, the terpene is a cladiellane or a derivative, analog, or prodrug thereof

[0107] In embodiments, the terpene is a clerodane or a derivative, analog, or prodrug thereof

[0108] In embodiments, the terpene is a curcusone or a derivative, analog, or prodrug thereof

re.g.
[0109] In embodiments, the terpene is a cyathane or a derivative, analog, or prodrug thereof

[0110] In embodiments, the terpene is a daphnane or a derivative, analog, or prodrug thereof

[0111] In embodiments, the terpene is a dolabellane or a derivative, analog. or prodrug thereof

(e.g.
012) In embodiments, the terpene is a drimane or derivative, analog, or prodrug thereof

[0113] In embodiments, the terpene is a pimane or a derivative, analog, or prodrug thereof

wherein R is a moiety selected from \(-\mathrm{H},-\mathrm{OH},-\mathrm{CH}_{2} \mathrm{OH}\), \(-\mathrm{CO}_{2} \mathrm{CH}_{3},-\mathrm{CHO},-\mathrm{CH}_{2} \mathrm{OAc},-\mathrm{COOH}\), and \(-\mathrm{CH}_{3}\).
[0114] In embodiments, the terpene is a ent-pimane or a derivative, analog, or prodrug thereof
[0115] In embodiments, the terpene is a eudesmane or a derivative, analog. or prodrug thereof

[0116] In embodiments, the terpene is a eunicellin or a derivative, analog, or prodrug thereof

[0117] In embodiments, the terpene is a franchetine or a derivative, analog, or prodrug thereof

wherein \(R\) represents a benzyl group.
[0118] In embodiments, the terpene is a gibberelin or a derivative, analog, or prodrug thereof

[0119] In embodiments, the terpene is a grayane or a derivative, analog. or prodrug thereof

).
[0120] In embodiments, the terpene is a guaiene or a derivative, analog, or prodrug thereof

[0121] In embodiments, the terpene is a Guanacastane or a derivative, analog, or prodrug thereof

(e.g.,

).
[0123] In embodiments, the terpene is a isofregenedane or a derivative, analog, or prodrug thereof

[0124] In embodiments, the terpene is a jatrophane or a derivative, analog, or prodrug thereof

[0125] In embodiments, the terpene is a kalihinene or a derivative, analog, or prodrug thereof

[0126] In embodiments, the terpene is a kaurane or a derivative, analog, or prodrug thereof
[0122] In embodiments, the terpene is a icetaxane or a derivative, analog, or prodrug thereof

[0127] In embodiments, the terpene is a kempane or a derivative, analog, or prodrug thereof

[0128] In embodiments, the terpene is a labdane or a derivative, analog, or prodrug thereof

[0129] In embodiments, the terpene is a grindelane labdane or a derivative, analog, or prodrug thereof

).
[0130] In embodiments, the terpene is a lathyrane or a derivative, analog, or prodrug thereof

[0131] In embodiments, the terpene is a laurenene or a derivative, analog. or prodrug thereof

[0132] In embodiments, the terpene is a lobane (e.g., lobatriene) or a derivative, analog, or prodrug thereof

[0133] In embodiments, the terpene is a mulinane or a derivative, analog, or prodrug thereof

[0134] In embodiments, the terpene is a myrsinol or a
derivative, analog, or prodrug thereof

[0135] In embodiments, the terpene is a pepluane or a derivative, analog, or prodrug thereof

(e.g.,
[0136] In embodiments, the terpene is a phorbol or a derivative, analog, or prodrug thereof

[0137] In embodiments, the terpene is a rosane or a derivative, analog, or prodrug thereof

[0138] In embodiments, the terpene is a sclaerol or a derivative, analog, or prodrug thereof

[0139] In embodiments, the terpene is a scopadulane or a derivative, analog. or prodrug thereof

[0140] In embodiments, the terpene is a serrulatane or a derivative, analog, or prodrug thereof

wherein \(\mathrm{R}_{1}\) is a moiety selected from \(-\mathrm{H},-\mathrm{OH},-\mathrm{N}\), \(-\mathrm{NH}, \quad-\mathrm{NOH}, \quad-\mathrm{CH}_{3}, \quad\) CO-heteroaryl, \(-\mathrm{CH}_{2} \mathrm{OCOC}_{4} \mathrm{H}_{3} \mathrm{~N}_{2},-\mathrm{CNOH},-\mathrm{CH}_{2}\), and

and \(\mathrm{R}_{2}\) is a moiety selected from \(-\mathrm{H},-\mathrm{NO}_{2},-\mathrm{CH}_{3}\), and halogen.
[0141] In embodiments, the terpene is a spatane or a derivative, analog, or prodrug thereof


wherein R is a moiety selected from \(-\mathrm{H},-\mathrm{OH},-\mathrm{CH}_{2} \mathrm{CH}_{3}\) \(\left(\mathrm{CH}_{2}\right)_{4}\left(\mathrm{CH}_{3}\right)_{2}\), and \(-\mathrm{CH}_{3}\).
[0142] In embodiments, the terpene is a stemodane or a derivative, analog, or prodrug thereof

wherein R is a moiety selected from \(-\mathrm{H},-\mathrm{OH},-\mathrm{CH}_{3}\), and \(-\mathrm{OCH}_{3} ; \mathrm{R}_{1}\) is a moiety selected from \(-\mathrm{H},-\mathrm{OH}\), \(-\mathrm{CH}_{2} \mathrm{OH}\), and \(-\mathrm{CH}_{3}\); and \(\mathrm{R}_{2}\) is a moiety selected from \(-\mathrm{H},-\mathrm{OH}\), and -O .
[0143] In embodiments, the terpene is a taxane or a derivative, analog, or prodrug thereof (e.g.

[0144] In embodiments, the terpene is a tigliane or a derivative, analog, or prodrug thereof

wherein \(\mathrm{R}_{1}\) is a moiety selected from \(-\mathrm{H},-\mathrm{CH}_{3}\) \(-\mathrm{COC}_{11} \mathrm{H}_{23},-\mathrm{CH}_{2} \mathrm{OH},-\mathrm{Bz},-\mathrm{OAc}\), 2-methylbutryrl, and

\(\mathrm{R}_{2}\) is a moiety selected from \(-\mathrm{CH} 3,-\mathrm{COCH} 3,-\mathrm{Bz}\), -OAc, isobutryryl, and 2-methylbutryrl; and \(\mathrm{R}_{3}\) is a moiety selected from -O , and \(-\mathrm{CH}_{2}\)
[0145] In embodiments, the terpene is a tormesane (e.g., tormesolane) or a derivative, analog, or prodrug thereof

[0146] In embodiments, the terpene is a valparane or a derivative, analog, or prodrug thereof

[0147] In embodiments, the terpene is a vibsane or a derivative, analog, or prodrug thereof

[0148] In embodiments, the terpene is a xenicane or a derivative, analog, or prodrug thereof

[0149] In embodiments, the terpene is a bakkane or a derivative, analog, or prodrug thereof

[0150] 101441 In embodiments, the terpene is a bisabolane or a derivative, analog, or prodrug thereof

[0151] In embodiments, the terpene is a zizanoic acid or a derivative, analog, or prodrug thereof

[0152] In embodiments, the terpene is a drimenol or a derivative, analog, or prodrug thereof

[0153] In emhodiments, the terpene is a isolongifolene or a derivative, analog, or prodrug thereof
[0154] In embodiments, the terpene is a tirotundin or a derivative, analog, or prodrug thereof

[0155] In embodiments, the terpene is a clovane or a derivative, analog, or prodrug thereof
e.g.

[0156] In embodiments, the terpene is a germacrane or a derivative, analog, or prodrug thereof

wherein \(\mathrm{R}_{1}\) is a moiety selected from \(-\mathrm{H},-\mathrm{OH}\), and \(-\mathrm{CH}_{3}\) and \(\mathrm{R}_{2}\) is a moiety selected from \(-\mathrm{CH}_{3}\). [0157] In embodiments, the terpene is a sesterterpene or a derivative, analog, or prodrug thereof




Ceroplastol)
[0158] In embodiments, the terpene is a triterpene or a derivative, analog, or prodrug thereof

[0159] The term "humulone" (or \(\alpha\)-lupulic acid) refers to a prevalent member of the class of compounds known as alpha acids, which provide a characteristically bitter flavor. Humulone is a phloroglucinol derivative with three isoprenoid side-chains. Two side-chains are prenyl groups and one is an isovaleryl group. The acidity of the ring enol moieties that give rise to its designation as an acid lie in the vinylogous relationship with the ring and side chain carbonyl functional groups.
[0160] The term "humulene" (also known as a-humulene or a-caryophyllene), refers to a monocyclic sesquiterpene
\(\left(\mathrm{C}_{15} \mathrm{H}_{24}\right)\), containing an 11-membered ring and consisting of three isoprene units containing three non-conjugated \(\mathrm{C}=\mathrm{C}\) double bonds, two of them being triply substituted and one being doubly substituted. It is found in the essential oils of Humulus lupulus. Humulene is an isomer of \(\beta\)-caryophyllene, and the two are often found together as a mixture in many aromatic plants.
[0161] The term "caryophyllene" (or (-)- \(\beta\)-caryophyllene), refers to a bicyclic sesquiterpene that is a constituent of many essential oils, especially clove oil, the oil from the stems and flowers of Syzygium aromaticum (cloves), the essential oil of Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and \(\alpha\)-humulene. Caryophyllene possesses both a cyclobutane ring and as a trans-double bond in an 8 -membered ring.
[0162] The term "lupulone" (or \(\beta\)-lupulic acid) refers to a beta acid found in Humulus lupulus (Hops). Lupulones are sensitive to oxidative decomposition; their break down creates flavors that may adversely affect the taste of beer. [0163] The term "myrcene" (or \(\beta\)-myrcene) refers to an olefinic organic hydrocarbon, classified as a monoterpene. It is a component of the essential oil of several plants including bay, cannabis, ylang-ylang, wild thyme, parsley, and hops. [0164] The term "alkaloid" refers to a group of naturally occurring chemical compounds that mostly contain basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur, chlorine, bromine, and phosphorus. Alkaloids are produced by a large variety of organisms including bacteria, fungi, plants, and animals.
[0165] The term "cannabinoid" refers to a class of chemical componinds that act on cannabinoid receptors. These are G-protein-coupled receptors denoted by the terms \(\mathrm{CB}_{1}\) and \(\mathrm{CB}_{2}\) receptors. The structure of the CB 1 receptor has been determined; see Hua, T., Vemuri, K., Pu, M., Qu, L., Han, G. W., Wu, Y., Zhao, S., Shui, W., Li, S., Korde, A. and Laprairie, R. B., 2016. Crystal structure of the human cannabinoid receptor CB 1. Cell, 167(3), pp. 750-'762, which is incorporated herein by reference for all purposes The anatomical distribution of these receptors is complex, but broadly CB 1 receptors in the central nervous system mediate many of the effects of cannabinoids in the brain, whereas CB 2 receptors in the periphery mediate anti-inflammatory and related actions of cannabinoids. See Munro, S., Thomas, K. L. and Abu-Shaar, M., 1993. Molecular characterization of a peripheral receptor for cannabinoids. Nature, \(365(6441)\), p. 61 . which is incorporated herein by reference for all purposes
[0166] There are at least 113 different cannabinoids isolated from cannabis, exhihiting varied effects. Many of these compounds are structurally related to \(\Delta 9\)-tetrahydrocannabinol (THC). Classes of natural cannabinoids isolated from cannabis include cannabigerol, cannabichromene, cannabidiol, tetrahydrocannabinol, cannabinol, cannabielsoin, iso-tetrahydrocannabinol, cannabicyclol, and cannabicitran. Examples of well-studied cannabinoids include cannabinol (CBN), tetrahydrocannabinol (THC), and cannabinol (CBN).

\section*{II. METHODS}
[0167] The methods provided herein include processes, methods, and compositions for the extraction of natural
products from plant material employing pure fluorocarbon liquids or gases and optionally admixtures of fluorocarbon and non-fluorocarbon gases and liquids. In some embodiments, the extraction may be carried out in a highly selective manner such that specific components consisting of pure compounds or defined mixtures thereof may be extracted from plant or animal material without extracting undesired materials, obviating the need for subsequent purification steps following the extraction, wherein said specific components are valuable in the preparation of pharmaceutical and nutraceutical compositions which are useful in the prevention and treatment of various diseases and syndromes in humans and animals.
[0168] In a first aspect, is provided a method of extracting a natural organic compound from a natural material, the method including contacting the natural material with an extraction fluid thereby extracting the natural organic compound from the natural material into the extraction fluid to from an extracted fluid solution. In an embodiment, the extraction fluid includes a fluorophilic compound and a hydrofluorocarbon. In another embodiment, the extraction fluid is a non-ideal fluid.
[0169] In one embodiment, the natural material is a material derived from a plant, an animal, a fungi, a bacteria or a virus. In another embodiment, the natural material is a material derived from a plant. In another embodiment, the natural material is a material derived from an animal. In another embodiment, the natural material is a material derived from a fungus. In another embodiment, the natural material is a material derived from a bacteria. In another embodiment, the natural material is a material derived from a virus.
[0170] In one embodiment, the plant is Piper methysticum, Cannabis spp., Salvia spp., Banisteriopsis caapi, Psychotria viridis (chacruna), Diplopterys cabrerana, Peganum harmala, Humulus lupulus or mixture thereof. In another embodiment, the plant is Piper methysticum. In another embodiment, the plant is Cannabis spp. In another embodiment, the plant is Salvia spp. In another embodiment, the plant is Banisteriopsis caapi. In another embodiment, the plant is Psychotria viridis (chacruna). In another embodiment, the plant is Diplopterys cabrerana. In another embodiment, the plant is Peganum harmala. In another embodiment, the plant is Humulus lupulus. In another embodiment, the Cannabis spp. plant is Cannabis Sativa.
[0171] In one embodiment, the plant is Echinacea purpurea, Echinacea angustifolia, Acmella oleracea, Helichrysum umbraculigerum, or Radula marginata. In another embodiment the plant is an Echinacea spp. In another embodiuent, the plant is Echinacea purpurea. In another embodiment, the plant is Echinacea angustifolia. In another cmbodiment, the plant is Acmella oleracea. In another embodiment, the plant is Helichrysum umbraculigerum. In another embodiment, the plant is Radula marginata.
[0172] In one embodiment, the natural organic compound is a biologically active organic compound. In another embodiment, the natural organic compound is an aromatic compound. In another embodiment, the natural organic compound forms part of an aromatic oil or essential oil. In another embodiment, the natural organic compound forms an aromatic oil. In another embodiment, the natural organic compound forms an essential oil. In another embodiment, the natural organic compound is a component of an aromatic oil. In another embodiment, the natural organic compound is
a component of an essential oil. In another embodiment, the natural organic compound is caffeine. In one embodiment, the natural organic compound is a terpene, a humulone, a lupulone, a myrcene, a humulene, a caryophyllene, an alkaloid, a flavonoid, a cannabinoid, menthol, capsaicin, anise or camphor. In another embodiment, the natural organic compound is a terpene. In another embodiment, the natural organic compound is a humulone. In another embodiment, the natural organic compound is a lupulone. In another embodiment, the natural organic compound is a myrcene. In another embodiment, the natural organic compound is a humulene. In another embodiment, the natural organic compound is a caryophyllene. In another embodiment, the natural organic compound is an alkaloid. In another embodiment, the natural organic compound is a flavonoid. In another embodiment, the natural organic compound is menthol. In another embodiment, the natural organic compound is capsaicin. In another embodiment, the natural organic compound is anise. In another embodiment, the natural organic compound is camphor. In one embodiment, the natural organic compound is xanthohumol, 8 -prenylnaringenin or isoxanthohumol. In another embodiment, the natural organic compound is xanthohumol. In another embodiment, the natural organic compound is 8-prenylnaringenin. In another embodiment, the natural organic compound is isoxanthohumol. In another embodiment, the natural organic compound is a prenylflavonoid. In another embodiment, the natural organic compound is a kavalactone or a salvorin.
[0173] In one embodiment, the natural organic compound is a cannibinoid. In another embodiment, the natural organic compound is tetrahydrocannabinol, cannabidiol or cannabinol. In another embodiment, the natural organic compound is cannabidiol. In another embodiment, the natural organic compound is cannabinol. In another embodiment, the natural organic compound is tetrahydrocannabinol.
[0174] In another embodiment, the natural organic compound is cannabigerol, cannabichromene, cannabicyclol, cannabivarin, tetrahydrocamabivarin, cannabidivarin, cannabichromevarin, cannabigerovarin, cannabigerol monomethyl ether, tetrahydrocannbinolic acid, or cannabidiolic acid. In another embodiment, the natural organic compound is cannabigerol. In another embodiment, the natural organic compound is cannabichromene. In another embodiment, the natural organic compound is cannabicyclol. In another embodiment, the natural organic compound is cannabivarin. In another erubodiment, the natural organic compound is tetrahydrocannabivarin. In another embodiment, the natural organic compound is cannabidivarin. In another embodiment, the natural organic compound is cannabichromevarin. In another embodiment, the natural organic compound is cannabigerovarin. In another embodiment, the natural organic compound is cannabigerol monomethyl ether. In another embodiment, the natural organic compound is tetrahydrocannbinolic acid. In another enibodiment, the natural organic compound is cannabidiolic acid.
[0175] In embodiments, at least 20 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 10 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 5 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 4 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 3 Kg of the
natural organic compound is present in the extracted fluid solution. In embodiments, at least 2 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 1 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 500 g of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 400 g of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 300 g of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 200 g of the natural organic compound is present in the extracted fluid solution. In embodiments, at least 100 g of the natural organic compound is present in the extracted fluid solution. In embodiments, about 20 Kg of the natural orgauic compound is present in the extracted fluid solution. In embodiments, about 10 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 5 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 4 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 3 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 2 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 1 Kg of the natural orgamic compound is present in the extracted fluid solution. In embodiments, about 500 g of the natural organic compound is present in the extracted fluid solution. In embodiments, about 400 g of the natural organic compound is present in the extracted fluid solution. In embodiments, about 300 g of the natural organic compound is present in the extracted fluid solution. In embodiments, about 200 g of the natural organic compound is present in the extracted fluid solution. In embodiments, about 100 g of the natural organic compound is present in the extracted fluid solution. In embodiments, about 100 g to about 15 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 100 g to about 10 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 100 g to about 5 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 100 g to about 1 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 500 g to about 15 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 1 Kg to about 10 Kg of the natural organic compound is present in the extracted fluid solution. In embodiments, about 1 Kg to about 5 Kg of the natural organic compound is present in the extracted fluid solution.
[0176] In embodiments, the extraction fluid does not include supercritical \(\mathrm{CO}_{2}\). In embodiments, extraction fluid does not include argon. In embodiments, the extraction fluid does not include xenon. In embodiments, the extraction fluid does not include nitrous oxide.
[0177] In an embodiment, the extraction fluid includes trifluoroethanol or hexafluoroisopropanol. In an embodiment, the extraction fluid includes trifluorethanol. In an embodiment, the extraction fluid includes bexafluoroisopropanol.
[0178] In embodiments, the extraction fluid is above about \(15^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is above about \(20^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is from about \(15^{\circ} \mathrm{C}\). to about \(35^{\circ} \mathrm{C}\). In embodiments, the extraction fluid
is from about \(20^{\circ} \mathrm{C}\). to about \(30^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is about \(15^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is about \(16^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(17^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(18^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(19^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(20^{\circ} \mathrm{C}\). \(\ln\) another embodiment, the extraction fluid is about \(21^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(22^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(23^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(24^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(25^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(26^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(27^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(28^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(29^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(30^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(31^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(32^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(33^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(34^{\circ} \mathrm{C}\). In another embodiment, the extraction fluid is about \(35^{\circ} \mathrm{C}\).
[0179] In one embodiment, the hydrofluorocarbon is a hydrofluoroether, a hydrofluoroketone, a hydrofluoroaromatic or a hydrofluoroolefin. In another embodiment, the hydrofluorocarbon is a hydrofluoroether. In another embodiment, the hydrofluorocarbon is a hydrofluoroketone. In another embodiment, the hydrofluorocarbon is a hydrofluoroaromatic. In another embodiment, the hydrofluorocarbon is a hydrofluoroolefin.
[0180] In one embodiment, the hydrofluorocarbon is chlorodifluoromethane, methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-do-decafluoro-2-trifluoromethylhexane.trifluoromethane (HFC23), difluoromethane (HFC-32), pentafluoroethane (HFC125), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,2tetraftuorvethane (HFC-134a), 1,1,1-trifluorvethane (HFC143a), 1,1-difluoroethane (HFC-152a) or fluoroethane (HFC-161). In another embodiment, the hydrofluorocarbon is chlorodifluoromethane. In another embodiment, the hydrofluorocarbon is methyl nonafluoroisobutyl ether. In another embodiment, the hydrofluorocarbon is methyl nonafluorobutyl ether. In another embodiment, the hydrofluorocarbon is ethyl nonafluoroisobutyl ether. In another embodiment, the hydrofluorocarbon is ethyl nonafluorobutyl ether. In another embodiment, the hydrofluorocarbon is 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethylhexane.trifluoromethane (HFC-23). In another embodiment, the hydrofluorocarbon is difluoromethane (HFC-32). In another embodiment, the hydrofluorocarbon is pentafluoroethane (HFC-125). In another embodiment, the hydrofluorocarbon is 1,1,2,2-tetrafluoroethane (HFC-134). In another embodiment, the hydrofluorocarbon is 1,1,1,2-tetrafluoroethane (HFC-134a). In another embodiment, the hydrofluorocarbon is 1,1,1-trifluoroethane (HFC-143a). In another embodiment, the bydrofluorocarbon is 1,1-difluoroethane (HFC-152a). In another embodiment, the hydrofluorocarbon is fluoroethane (HFC-161).
[0181] In one embodiment, the fluorophilic compound is dimethyl ether.
[0182] In one embodiment, the method includes, prior to contacting, freezing the natural material at a temperature from about \(0^{\circ} \mathrm{C}\). to about \(-60^{\circ} \mathrm{C}\). (e.g., at about 0 to -50 ,

0 to \(-40,0\) to \(-30,0\) to \(-20,0\) to \(-10,0,-1,-2,-3,-4,-5\), \(-6,-7,-8,-9,-10,-15,-20,-25,-30,-35,-40,-45\), or \(-50^{\circ} \mathrm{C}\).). In embodiments, freezing the natural material uses a freezer. In embodiments, freezing the natural material uses a blast freezer. In embodiments, freezing the natural material uses compressed cryogenic gas (e.g., \(\mathrm{CO}_{2}, \mathrm{~N}_{2}, \mathrm{He}\) ). In another embodiment, the mole fraction of the fluorophilic compound is at least four-fold (e.g., at least 5 -fold, 6 -fold, 7 -fold, 8 -fold, 9 -fold, 10 -fold, 15 -fold, 20 -fold, or 25 -fold) greater than the mole fraction of the hydrofluorocarbon. In embodiments, the method includes a recirculating pump to administer the extraction fluid to the natural material. In embodiments, the method includes volatilizing the extraction fluid. In embodiments, the natural organic compound is not volatilized when the extraction fluid is volatilized. In embodiments, the method includes extracting the volatilized extraction fluid. In embodiments, the method includes chilling the extracted volatilized extraction fluid (e.g., with a heat exchanger). In embodiments, the method includes compressing the chilled extracted volatilized extraction fluid (e.g., to an extraction liquid). In embodiments, the method includes warming the extraction liquid resulting from chilling the extracted volatilized extraction fluid. In embodiments the method includes recirculating the wanned extraction liquid resulting from chilling the extracted volatilized extraction fluid (e.g. continuously for a fixed amount of time). In embodiments the method includes warming the recirculated extraction fluid to a temperature range from about \(40^{\circ} \mathrm{C}\). to about \(80^{\circ} \mathrm{C}\). (e.g., to about \(40,41,42,43\), \(44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59\) \(60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75\), \(76,77,78,79\), or \(80^{\circ} \mathrm{C}\).). In embodiments the method includes warming the recirculated extraction fluid to a temperature of about \(80^{\circ} \mathrm{C}\). In embodiments the method includes collecting portions of the recirculating extraction fluid while warming the recirculating extraction fluid to a temperature of about \(80^{\circ} \mathrm{C}\). (e.g., from 40 to \(80^{\circ} \mathrm{C}\).). In another embodiment, the method includes separating the extraction fluid from the natural material by volatizing the extraction fluid to form a volatilized extraction fluid. In another embodiment, the method includes chilling and compressing the volatilized extraction fluid to form a liquid extraction fluid. In another embodiment, the method includes recirculating the liquid extraction fluid to the natural material. In another embodiment, the method includes collecting separated fractions of the liquid extraction fluid. In embodiments, extraction fluid includes a mole fraction of a fluorocarbon at least four-fold (e.g., at least 5 -fold, 6 -fold, 7 -fold, 8 -fold, 9 -fold, 10 -fold, 15 -fold, 20 -fold, or 25 -fold) greater than the mole fraction of the hydrofluorocarbon. In embodiments, extraction fluid includes an additional component (e.g., fluorophilic compound, fluorophilic amine, alocohol, or non-fluorinated hydroxy-alkyl, non-fluorinated hydroxy-cycloalkyl, or non-fluorinated hydroxyl-aryl, inert gas (e.g., \(\mathrm{SF}_{6}, \mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}\), argon)). In embodiments, the mole fraction of the additional component of the extraction fluid is at least four fold (e.g., at least 5 -fold, 6 -fold, 7 -fold, 8 -fold, 9 -fold, 10 -fold, 15 -fold, 20 -fold, or 25 -fold) less than the mole fraction of the hydrofluorocarbon.
[0183] In an aspect, is provided a fluid including chlorodifluoromethane and dimethylether. In one embodiment, the fluid is a non-ideal fluid.
[0184] In an aspect is provided an apparatus for the extraction of natural products (e.g., of medicinal, nutraceutical, health-promoting, or pharmacological, or other value) from a plant, animal, bacterial, fungal, or viral material, or mixtures thereof (e.g., which contain multiple natural products). In embodiments, the desired materials are separated from the undesired materials (e.g., leaving the undesired materials in the unextracted residue. In embodiments, the apparatus frees the desired material in solution. In embodiments, the natural product is further purified (e.g., by fractional distillation, flash chromatography, preparative high pressure liquid chromatography on normal and reverse phase media, countercurrent liquid chromatography, liquidliquid extraction, co-solvent precipitation, or crystallization).
[0185] In an aspect is provided a method (process) for the extraction of natural products (e.g., of medicinal, nutraceutical, health-promoting, or pharmacological, or other value) from a plant, animal, bacterial, fungal, or viral material, or mixtures thereof (e.g., which contain multiple natural products). In embodiments, the desired materials are separated from the undesired materials (e.g., leaving the undesired materials in the unextracted residue. In embodiments, the apparatus frees the desired material in solution. In embodiments, the natural product is further purified (e.g., by fractional distillation, flash chromatography, preparative high pressure liquid chromatography on normal and reverse phase media, countercurrent liquid chromatography, liquidliquid extraction, co-solvent precipitation, or crystallization).
[0186] In as aspect is provided a composition for the extraction of natural products (e.g., of medicinal, nutraceutical, health-promoting, or pharmacological, or other value) from a plant, animal, bacterial, fungal, or viral material, or mixtures thereof (e.g., which contain multiple natural products). In embodiments, the desired materials are separated from the undesired materials (e.g., leaving the undesired materials in the unextracted residue. In embodiments, the apparatus frees the desired material in solution. In embodiments, the natural product is further purified (e.g., by fractional distillation, flash chromatography, preparative high pressure liquid chromatography on normal and reverse phase media, countercurrent liquid chromatography, liquidliquid extraction, co-solvent precipitation, or crystallization).
[0187] In embodiments, the composition includes a hydrofluorocarbon or fluorocarbon. In embodiments, the composition includes a hydrofluorocarbon and fluorocarbon. In embodiments, the composition includes a hydrofluorocarbon. In embodiments, the composition includes a fluorocarbon. In some embodiments, the composition includes hydrofluorocarbons, fluorocarbons, and optionally other substances selected from the alkanes, alkenes, alkynes, alcohols, and aromatic hydrocarbons. In embodiments, the composition includes at least one fluorocarbon which is Freon \({ }^{\text {TM }} 134 \mathrm{a}\) (1,1,1,2-Tetrafluoroethane).
[0188] In embodiments, the method of extraction includes fractional distillation, flash chromatography, preparative high pressure liquid chromatography on normal and reverse phase media, countercurrent liquid chromatography, liquidliquid extraction, co-solvent precipitation, crystallization, or combinations thereof. In embodiments, the method of extraction includes fractional distillation. In embodiments, the method of extraction includes flash chromatography. In
embodiments, the method of extraction includes preparative high pressure liquid chromatography on normal and reverse phase media. In embodiments, the method of extraction includes fractional distillation, countercurrent liquid chromatography. In embodiments, the method of extraction includes liquid-liquid extraction. In embodiments, the method of extraction includes co-solvent precipitation. In embodiments, the method of extraction includes crystallization. Instruments for extraction may include mass spectrometer (MS), gas chromatograph (GC), GC-mass spectrometer, liquid chromatography mass spectrometer, high pressure liquid chromatograph, and combinations thereof.
[0189] Described herein is a multiplicity of co-solvents, provided that the principal extraction medium is either a fluorocarbon or a hydrofluorocarbon in admixture with another fluorophilic compound. Mixtures of fluorocarbons, hydrofluorocarbons, and optionally alkanes, including but not limited to straight chain, branched chain, cycloalkanes, and alkylcycloalkanes, possess the previously unexpected ability to extract specific components of high commercial and health-related value from plant, animal, fungi, bacteria, or virus material. In some embodiments, solvents useful in the methods of the present invention include fluorocarbons and hydrofluorocarbons. Furthermore, forming the continuous phase from mixtures of fluorocarbons is also contemplated herein. In embodiments, the instant conversion of a discontinuous phase to a continuous phase represents the conditions where the maximum solubility of desired, highly hydrophobic plant, animal, fungi, hacteria, or virus materials may be maximally evidenced.
[0190] In embodiments, the extraction fluid (e.g. including extraction components) includes trifluorethanol. In embodiments, the extraction fluid (e.g. including extraction components) includes hexafluoroisopropanol. In embodiments, the extraction fluid (e.g. including extraction components) includes chlorodifluoromethane and dimethylether. In embodiments, the extraction fluid (e.g. including extraction components) includes chlorodifluoromethane. In embodiments, the extraction fluid (e.g. including extraction components) includes dimethylether. In embodiments, the extraction fluid (e.g. including extraction components) includes a liquid-gas mixture. In embodiments, the extraction fluid (e.g. including extraction components) is a nonideal fluid. In embodiments, extraction fluid (e.g. including extraction components) does not include supercritical \(\mathrm{CO}_{2}\), argon, xenon, or nitrous oxide. In embodiments, extraction fluid (e.g. including extraction components) does not include supercritical \(\mathrm{CO}_{2}\). In embodiments, extraction fluid (e.g. including extraction components) does not include argon. In embodiments, extraction fluid (e.g. including extraction components) does not include xenon. In embodiments, extraction fluid (e.g. including extraction components) does not include nitrous oxide. In embodiments, the extraction fluid (e.g. including extraction components) includes a hydrofluorocarbon
[0191] In some embodiments, the extraction fluid includes a hydrofluorocarbon and a fluorophilic compound. The hydrofluorucarbon may include but is not limited to: a hydrofluoroether, a hydrofluoroketone, a hydrofluoroaromatic or a hydrofluoroolefin, chlorodifluoromethane, methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecatluoro-2-trifluoromethylhexane.trifluoromethane (HFC-23), difluoromethane
(HFC-32), pentafluoroethane (HFC-125), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC152a) or fluoroethane (HFC-161). The fluorophilic compound may include dimethyl ether.
[0192] In some embodiments, the mole fraction of the fluorophilic compound is at least four-fold greater than the mole fraction of the hydrofluorocarbon. The mole fraction of the fluorophilic compound may be at least four fold greater, five-fold greater, six fold greater, seven fold greater, eight fold greater, nine fold greater, ten-fold greater, twenty fold greater, fifty fold greater, seventy five-fold greater, or one hundred fold greater than the mole fraction of the hydrofluorocarbon.
[0193] In some embodiments, the mole fraction of dimethyl ether is at least four-fold greater than the mole fraction of the chlorodifluoromethane. The mole fraction of dimethyl ether may be at least four fold greater, five-fold greater, six fold greater, seven fold greater, eight fold greater, nine fold greater, ten-fold greater, twenty fold greater, fifty fold greater, seventy five-fold greater, or one hundred fold greater than the mole fraction of the chlorodifluoromethane. [0194] In some embodiments, the extraction fluid is above about \(15^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is above about \(20^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is from about \(15^{\circ} \mathrm{C}\). to about \(35^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is from about \(20^{\circ} \mathrm{C}\). to about \(30^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is above about \(15^{\circ} \mathrm{C}\)., \(16^{\circ} \mathrm{C} ., 17^{\circ} \mathrm{C}\)., \(18^{\circ}\) C., \(19^{\circ} \mathrm{C} ., 20^{\circ} \mathrm{C} ., 21^{\circ} \mathrm{C} ., 22^{\circ} \mathrm{C} ., 23^{\circ} \mathrm{C}\)., \(24^{\circ} \mathrm{C} ., 25^{\circ} \mathrm{C} ., 26^{\circ}\) C., \(27^{\circ} \mathrm{C}\)., \(28^{\circ} \mathrm{C}\)., \(29^{\circ} \mathrm{C}\)., \(30^{\circ} \mathrm{C}\)., \(31^{\circ} \mathrm{C}\)., \(32^{\circ} \mathrm{C}\)., \(33^{\circ} \mathrm{C}\)., \(34^{\circ}\) C., or \(35^{\circ} \mathrm{C}\). In some embodiments, the extraction fluid is above \(15^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is above \(20^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is from \(15^{\circ} \mathrm{C}\). to \(35^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is from \(20^{\circ} \mathrm{C}\). to \(30^{\circ} \mathrm{C}\). In embodiments, the extraction fluid is above \(15^{\circ}\) C., \(16^{\circ} \mathrm{C} ., 17^{\circ} \mathrm{C} ., 18^{\circ} \mathrm{C} ., 19^{\circ} \mathrm{C} ., 20^{\circ} \mathrm{C} ., 21^{\circ} \mathrm{C} ., 22^{\circ} \mathrm{C} ., 23^{\circ}\) C., \(24^{\circ} \mathrm{C} ., 25^{\circ} \mathrm{C} ., 26^{\circ} \mathrm{C} ., 27^{\circ} \mathrm{C} ., 28^{\circ} \mathrm{C}\)., \(29^{\circ} \mathrm{C} ., 30^{\circ} \mathrm{C}\)., \(31^{\circ}\) C., \(32^{\circ} \mathrm{C}\)., \(33^{\circ} \mathrm{C}\). \(34^{\circ} \mathrm{C}\)., or \(35^{\circ} \mathrm{C}\).
[0195] In embodiments, an ionic liquid includes a cation described by one or more of the following formulae:






\(\mathrm{R}_{1}\)
\(R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, R^{7}, R^{8}, R^{9}\), and \(R^{10}\) are independently halogen, \(-\mathrm{CX}_{3},-\mathrm{CHX}_{2},-\mathrm{CH}_{2} \mathrm{X},-\mathrm{CN},-\mathrm{OH},-\mathrm{NH}_{2}\), \(-\mathrm{COOH},-\mathrm{CONH}_{2},-\mathrm{NO}_{2},-\mathrm{SH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{SO}_{4} \mathrm{H}\) \(-\mathrm{SO}_{2} \mathrm{NH}_{2},-\mathrm{NHNH}_{2},-\mathrm{ONH}_{2},-\mathrm{NHC}=(\mathrm{O}) \mathrm{NHNH}_{2}\), \(-\mathrm{NHC}=(\mathrm{O}) \mathrm{NH}_{2},-\mathrm{NHSO}_{2} \mathrm{H},-\mathrm{NHC}=(\mathrm{O}) \mathrm{H},-\mathrm{NHC}\) \((\mathrm{O})-\mathrm{OH},-\mathrm{NHOH},-\mathrm{OCX}_{3},-\mathrm{OCHX}_{2},-\mathrm{OCH}_{2} \mathrm{X}\), substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl. Two of \(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}^{7}, \mathrm{R}^{8}, \mathrm{R}^{9}\), and \(\mathrm{R}^{10}\) may independently optionally be joined to form a substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl.
[0196] In embodiments, \(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}^{7}, \mathrm{R}^{8}, \mathrm{R}^{9}\), and \(R^{10}\) are independently substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted alkyl, substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted heteroalkyl, substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted cycloalkyl, substituted (e.g., substituted with a substituent group, a size-limited suhstituent group, or lower substituent group) or unsubstituted heterocycloalkyl, substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted aryl, or substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted heteroaryl. In embodiments, two of \(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}\), \(R^{7}, R^{8}, R^{9}\), and \(R^{10}\) may independently optionally be joined to form a substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted cycloalkyl, substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted heterocycloalkyl, substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted aryl, or substituted (e.g., substituted with a substituent group, a size-limited substituent group, or lower substituent group) or unsubstituted heteroaryl. In embodiments, wherein \(\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}, \mathrm{R}^{4}, \mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) are each independently selected from the group consisting of: (i) H ; (ii) halogen; (iii) \(-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}\), or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) straightchain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of \(\mathrm{Cl}, \mathrm{Br}, \mathrm{F}, \mathrm{I}, \mathrm{OH}, \mathrm{NH}_{2}\) and SH ; (iv) \(-\mathrm{CH}_{3}\), \(-\mathrm{C}_{2} \mathrm{H}_{5}\), or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) straight-chain, branched or cyclic alkane or alkene comprising one to three beteroatoms selected from the group consisting of \(\mathrm{O}, \mathrm{N}, \mathrm{Si}\) and S , and optionally substituted with at least one member selected from the group consisting of \(\mathrm{Cl}, \mathrm{Br}, \mathrm{F}, \mathrm{I}, \mathrm{OH}, \mathrm{NH} 2\) and SH ; (v) \(\mathrm{C}_{6}\) to \(\mathrm{C}_{20}\) unsubstituted aryl, or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) unsubstituted heteroaryl having one to three heteroatoms independently selected from the group consisting of \(\mathrm{O}, \mathrm{N}, \mathrm{Si}\) and S ; and (vi) \(\mathrm{C}_{6}\) to \(\mathrm{C}_{25}\) substituted aryl, or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) substituted heteroaryl having one to three heteroatoms independently selected from the group consisting of \(\mathrm{O}, \mathrm{N}, \mathrm{Si}\) and S ; wherein said substituted aryl or substituted heteroaryl bas one to three substituents independently selected from the group consisting of: 1. \(-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}\), or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) straight-chain, branched or cyclic alkane or alkene, optionally substituted
with at least one member selected from the group consisting of \(\mathrm{Cl}, \mathrm{Br}, \mathrm{F}, \mathrm{I}, \mathrm{OH}, \mathrm{NH}_{2}\) and \(\mathrm{SH}, 2 . \mathrm{OH}, 3 . \mathrm{NH}_{2}\), and 4 . SH. In embodiments, \(\mathrm{R}^{7}, \mathrm{R}^{8}, \mathrm{R}^{9}\), and \(\mathrm{R}^{10}\) are each independently selected from the group consisting of: (vii) \(-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}\), or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of \(\mathrm{Cl}, \mathrm{Br}, \mathrm{F}, \mathrm{I}, \mathrm{OH}, \mathrm{NH}_{2}\) and SH ; (viii) \(-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}\), or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) straight-chain, branched or cyclic alkane or alkene comprising one to three heteroatoms selected from the group consisting of \(\mathrm{O}, \mathrm{N}, \mathrm{Si}\) and S , and optionally substituted with at least one member selected from the group consisting of \(\mathrm{Cl}, \mathrm{Br}, \mathrm{F}, \mathrm{I}, \mathrm{OH}, \mathrm{NH}_{2}\) and SH ; (ix) \(\mathrm{C}_{6}\) to \(\mathrm{C}_{25}\) unsubstituted aryl, or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) unsubstituted heteroaryl having one to three heteroatoms independently selected from the group consisting of \(\mathrm{O}, \mathrm{N}, \mathrm{Si}\) and \(S\); and (x) \(C_{6}\) to \(C_{25}\) substituted aryl, or \(C_{3}\) to \(C_{25}\) substituted heteroaryl having one to three heteroatoms independently selected from the group consisting of \(\mathrm{O}, \mathrm{N}, \mathrm{Si}\) and S ; wherein said substituted aryl or substituted heteroaryl has one to three substituents independently selected from the group consisting of: (1) \(-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}\), or \(\mathrm{C}_{3}\) to \(\mathrm{C}_{25}\) straight-chain, branched or cyclic alkane or alkene, optionally substituted with at least one member selected from the group consisting of \(\mathrm{Cl}, \mathrm{Br}, \mathrm{F}, \mathrm{I}, \mathrm{OH}, \mathrm{MI}_{2}\) and SH , (2) OH , (3) \(\mathrm{NH}_{2}\), and (4) SH; and wherein optionally at least two of \(\mathrm{R}^{1}\), \(R^{2}, R^{3}, R^{4}, R^{5}, R^{6} R^{7}, R^{8}, R^{9}\), and \(R^{10}\) can together form a cyclic or bicyclic alkanyl or alkenyl group. In embodiments, an ionic liquid includes fluorinated cations wherein at least one member selected from \(R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}, R^{7}, R^{8}\), \(R^{9}\), and \(R^{10}\), as described above, includes \(F\).
[0197] In embodiments, is included the extraction of medicinally, pharmaceutically, or other economically valuable organic compounds, including but not limited to terpenes, alkaloids, and essential oils (e.g., for preparation of flavors and fragrances). In embodiments, the extraction includes use of two different fluorophilic compounds, specifically a fluorocarbon and a hydrofluorocarbon. In embodiments, is included the extraction of medicinally, pharmaceutically, or other economically valuable organic compounds, including but not limited to terpenes, alkaloids, and essential oils (e.g., for preparation of flavors and fragrances). In embodiments, the extraction includes use of three different chemical compounds, including two different fluorophilic compounds (e.g., a fluorocarbon and a hydrofluorocarbon), and an alkane. In embodiments, is included the extraction of medicinally, pharmaceutically, or other economically valuable organic compounds, including but not limited to terpenes, alkaloids, and essential oils (e.g., for preparation of flavors and fragrances). In embodiments, the extraction includes use of three different fluorophilic chemical compounds, including two different fluorophilic compounds (e.g., a fluorocarbon and a hydrofluorocarbon), and a fluorinated ether. In some embodiments, the mixture is a fluorocarbon and an ionic liquid.
[0198] In embodiments, a natural organic compound is extracted from a natural material (e.g., plant, animal, fungi, bacteria, or virus). In embodiments, the natural material is a plant. In embodiments, the plant is Piper methysticum, Cannabis spp., Salvia spp., Banisteriopsis caapi, Psychotria viridis (chacruna), Diplopterys cabrerana, Peganum harmala, Humulus lupulus or mixtures thereof.
[0199] In some embodiments, are methods of extracting natural organic compounds from natural materials. In some embodiments, natural organic compound includes biologi-
cally active organic compound. In some embodiments, the natural organic compound includes aromatic oil and/or essential oil. In embodiments, the natural organic compound is caffeine, terpene, a humulone, a lupulone, a myrcene, a humulene, a caryophyllene, an alkaloid, a flavonoid, a cannabinoid, menthol, capsaicin, anise, camphor, xanthohumol, 8-prenylnaringenin, isoxanthohumol, prenylflavonoid, kavalactone, or a salvorin. In embodiments, the natural product is cannabinoid. In embodiments, the cannabinoid is tetrahydrocannabinol, cannabidiol, or cannabinol. In embodiments, the natural organic compound is tetrahydrocannabinol.
[0200] In embodiments, the plant, animal, fungi, bacteria, or virus material used is cannabis. Multiple medicinal uses have been found for the active ingredients of cannabis, either Cannabis spp. but most commonly Cannabis sativa. Other plants than Cannabis spp. may contain useful cannabinoid activity, or may possess compounds, typically terpeneoid in character, which possess micromolar or higher affinity for the \(\mathrm{CB}_{1}\) or \(\mathrm{CB}_{2}\) cannabinoid receptors present in a man, animal, or bird.
[0201] Cannabinoids present in cannabis include the ingredients tetrahydrocannabinol, cannabinol, cannabidiol, and cannabichromene. The medicinal uses of cannabis include but are not limited to: epilepsy [Porter, Brenda E., and Catherine Jacobson. "Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatmentresistant epilepsy." Epilepsy \& Behavior 29, no. 3 (2013): 574-577, which is incorporated herein by reference for all purposes]; pain [Cooper, Ziva D., Sandra D. Comer, and Margaret Haney. "Comparison of the analgesic effects of dronabinol and smoked marijuana in daily marijuana smokers." Neuropsychopharmacology 38, nо. 10 (2013): 19841992; Kahan, Meldon, Anita Srivastava, Sheryl Spithoff, and Lisa Bromley. "Prescribing smoked cannabis for chronic noncancer pain Preliminary recommendations." Canadian Family Physician 60, no. 12 (2014): 1083-1090; Wilsey, Barth, Thomas Marcotte, Reena Deutsch, Ben Gouaux, Staci Sakai, and Haylee Donaghe. "Low-dose vaporized cannabis significantly improves neuropathic pain." The Journal of Pain 14, no. 2 (2013): 136-148, which are incorporated herein by reference for all purposes], specifically as evidenced in the treatment of nausea and pain associated with cancer and chemotherapy [United States Patent Document U.S. Pat. No. 8,119,697, Anti-Nausea and Anti Vomiting Activity of Cannabadiol Compounds, which is incorporated herein by reference for all purposes]; viral infection [Molina, Patricia E., Peter Winsauer, Ping Zhang, Edith Walker, Leslie Birke, Angela Amedee, Curtis Vande Stouwe et al. "Cannabinoid administration attenuates the progression of simian immunodeficiency virus." AIDS research and human retroviruses 27 , nо. 6 (2011): 585-592, which is incorporated herein by reference for all purposes]; AIDS-related pain and Wasting; multiple sclerosis [Svendsen, Kristina B., Troels S. Jensen, and Flemıning W. Bach. "Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomized double blind placebo controlled crossover trial." Bmj 329, no. 7460 (2004): 253, which is incorporated herein by reference for all purposes] arthritis; rheumatism; glaucoma [Hingorani, Tushar, Waseem Gul, Mahmoud Elsohly, Michael A. Repka, and Soumyajit Majumdar. "Effect of ion pairing on in vitro transcorneal permeability of a \(\Delta 9\)-tetrahydrocannabinol prodrug: Potential in glaucoma therapy." Journal of pharmaceutical sciences 101, no.

2 (2012): 616-626, which is incorporated herein by reference for all purposes]; migraines; muscle spasticity; chemical dependency. Prior art further suggests that cannabis and its components have utility in oncology [Chakravarti, Bandana, Janani Ravi, and Ramesh K. Ganju. "Cannabinoids as therapeutic agents in cancer: current status and future implications." Oncotarget 5, no. 15 (2014): 5852], Parkinson's disease [see, for example, More, Sandeep Vasant, and DongKug Choi. "Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection." Molecular neurodegeneration 10, no. 1 (2015): 1-26, which is incorporated herein by reference for all purposes], Within this embodiment, extracted material may be used as a composition to treat post-herpetic nenralgia, shingles, hurns, actinic keratosis, oral cavity sores, oral ulcers, post-episiotomy pain, psoriasis, pruritus, contact dernnatitis, eczema, bullous dermatitis herpetiformis, exfoliative dermatitis, mycosis fungoides, pemphigus, severe erythema multiforme, seborrheic dermatitis, psoriatic arthritis, diabetic neuropathy, ankylosing spondylitis, Reiter's syndrome, gout, chondrocalcinosis, joint pain secondary to dysmenorrhea, fibromyalgia [Fiz, Jimena, Marta Duran, Dolors Capella, Jordi Carbonell, and Magi Farr\& "Cannabis use in patients with fibromyalgia: effect on symptoms relief and health-related quality of life." (2011): e18440, which is incorporated herein by reference for all purposes], musculoskeletal pain, neuropathic-postoperative complications, polymyositis, acute nonspecific tenosynovitis, bursitis, epicondylitis, post-traumatic osteoarthritis, synovitis, juvenile rheumatoid arthritis, contact eczema, allergies (not otherwise specified), phototoxic reactions, inflammatory and itching dermatoses, rosacea, perioral dermatitis, acne, acne, psoriasis, mosquito and other insect bites, skin atrophy, allergic rhinitis, conjunctivitis, otitis, bronchial asthma, Crohn's disease, ulcerative colitis, sarcoidosis, inflamma-tory-rheumatic diseases of the soft tissue or joints, mycoses, or combinations thereof.
[0202] In embodiments, the plant is Cannabis spp. In embodiments, the apparatus, method, or composition includes Freon \({ }^{\text {TM }}\) 134a (1,1,1,2-Tetrafluoroethane). In embodiments, the apparatus, method, or composition includes Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroethane) and optionally one or more of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, triflnoromethyl iodide, or tetrafluoromethane. In embodiments, the apparatus, method, or composition includes two extraction components (e.g., one component used in the extraction consists of Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroethane) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane; one component used in the extraction is Freon \({ }^{\mathrm{TM}}\) 134a ( \(1,1,1,2\)-Tetrafluoroethane) within the range of \(20 \mathrm{~mol}-\%\) to \(99 \mathrm{~mol}-\%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from 80 \(\mathrm{mol} \%\) to \(1 \mathrm{~mol}-\%\); one component used in the extraction is Freon \({ }^{\mathrm{TM}}\) 134a ( \(1,1,1,2\)-Tetrafluoroethane) within the range of \(80 \mathrm{~mol}-\%\) to \(90 \mathrm{~mol}-\%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(10 \mathrm{~mol}-\%\) to \(20 \mathrm{~mol}-\%\); or one component used in the
extraction consists of Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroeth ane) within the range of \(80 \mathrm{~mol} \%\) to \(90 \mathrm{~mol} \%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexalluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(9 \mathrm{~mol}-\%\) to \(19 \mathrm{~mol}-\%\) where ethanol is present in the range from \(1 \mathrm{~mol} \%\) to \(10 \mathrm{~mol}-\%\) ).
[0203] In embodiments, the plant material used is Salvia spp . Multiple medicinal uses have been found for the active ingredients of Salvia spp. in particular achieving sedation and tranquilization in psychiatric and neurological disorders and treatment of insomnia [see for example Perron, Brian E., Brian K. Ahmedani, Michael G. Vaughn, Joseph E. Glass, Arnelyn Abdon, and Li-Tzy Wu. "Use of Salvia divinorum in a nationally representative sample." The American jour nal of drug and alcohol abuse 38, no. 1 (2012): 108-113; Potter, David N., Diane Damez-Werno, William A. Carlezon, Bruce M. Cohen, and Elena H. Chartoff. "Repeated exposure to the \(\kappa\)-opioid receptor agonist salvinorin A modulates extracellular signal-regulated kinase and reward sensitivity." Biological psychiatry 70, no. 8 (2011): 744-753; Teksin, Zeynep S., Insong J. Lee, Noble N. Nemieboka, Ahmed A. Othman, Vijay V. Upreti, Hazem E. Hassan, Shariq S. Syed, Thomas E. Prisinzano, and Natalie D. Eddington. "Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin A, a poteut hallucinogen." European Journal of Pharmaceutics and Biopharmaceutics 72, no. 2 (2009): 471-477, which are incorporated herein by reference for all purposes]. Salvinorin \(A\) and other closely related salvinorins have substantial activity at the nanomolar level on kappa-type opioid receptors, which are involved, among other things, in analgesia. Accordingly, the extracts obtained from Salvia spp. are of utility of the treatment and amelioration of the disease process as well as the symptomatology of a variety diseases and pathological conditions, such as pain, especially neuropathic pain and cancer-breakthrough pain, which would normally be responsive to opioids.
[0204] In embodiments, the plant is Salvia spp. In embodiments, the apparatus, method, or composition includes Freon \({ }^{\text {TM }}\) 134a (1,1,1,2-Tetrafluoroethane). In embodiments, the apparatus, method, or composition includes Freon \({ }^{\mathrm{TM}}\) 134 a (1,1,1,2-Tetrafluoroethane) and optionally one or more of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane. In embodiments, the apparatus, method, or composition includes two extraction components (e.g., one component used in the extraction is Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroethane) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane; one component used in the extraction is Freon \({ }^{\text {TM }}\) 134a (1,1,1,2-Tetrafluoroethane) within the range of \(20 \mathrm{~mol} \%\) to \(99 \mathrm{~mol} \%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(80 \mathrm{~mol}-\%\) to \(1 \mathrm{~mol}-\%\); one component used in the extraction is Freon \({ }^{\text {TM }}\) 134a (1,1,1,2-Tetrafluoroethane) within the range of \(80 \mathrm{~mol} \%\) to \(90 \mathrm{~mol}-\%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(10 \mathrm{~mol}-\%\) to \(20 \mathrm{~mol}-\%\); one
component used in the extraction is Freon \({ }^{\mathrm{TM}}\) 134a ( \(1,1,1,2\) Tetrafluoroethane) within the range of \(80 \mathrm{~mol}-\%\) to 90 \(\mathrm{mol} \%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(9 \mathrm{~mol}-\%\) to \(19 \mathrm{~mol} \%\) where ethanol is present in the range from 1 \(\mathrm{mol}-\%\) to \(10 \mathrm{~mol}-\%\).
[0205] In embodiments, the plant material used is Banisteriopsis caapi, Psychotria viridis (chacruna), Diplopterys cabrerana (also known as chaliponga and chagropanga), Peganum harmala, or any mixture thereof. Multiple medicinal uses have been found for the active ingredients of Banisteriopsis caapi, Psychotria viridis (chacruna), Diplopterys cabrerana (also known as chaliponga and chagropanga), Peganum hannala, or any mixture thereof, in particular achieving sedation and tranquilization in psychiatric and neurological disorders and treatment of insomnia. See, for example, Riba, Jordi, Marta Valle, Gloria Urbano, Mercedes Yritia, Adelaida Morte, and Manel J. Barbanoj. "Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics." Journal of Pharmacology and Experimental Therapeutics 306, no. 1 (2003): 73-83; Rivier, Laurent, and Jan-Erik Lindgren. "' Ayahuasca,' the South American hallucinogenic drink: An ethnobotanical and chemical investigation." Economic Botany 26, no. 2 (1972): 101-129, which are incorporated herein by reference for all purposes. Accordingly, the extracts obtained from Banisteriopsis caapi, Psychotria viridis (chacruna), Diplopterys cabrerana (also known as chaliponga and chagropanga), Pegamum harmala, or any mixture thereof. Such mixtures are of utility of the treatment and amelioration of the disease process as well as the symptomatology of the diseases and pathological conditions, especially in the treatment of psychiatric disorders, such as depression.
[0206] In embodiments, the plant is Banisteriopsis caapi, Psychotria viridis (chacruna), Diplopterys cabrerana (also known as chaliponga and chagropanga), Peganum harmala, or any mixture thereof. In embodiments, the plant is Banisteriopsis caapi. In embodiments, the plant is Psychotria viridis (chacruna). In embodiments, the plant is Diplopterys cabrerana (also known as chaliponga and chagropanga). In emhodiments, the plant is Peganum harmala. In emhodiments, the apparatus, method, or composition includes Freon \({ }^{\text {TM }} 134 \mathrm{a}\) ( \(1,1,1,2\)-Tetrafluoroethane). In embodiments, the apparatus, method, or composition includes Freon \({ }^{\text {TM }}\) 134a (1,1,1,2-Tetrafluoroethane) and optionally one or more of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, triffnoromethyl iodide, or tetrafluoromethane. In embodiments, the apparatus, method, or composition includes two extraction components (e.g., one component used in the extraction is Freon \({ }^{\text {TM }} 134\) a (1,1,1,2-Tetrafluoroethane) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane; one component used in the extraction is Freon \({ }^{\text {TM }}\) 134a ( \(1,1,1,2\)-Tetrafluoroethane) within the range of \(20 \mathrm{~mol} \%\) to \(99 \mathrm{~mol}-\%\) and another is selected from the optional group of gases consisting of carhon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(80 \mathrm{~mol}-\%\) to \(1 \mathrm{~mol}-\%\); one component used in the extraction is Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroethane)
within the range of \(80 \mathrm{~mol}-\%\) to \(90 \mathrm{~mol}-\%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(10 \mathrm{~mol}-\%\) to \(20 \mathrm{~mol}-\%\); one component used in the extraction is Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2Tetrafluoroethane) within the range of \(80 \mathrm{~mol}-\%\) to 90 \(\mathrm{mol} \%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(9 \mathrm{~mol}-\%\) to \(19 \mathrm{~mol}-\%\) where ethanol is present in the range from 1 mol-\% to \(10 \mathrm{~mol}-\%\).
[0207] In embodiments, the plant material used is kava (Piper myristicum). Multiple medicinal uses have been found for the active ingredients of kava (Piper myristicum), in particular achieving sedation and tranquilization in psychiatric and neurological disorders and treatment of insomnia and anxiety. See, for example, Volz, Hans-Peter, and M. Kieser. "Kava-kava extract WS 1490 versus placebo in anxiety disorders: A randomized placebo-controlled 25 -week outpatient trial." Pharmacopsychiatry (1997). Sarris, J., D. J. Kavanagh, G. Byme, K. M. Bone, J. Adams, and G. Deed. "The Kava Anxiety Depression Spectrum Study (KADSS): a randomized, placebo-controlled crossover trial using an aqueous extract of Piper methysticum." Psychopharmacology 205, no. 3 (2009): 399-407, which are incorporated herein by reference for all purposes. However, there have been reports of hepatotoxicity due to Kava [Clouatre, Dallas
[0208] L. "Kava: examining new reports of toxicity." Toxicology letters 150, no. 1 (2004): 85-96, which is incorporated herein by reference for all purposes]; better extraction procedures could offer the promise of ameliorating these difficulties if only the active kavalactones, which account for much of the biological activity, could be extracted in a substantially purer form. The extracts obtained from kava are of utility of the treatment and amelioration of the disease process as well as the symptomatology of the diseases and pathological conditions.
[0209] In embodiments, the plant is Piper methysticum (Kava). In embodiments, the apparatus, method, or composition includes Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroethane). In embodiments, the apparatus, method, or composition includes Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroethane) and optionally one or more of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane. In embodiments, the apparatus, method, or composition includes two extraction components (e.g., one component used in the extraction is Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroethane) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, trifluoromethane, trifluoromethyl iodide, or tetrafluoromethane; one component used in the extraction consists of Freon \({ }^{\mathrm{TM}}\) 134a (1,1,1,2-Tetrafluoroethane) within the range of 20 \(\mathrm{mol}-\%\) to \(99 \mathrm{~mol}-\%\) and another is selected from the optional group of gases consisting of carbon dioxide, nitrous oxide, sulfur hexafluoride, triffuoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(80 \mathrm{~mol} \%\) to \(1 \mathrm{~mol}-\%\); one component used in the extraction is Freon \({ }^{\text {TM }}\) 134a (1,1,1,2-Tetrafluoroethane) within the range of \(80 \mathrm{~mol}-\%\) to \(90 \mathrm{~mol} \%\) and another is selected from the optional group of gases consisting of
carbon dioxide, nitrous oxide, sulfur hexafluoride, triffuoromethane, trifluoromethyl iodide, or tetrafluoromethane in the range independently from \(10 \mathrm{~mol}-\%\) to \(20 \mathrm{~mol}-\%\).

\section*{III. EXAMPLES}
[0210] The following examples illustrate certain specific embodiments of the invention and are not meant to limit the scope of the invention.
[0211] Embodiments herein are further illustrated by the following examples and detailed protocols. However, the examples are merely intended to illustrate embodiments and are not to be construed to limit the scope herein. The contents of all references and published patents and patent applications cited throughout this application are hereby incorporated by reference.
[0212] A problem in phamaceutical chemistry relates to extraction of useful substances from plants or animals where such useful substances are employed for the formulation of a pharmaceutical or a nutraceutical. For example, morphine is a pharmaceutically highly useful material. All morphine used today originates in natural opium, which is obtained exclusively by extraction from Papaver somniferum (opium poppies). which is supplied primarily from India, Afghanistan, and Turkey where the poppies contain up to \(20 \%\) of morphine in their latex. There are many total synthetic pathways to morphine but to date there is no reported synthesis of the alkaloid that would show much pronuse for a large-scale manufacturing [Zezula, Josef, and Tomas Hudlicky. "Recent progress in the synthesis of morphine alkaloids." Synlett 3 (2005): \(388-405\), which is incorporated herein by reference for all purposes]. Thus the supply of morphine remains dependent upon extraction of plant material.
[0213] Altematively, the extracted useful substance may be employed as a synthetic intermediate in the manufacture of other drugs which are formulated as a pharmaceutical dosage form or a nutraceutical. As an example, thebaine is an opiun alkaloid which is also extracted from opium poppies which itself is somewhat toxic and convulsant and when administered as a drug has no medical value. However, thebaine is used as the key intermediate for the synthesis of most of the non-natural opiates used in clinical practice. See, for example, Schiff, Paul L. "Opium and its alkaloids." American Journal of Pharmaceutical Education 66.2 (2002): 188-196; Tolstikova, T G. A V Bolkunov, E A Morozova, and S E Tolstikov. "Thebaine as a Precursor of Opioid Analgesic Agents." Chemistry for Sustainable Development 17 (2009) 109-126, which are incorporated herein by reference for all purposes.
[0214] Plants may be shrubs, trees, roots, berries, or other components of normal terrestrial plants, or they can be plants present in freshwater aquatic or marine environments. For examples of the latter, see Rocha, Fabiola Dutra, Angelica Riheiro Soares, Peter John Houghton, Renato Crespo Pereira, Maria Auxiliadora Coelho Kaplan, and Valeria Laneuville Teixeira. "Potential cytotoxic activity of some Brazilian seaweeds on human melanoma cells." Phytotherapy Research 21, no. 2 (2007): 170-175, which is incorporated herein by reference for all purposes.
[0215] Although in many cases plants represent the major source of naturally occurring compounds which are useful in the prevention and treatment of diseases in humans and animals other natural sources can be important as a source of these materials. For example, many drugs have been
derived from marine natural products [Jha, Rajeev Kumar, and Xu Zi -rong. "Biomedical compounds from marine organisms." Marine drugs 2.3 (2004): 123-146, which is incorporated herein by reference for all purposes].
[0216] Also, many marine drugs are extracted from organisms. See, for example, Thornburg, Christopher C., T. Mark Zabriskie, and Kerry L. McPhail. "Deep-Sea Hydrothermal Vents: Potential Hot Spots for Natural Products Discovery?' Journal of natural products 73, no. 3 (2010): 489-499, Pettit, George R., Jun-ping Xu, Zbigniew A. Cichacz, Michael D. Willians, Ann-Christine Dorsaz, Daniel C. Brune, Michael R. Boyd, and Ronald L. Cerny. "Antineoplastic agents 315. Isolation and structure of the marine sponge cancer cell growth inhibitor phakellistatin 5." Bioorganic \& Medicinal Chemistry Letters 4, no. 17 (1994): 2091-2096; Yosief, Tesfamariam, Amira Rudi, and Yoel Kashman. "Asmarines A F, novel cytotoxic compounds from the marine sponge Raspailia species." Journal of natural products 63 , no. 3 (2000): 299-304. Numata, Atsushi, Taro Amagata, Katsuhiko Minoura, and Tadayoshi Ito. "Gymnastatins, novel cytotoxic metabolites produced by a fungal strain from a sponge." Tetrahedron letters 38, no. 32 (1997): 5675-5678; Kobayashi, Jun'ichi, Shinji Takeuchi, Masami Ishihashi, Hideyuki Shigemori, and Takuma Sasaki. "Plakotenin, a new cytotoxic carboxylic acid from the okinawan marine sponge plakortis Sp ." Tetrahedron letters 33, no. 18 (1992): 2579-2580. ; Washida, Kazuto, Tomoyuki Koyama, Kaoru Yamada, Masaki Kita, and Daisuke Uemura. "Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp ." Tetrahedron letters 47, no. 15 (2006): 2521-2525, Kwon, Hak Cheol, Christopher A. Kauffman, Paul R. Jensen, and William Fenical. "Marinomycins A D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus 'Marinispora'." Journal of the American Chemical Society 128, no. 5 (2006): 1622-1632, which are incorporated herein by reference for all purposes. Drugs may extracted from many sources. See, for example, Yan, Yong-Ming, Jun Ai, Yan-Ni Shi, Zhi-Li Zuo, Bo Hou, Jie Luo, and Yong-Xian Cheng. " \(\pm\) )-Aspongamide A, an N -Acetyldopamine Trimer Isolated from the Insect Aspongopus chinensis, Is an Inhihitor of p-Smad3." Organic letters 16, no. 2 (2014): 532-535, Whitehouse, M. W., A. G. Turner, C. K. C. Davis, and M. S. Roberts. "Emu oil (s): a source of non-toxic transdermal anti-inflammatory agents in aboriginal medicine." Inflammophamacology 6, no. 1 (1998): 1-8, which are incorporated herein by reference for all purposes.
[0217] It should further be noted that typically natural products, including but not limited to marine natural products, and natural products from terrestrial plants, may contain multiple chiral centers which manifest optical activity. In general, this complicates the total synthesis of these natural products from commercially available achiral molecules. Although many methods exist in modern organic chemistry to perlorm enantioselective or chiral synthetic steps in high yield as well as to form multiple chiral centers in the correct stereochemical relation to each other in a single chemical step, many of these procedures are not well scalable from milligram scale in the laboratory to kilogram scale in production. Accordingly, semisynthesis is commonly employed. For example although there are many total syntheses of Paclitaxel, an important cancer drug, it is still produced from cells maintained in plant tissue culture derived from the pacific yew tree, Taxus brevifolia as none
of the total syntheses are practical at large scale and there is not much possibility that they will ever be.
[0218] Many methods have been developed for extraction of natural products most particularly from plant, animal, fungi, hacteria, or viruses, where this has been historically important long before the advent of modern medicine in the preparation of materials required for the fragrance industry, such as the formulation of perfumes. These have been reviewed. See, for example, Wang, Lijun, and Curtis L. Weller. "Recent advances in extraction of nutraceuticals from plants." Trends in Food Science \& Technology 17, no. 6 (2006): 300-312, which is incorporated herein by reference for all purposes. The oldest methods, which are still used, involve steam distillation, co-distillation with a solvent, typically ethanol, or Soxhlet extraction with an organic solvent. In these processes, the water, ethanol or organic solvent which co-distills with the desired mixture of natural products is removed, leaving the final product, typically as an oil, which may in its impure state may still be highly desired in the fragrance industry. For example Otto of roses is produced by steam distillation of rose (Rosa damascene) petals and is an important item of commerce in the perfume industry. However, steam distillation is an extremely inefficient and laborious process in practice, and it cannot be applied effectively to molecules which are somewhat polar in aqueous solution, as is, for example, the case with most alkaloids.
[0219] Extraction with organic solvents has been used for obtaining desired valuable substances from natural product plant, animal, fungi, bacteria, or virus material. This could involve Soxhlet extraction [De Castro, M D Luque, and F. Priego-Capote. "Soxhlet extraction: Past and present panacea." Journal of Chromatography A 1217, no. 16 (2010): 2383-2389, which is incorporated herein by reference for all purposes] whereby solvent is heated under reflux and the refluxed solvent is passed over a porous thimble containing the natural product. The natural product material is continually washed with fresh solvent in this approach, allowing the removal of much more product than would otherwise be possible because the amount in solution is not limited by equilibrium solubility of the solute in the solvent. While this approach is useful with highly soluble material, especially at the laboratory scale it becomes physically inefficient from the point of view of solvent and material handling at greater than a kilo scale. To some this can be addressed by using a different design, such as a fluidized bed extractor.
[0220] Extraction with hydrocarbon gases is also a useful technique, especially for the isolation of extremely hydrophobic materials such as waxes and oils [U.S. Pat. No. \(5,405,633\), Process for the extraction of fats and oils; European Patent Office Document EP0711508A1, Verfabren zur Extraktion von natürlichen Aromen aus fett-und ölhaltigen Naturstoffen; Nobre, Beatriz P., Luisa Gouveia, Patricia G S Matos, Ana F. Cristino, Antonio F. Palavra, and Rui L. Mendes. "Supercritical extraction of lycopene from tomato industrial wastes with ethane." Molecules 17, no. 7 (2012): 8397-8407]; which are incorporated herein by reference. Propane versus supercritical \(\mathrm{CO}_{2}\), is ten times more efficient at extracting carotenoids from pepper. See, for example, Daood, H. G., V. Illés, M. H. Gnayfeed, B. Mészáros, G. Horváth, and P. A. Biacs. "Extraction of pungent spice paprika by supercritical carbon dioxide and subcritical propane." The Journal of supercritical fluids 23, no. 2 (2002): 143-152, which is incorporated herein by reference for all
purposes. However, these processes which employ ethane, propane, or butane although they can be worked safely still present a prima facie serious risk of fire or explosion, and great care must be taken on an industrial scale to avoid this. In "backyard" extraction of cannabis by this approach, many serious fires and explosions have occurred. See, for example, Downs, D. "Don't Try This At Home: Butane Hash Oil Penalties Stiffen", East Bay Express Aug. 11, 2015, which is incorporated herein by reference for all purposes. Also, although solvent extraction processes are used on a commercial scale, the extraction solvents which are currently used in these processes are not wholly satisfactory. Thus, when solvents such as hexane are used to extract aromatic oils, such as are used in the food and cosmetic industries, from plant matter containing those oils, unwanted materials contained in the plant, animal, fungi, bacteria, or virus, e.g. high molecular weight waxes, tend to be eluted along with the desired oil. This then can necessitate a further costly purification step [U.S. Pat. No. 2,467,403, Solvent extraction of castor oils, which is incorporated herein by reference for all purposes].
[0221] Halogenated solvents, such as dichloromethane or bromomethane, have been used for extraction of natural products [U.S. Pat. No. 2,294,811 Crystallized glucoside from red squill; U.S. Pat. No. 2,472,121, Decaffeinated soluble coffee; US 2010/0314240, Process of extracting aromatic compounds from plants using bromomethane as a solvent, which are incorporated herein by reference for all purposes]. By the use of a phase transfer catalyst even relatively polar alkaloids can be efficiently extracted [U.S. Pat. No. \(4,818,533\), Production of high purity alkaloids, which is incorporated herein by reference for all purposes]. However, the use of these halogenated solvents has been diminished greatly in recent years for substances of pharmaceutical or nutraceutical activity due to concerns about solvent residues, even at the parts-per-million levels, in the final product, since these halogenated solvents are known to be toxic and some such as chloroform and bromomethane to be putative carcinogens.
[0222] More recently, steam distillation, co-distillation with a solvent, typically ethanol, or Soxhlet extraction have been substantially superseded except in "niche" applications by a method employing extraction with supercritical gases, most particularly supercritical carbon dioxide \(\left(\mathrm{CO}_{2}\right)\). This method employs \(\mathrm{CO}_{2}\) under substantial temperature and pressure, typically greater than 200 atmospheres and at a temperature between \(40^{\circ} \mathrm{C}\). and \(80^{\circ} \mathrm{C}\). This has recently been reviewed. See, for example, De Melo, M. M. R., A. J. D. Silvestre, and C. M. Silva. "Supercritical fluid extraction of vegetable matrices: applications, trends and future perspectives of a convincing green technology." The Journal of Supercritical Fluids 92 (2014): 115-176, which is incorporated herein by reference for all purposes. Originally, this methodology was adopted on an industrial scale for decaffeination of coffee, when it was recognized that it was highly undesirable to utilize chlorinated solvents, such as dichloromethane, which leave trace solvent residues. See U.S. Pat. No. 2,472,121, Decaffeinated soluble coffee, which is incorporated herein by reference for all purposes. The methodology is described in U.S. Pat. No. 4,820,537 Method for decaffeinating coffee with a supercritical fluid; U.S. Pat. No. 5,288,511 Supercritical carbon dioxide decaffeination of acidified coffee, which are incorporated herein by reference for all purposes. The caffeine may be economically recov-
ered [U.S. Pat. No. 4,996,317 Caffeine recovery from supercritical carbon dioxide, which is incorporated herein by reference for all purposes].
[0223] Though this approach has become widely used for extraction of plants, it suffers from a number of important deficiencies. In the first place, the temperatures and pressures which are required result in the need for specialized pressure vessels and high pressure pumps, and although such equipment is commercially available, is can become extremely expensive if a large scale (hundreds of kilograms of plant, animal, fungi, bacteria, or virus material per batch) is required. Since many natural products are present at concentrations in the plant, animal, fingi, bacteria, or virus which are relatively low, in many cases a few percent by weight or less, multiple large batches of raw plant, animal, fungi, bacteria, or virus material frequently need to be processed if a few to tens of kilo/day quantities of extract are required. In many cases, economic requirements dictate hundreds of kilos per day to be produced of extract in order for the extractive process to be run in a mamer which is profitable. At this scale, supercritical \(\mathrm{CO}_{2}\) extraction becomes extremely expensive in terms of capital requirements for plant, animal, fungi, bacteria, or virus construction. Furthermore, because \(\mathrm{CO}_{2}\) 's vapor pressure at room temperature is greater than sixty times normal atnospheric pressure, the use of \(\mathrm{CO}_{2}\) in a process creates a potential safety hazard relative to the same process operated at one atmosphere operation. Clearly, there is a need for processes which can be run in more conventional equipment at significantly lower pressures and temperatures.
[0224] Many extraction processes which are generically termed "supercritical" in nature with regard to \(\mathrm{CO}_{2}\) pressures and temperatures are actually not carried out at temperatures above the critical temperature and critical pressure of the gas, but are actually carried out at temperatures slightly to substantially below these pressures and temperatures. However, below the critical point temperature and pressure the efficiency of extraction of valuable natural products by \(\mathrm{CO}_{2}\) is markedly reduced. It is therefore commonly the case that so-called "supercritical" \(\mathrm{CO}_{2}\) extraction is not as efficient as would be the case if it were truly carried out under supercritical conditions. This limitation, which is not solely a semantic one, also contributes to a deficiency of the \(\mathrm{CO}_{2}\) extraction procedure which must be recognized. An advantage of \(\mathrm{CO}_{2}\) under subcritical conditions is that the solubility of undesired waxes is substantially lower at slightly reduced pressures [Jha, Sujit Kumar, and Giridhar Madras. "Modeling the solubilities of high molecular weight n -alkanes in supercritical carbon dioxide." Fluid phase equilibria 225 (2004): 59-62, which is incorporated herein by reference for all purposes].
[0225] It is generally recognized that liquid \(\mathrm{CO}_{2}\), regardless of whether it is used as the extracting fluid at fully supercritical conditions or at lower pressures and temperatures, is not a completely inert solvent. Carbon dioxide is relatively inert towards reactive compounds, but \(\mathrm{CO}_{2}\) 's relative inertness should not be confused with complete inertness. For example, an attempt to conduct a hydrogenation in \(\mathrm{CO}_{2}\) over a platinum catalyst at 303 K will lead to the production of carbon monoxide CO, which itself could be quite reactive under the conditions of supercritical \(\mathrm{CO}_{2}\) extraction. Simple salts such as \(\mathrm{NaCl}, \mathrm{KCl}\), and LiCl which are invariably present in plant material, especially if the said plant material has been heated, will serve efficiently to
catalyze the addition of \(\mathrm{CO}_{2}\) to activated systems at one atmosphere. See, for example, Kihara, Nobuhiro, Nobutaka Hara, and Takeshi Endo. "Catalytic activity of various salts in the reaction of 2,3 -epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure." The Journal of Organic Chemistry 58 , no. 23 (1993): 6198-6202, which is incorporated herein by reference for all purposes. Although it might be suggested that it is improbable that plant material would contain epoxides, this is not true as many terpenes will oxidize to produce epoxides; this could in fact be accelerated under supercritical \(\mathrm{CO}_{2}\) conditions if care is not taken to exclude \(\mathrm{O}_{2}\) from the system prior to pressurizing with \(\mathrm{CO}_{2}\). In the presence of simple inorganic catalysts such as zeolites, terpenes such as limonene are efficiently converted to epoxides by oxygeu. See, for example, Bhattacharjee, Samiran, and James A. Anderson. "Epoxidation by Layered Double Hydroxide-Hosted Catalysts. Catalyst Synthesis and Use in the Epoxidation of R-(+)-Limonene and (-)- \(\alpha\)-Pinene Using Molecular Oxygen." Catalysis letters 95, no. 3-4 (2004): 119-125, which is incorporated herein by reference for all purposes. Other materials that possess catalytic activity similar to the zeolites, such as clays, which could be present to some degree in plant material could serve as catalysts in a similar manner.
[0226] It should be however recognized that even a small amount of addition of \(\mathrm{CO}_{2}\) to a reactive moiety could result in multiple reactions under the conditions of supercritical extraction of a nature which would yield some amount of polymeric tarry material of indefinite character. Indeed, such tars do, to some degree, invariably occur in the course of supercritical \(\mathrm{CO}_{2}\) extraction. Supercritical \(\mathrm{CO}_{2}\) is, in fact, generally recognized as an excellent solvent in which to perform polymerization reactions [Kendall, Jonathan L., Dorian A. Canelas, Jennifer L. Young, and Joseph M. DeSimone. "Polymerizations in supercritical carbon dioxide." Chemical Reviews99, no. 2 (1999): 543-564, which is incorporated herein by reference for all purposes]. The presence of such tars and their removal represents a serious deficiency in supercritical \(\mathrm{CO}_{2}\) extraction of natural prodnets, as conmonly it is necessary to employ a secondary purification process following the extraction to remove them. Typically, this is realized by a method such as high vacuum fractional distillatiou, molecular distillation, or flash chromatography [Still, W. Clark, Michael Kahn, and Abhijit Mitra. "Rapid chromatographic technique for preparative separations with moderate resolution." The Journal of Organic Chemistry 43, no. 14 (1978): 2923-2925, which is incorporated herein by reference for all purposes]. These processes are expensive and furthermore result invariably in some measure of loss of the desired product. For example, aromatic oils contained in certain plants are complex substances containing a large number of individual compounds some of which are relatively volatile or relatively thermally unstable. Consequently, high distillation temperatures can tend to result in a loss of prodnct either through evaporation of the more volatile compounds or thermal degradation of the more thermally unstable compounds. It would therefore be highly desirable to have a process which did not yield such undesired polymeric tarry materials.
[0227] Carbon dioxide will add to olefins at 1 atmosphere and \(60^{\circ} \mathrm{C}\). in the presence of a free radical initiator and a strong base; under conditions of elevated pressure this could be expected to occur in the presence of weaker bases (e.g. Potassium carbonates and hydroxides) which could be pres-
ent in plant derived material, especially if it has been heated [Eghbali, Nicolas, and Chao-Jun Li. "Conversion of carbon dioxide and olefins into cyclic carbonates in water." Green Chem. 9, no. 3 (2007): 213-215, which is incorporated herein by reference for all purposes]. \(\mathrm{CO}_{2}\) will add to heterocyclic systems in the presence of catalytic amounts of copper halides at 1 atmospheres pressure and a temperature of \(80^{\circ}\) C. [Zhang, Liang, Jianhua Cheng, Takeshi Ohishi, and Zhaomin Hou. "Copper-Catalyzed Direct Carboxylation of C-H Bonds with Carbon Dioxide." Angewandte Chemie 122, no. 46 (2010): 8852-8855, which is incorporated herein by reference for all purposes].
[0228] All plant, animal, fungi, bacteria, or virus materials which serve as the raw feedstock for extraction contain a significant amount of water. Even if these materials are dried in vacuo, they nonetheless inherently possess some water which is only released at the elevated temperatures and pressures which are required to carry out the supercritical \(\mathrm{CO}_{2}\) extraction process. In completely pure \(\mathrm{CO}_{2}\), water has substantial solubility: at pressures and temperatures just below the critical point the mole fraction of water in \(\mathrm{CO}_{2}\) is about 0.02 [King Jr, Allen Dupree, and C. R. Coan. "Solubility of water in compressed carbon dioxide, nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide in the gas phase." Journal of the American Chemical Society 93, no. 8 (1971): 1857-1862, which is incorporated herein by reference for all purposes]. This paper further teaches that the water in the liquid \(\mathrm{CO}_{2}\) medium is almost completely solvated and is in the form of carbonic acid. Carbonic acid has a pKa of 3.45 [Adamczyk, Katrin, Mirabelle Prénont-Schwarz, Dina Pines, Ehud Pines, and Erik T J Nibbering. "Real-time observation of carbonic acid formation in aqueous solution." Science 326, no. 5960 (2009): 1690-1694, which is incorporated herein by reference for all purposes] and in a nonaqueous system such as liquid \(\mathrm{CO}_{2}\) it probably exists substantially in the form of the gas-phase dimer [Bernard, Jürgen, Markus Seidl, Ingrid Kohl, Klaus R. Liedl, Erwin Mayer, Óscar Gálvez, Hinrich Grothe, and Thomas Loerting. "Spectroscopic Ohservation of Matrix-Isolated Carbonic Acid Trapped from the Gas Phase." Angewandte Chemie International Edition 50 , no. 8 (2011): 1939-1943, which is incorporated herein by reference for all purposes] in which it will effectively possess greater acidic character. Carbonic acid in this medium at elevated pressures and temperatures possesses substantial reactivity.
[0229] The critical pressure of \(\mathrm{CO}_{2}\) is significantly higher than that for alkanes or fluorocarbons. This anomalously high critical pressure is due to the fact that \(\mathrm{CO}_{2}\) has a high quadripole moment. It has been suggested that \(\mathrm{CO}_{2}\) may prove to be a solvent whose strength would rival or surpass that of alkanes and ketones. Because early models employed to calculate \(\mathrm{CO}_{2}\) 's solvent power relied on a direct relationship between the Hildebrandt soluhility parameter ( \(\delta\) ) and the square root of the critical pressure the solubility parameter of \(\mathrm{CO}_{2}\) was over-predicted by \(20-100 \%\), leading to early inflated claims as to its potential
[0230] Supercritical \(\mathrm{CO}_{2}\) processes can benefit, in many cases, from the addition of various cosolvents. For example, addition of a few percent of methanol to \(\mathrm{CO}_{2}\) will result in dramatic increases in solubility of slightly polar materials, such as for example acridine [Brennecke, Joan F., and Charles A. Eckert. "Phase equilibria for supercritical fluid process design." AIChE Journal 35, no. 9 (1989): 1409-

1427, which is incorporated herein by reference for all purposes]. The addition of a small amonnt of isopropanol to the supercritical \(\mathrm{CO}_{2}\) system has been carefully shown to dramatically increase the recovery of the sugar tagatose [Montañés, Fernando, Tiziana Fornari, Pedro J. MartinAlvarez, Nieves Corzo, Agustin Olano, and Elena Ibáñez. "Selective recovery of tagatose from mixtures with galactose by direct extraction with supercritical \(\mathrm{CO}_{2}\) and different cosolvents." Journal of agricultural and food chennistry 54, no. 21 (2006): 8340-8345, which is incorporated herein by reference for all purposes]. While this approach is of principal utility with regard to the extraction of substances of intermediate hydrophobicity, it can be nsed, to advantage for very hydrophobic systems. For example, it has been reported that different very hydrophobic fractions containing useful antioxidant activity can be obtained from a bark extract by varying small amounts of ethanol which are added to the supercritical extraction [Braga, Mara E M, Rosa M S Santos, Ines J. Seabra, Roselaine Facanali, Marcia O M Marqnes, and Herminio C. de Sousa. "Fractioned SFE of antioxidants from maritime pine bark." The Journal of Supercritical Fluids 47, no. 1 (2008): 37-48, which is incorporated herein by reference for all purposes].
[0231] One approach to improvement of certain of the deficiencies of the supercritical \(\mathrm{CO}_{2}\) extraction system is to utilize a different supercritical gas. Unfortunately, many other gases have inconvenient critical properties. For example Argon has a critical pressure of 705 psi which can be attained easily but a critical temperature of only \(151^{\circ} \mathrm{K}\), which is so cold that it will not be a very effective solvent. Xenon would be an extremely good solvent but it is prohibitively expensive although but its critical pressure is high ( 847 psi ) although its critical temperature is close to room temperature. Nitrous oxide is attractive because its critical temperature is just above room temperature ( \(36^{\circ} \mathrm{C}\).) although its critical pressure is rather high (1044 psi). Furthermore, nitrous oxide is potentially reactive to sensitive organic material in the presence of water, and the limited literature data suggest that it generally it is not as good a solvent in practice as \(\mathrm{CO}_{2}\).
[0232] Fluorocarbons are a chemical class selected from the field of fluorophilic compounds that are clear, colorless, odorless, nonflammable liquids that are essentially insoluble in water. In addition, fluorocarbon liquids are denser than water and soft tissue, have low surface tension and, for the most part, low viscosity.
[0233] Fluorocarbons have been used as solvents [U.S. Pat. No. \(2,410,101\), U.S. Pat. No. 2,449,671]. Chlorofluorocarbon Freon \({ }^{\mathrm{TM}}\) gases have been used in the extraction of perfnme components [U.S. Pat. No. 3,150,050]. Chlorofluorocarbons have been used in the extraction of caffeine in coffee [U.S. Pat. No. 3,669,679]. However, this process employed a single class of fluorocarbon and no examples of mixtures of gases are therein cited.
[0234] Combinations of snpercritical \(\mathrm{CO}_{2}\) and Freon \({ }^{\text {TM }}\) solvents have been used for spice extraction of active materials [U.S. Pat. No. 4,490,398]. U.S. Patents U.S. Pat. No. 6,455,087 and U.S. Pat. No. 6,649,205 also describe potential uses of fluorocarbons in solvent extraction methods.
[0235] Dielectric constant is not an important parameter in determining the interaction of hydroflnorocarbons and fluorocarbons in the extraction process and its sole use in the selection of cosolvents is not supported by the present
scientific literature (see snpra). For example, for fluoroethanes the Kamlet-Taft parameters, which do depend upon the dielectric constant, albeit not in a simple, monotonic manner, do not appear to be strongly predictive of the microscopic thermodynamic behavior of the system [Lagalante, Anthony F., Robert L. Hall, and Thomas J. Bruno. "KamletTaft solvatochromic parameters of the snb-and snpercritical fluorinated ethane solvents." The Journal of Physical Chemistry B 102, no. 34 (1998): 6601-6604, which is incorporated herein by reference for all purposes]. A much better choice of parameter would exemplified by one which is experimentally determined, such as the partial molal free energy of mixing. This parameter which can be readily measured [for example see Duce, Celia, Maria Tinè, L. Lepori, E. Matteoli, B. Marongiu, and Alessandra Piras. "A comparative study of thermodynamic properties of binary mixtures containing perfluoroalkanes." Journal of Thermal Analysis and Calorimetry 92, no. 1 (2008): 145-154, which is incorporated herein by reference for all purposes]. The second virial coefficients of the solution, which were measured in the work of Scott supra, or most localized energetic calcnlations of the mixtures using a mixed approach of Monte Carlo dynamics and Kohn-Sham quantum calculations (DFT) incorporating explicit electron correlation. These studies show that aggregation behavior of hydrofluorocarbons in fluorocarbon binary (or tertiary) mixtures represents the most important component of the prediction of solubility of hydrophobic organic compounds in these mixtures. A useful way to think of this is that the solution of a component in a fluorophilic mixture is controlled by the clustering of a component (typically a hydrofluorocarhon) around the solute on the dynamic timescale of order-disorder in the fluid system [as described in Gerig, John T. "Selective solvent interactions in a fluorous reaction system. "Journal of the American Chemical Society 127, no. 25 (2005): 9277-9284, which is incorporated herein by reference for all purposes]. This can also be approached experimentally [Binks, B. P., P. D. I. Fletcher, S. N. Kotsev, and R. L. Thompson. "Adsorption and aggregation of semiffuorinated alkanes in binary and ternary mixtures with hydrocarbon and fluorocarbon solvents." Langmuir 13, no. 25 (1997): 6669-6682; Ruckenstein, E., and I. Shulgin. "Aggregation in binary solutions containing hexafluorobenzene." The Joumal of Physical Chemistry B 103, по. 46 (1999): 10266-10271, which are incorporated herein by reference for all purposes] or spectroscopically, for example, with the use of small angle X-ray scattering [Brady, George W. "Clnster Formation in Perflno-roheptane-iso-Octane Systems near the Consolute Temperature." The Joumal of Chemical Physics 32, no. 1 (1960): \(45-51\), which is incorporated herein by reference for all purposes], or even througb surface tension measurements [McLure, I. A., B. Edmonds, aud M. Lal. "Extremes in surface tension of fluorocarbon+hydrocarbon mixtures." Nature 241, no. 107 (1973): 71-71, which is incorporated herein by reference for all purposes]. Hydrogen bond donation is important, yet dielectric constant in a non-hydrogen bonding solvent has little to do with this critical parameter [Williams, Thomas D., Michael Jay, Hans-Joachim Lehmler, Michael E. Clark, Dennis J. Stalker, and Paul M. Bummer. "Solubility enhancement of phenol and phenol derivatives in perfluorooctyl bromide." Journal of pharmaceutical sciences 87, no. 12 (1998): 1585-1589, which is incorporated herein by reference for all purposes]. In a highly polar system as in water one can build a model for a dielectric constant based
upon a hydrogen bound network [see for example Suresh, S. J., and V. M. Naik. "Hydrogen bond thermodynamic properties of water from dielectric constant data." The Journal of Chemical Physics 113, no. 21 (2000): 9727-9732, which is incorporated herein by reference for all purposes]. Using a classical approach [Oster, Gerald, and John G. Kirkwood. "The influence of hindered molecular rotation on the dielec-tric constants of water, alcohols, and other polar liquids." The Journal of Chemical Physics 11, no. 4 (1943): 175-178, which is incorporated herein by reference for all purposes]. Furthermore, the fact that \(\mathrm{CO}_{2}\) does not possess a dipole moment (allhough it has a quadripole moment) reinforces the lack of utility of the bulk dielectrie constant as a metric within the context of the present invention.
[0236] While the processes described in the aforementioned documents are advantageous in some circumstances, there is a limit to the types of materials that can be extracted. Deficiencies are present in the use of steam, alcohols, supercritical or subcritical \(\mathrm{CO}_{2}\), or pure fluorocarbons to extracted valuable material from plant sources.
[0237] Surprisingly it has been found that mixtures of fluorocarbons and hydrofluorocarbons at or very close to the point where the two components are immiscible, although while still remaining partially or approximately miscible, but usually within a range of pressures and temperatures well below the critical temperature and pressure of the individual components, possess dramatically altered and improved solvent properties as compared with the individual components, if the mixtures are of a binary nature, or of binary mixtures of the individual components if the mixtures are of a ternary nature. [For example, see also Shin, Jungin, Moon Sam Shin, Won Bae, Youn-Woo Lee, and Hwayong Kim. "High-pressure phase behavior of carbon dioxide+ heptadecafluoro-1-decanol system." The Journal of Supercritical Fluids 44, no. 3 (2008): 260-265, Morgado, Pedro, Jana Black, J. Ben Lewis, Christopher R. Iacovella, Clare McCabe, Luis F G Martins, and Eduardo J M Filipe. "Viscosity of liquid systems involving hydrogenated and fluorinated substances: Liquid mixtures of (hexane+perfluorohexane)." Fluid Phase Equilibria 358 (2013): 161-165, which is incorporated herein by reference for all purposes.] [0238] It has not previously been recognized that the extrema points of solutions of hydrofluorocarbons in fluorocarbons, and most particularly those hydrofluorocarbons and fluorocarbons under which the desired conditions of pressure and temperature result in a barely miscible system, would possess the unique ability to tunably extract, e.g. to extract in a manner which is tunable the desired hydrophobic organic materials from complex natural product mixtures. Described herein are processes, methods, and compositions related to discovery of extraction of natural products from plant material employing pure fluorocarbon liquids or gases and optionally admixtures of fluorocarbon and non-fluorocarbon gases and liquids. Extraction may be carried out in a highly selective manner such that specific components consisting of pure compounds or defined mixtures thereof may be extracted from said plant or animal material without extracting undesired materials.

Example 1
[0239] An extraction vessel is charged with 10 Kg . of Cannabis Sativa "trim". This material is obtained when harvesting cannabis flower, all the non-flower material which does not contain many trichomes is essentially a
"waste product" from the production of the flower. It is most commonly the material which is used for cannabinoid extraction. This botanical material is contained in a cloth bag, which is placed within the extraction vessel in order to contain the material from dispersion through the extraction system. The vessel is evacuated. Subsequently, a premixed liquid phase which contains R-22 fluorocarbon (mole fraction 0.4 ), R-134a fluorocarbon ( 0.2 mole fraction) dimethyl ether ( 0.3 mole fraction), ethanol ( 0.05 mole fraction) and isobutane ( 0.05 mole fraction) is circulated through the plant material. The pressure is increased to 1.3 Mpa and the temperature to \(45^{\circ} \mathrm{C}\). and the circulation is continued for a 40 -min period. At the end of this time, the liquid phase is pumped in the sealed system to a flash evaporator. The gases are removed and reprocessed through 3A molecular sieves \(\left(2 / 3 \mathrm{~K}_{2} \mathrm{O} .1 / 3 \mathrm{Na}_{2} \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} .2 \quad \mathrm{SiO}_{2} .9 / 2 \mathrm{H}_{2} \mathrm{O}\right)\) and are compressed using a Corkin compressor into a storage vessel. The product oil from the flash evaporator is collected and assayed for cannabinoid content on an Agilent 1200 series HPLC with diode array detector
[0240] Over a four-hour period while the extraction is carried out, the Freon \({ }^{\mathrm{TM}}\) turns bright green due to chlorophyll and other pigments which it contains that have been extracted from it. At the end of the four hour period, the Freon \({ }^{\mathrm{TM}}\) is compressed and recovered in a storage tank. It is regenerated by passing through a column of 4 A molecular sieves to remove water and terpenes which may be present. [0241] The extracted material may be separated in the form of multiple components as a function of time during the extraction period. These multiple components contain different chemically distinct fractions, comprised of different approximate mixtures of compounds. Such mixtures may be precisely characterized in terms of composition and quantified in terms of concentration using analytical methodology well known to one normally skilled in the Art, such as Gas Chromatography, High Pressure Liquid Chromatography, Superfluid Critical Liquid Chromatography, Ultrahigh Resolution High Performance Liquid Chromatography, and the like. For the purposes of the present example the total amount of extracted material is quantified.
[0242] Data for Example 1.
Data:
[0243]
\begin{tabular}{ccc}
\hline Run Number & Oil Recovered & \% tetrahydrocannabinol \\
\hline 1 & 1.72 kg & 68 \\
2 & 2.02 & 66 \\
3 & 1.98 & 82.3 \\
4 & 2.18 & 71.5 \\
5 & 2.26 & 71.3 \\
6 & 1.92 & 64 \\
Mean & 2.01 & 70.5 \\
\hline
\end{tabular}

Example 2
[0244] An extraction vessel is charged with 10 Kg . of Cannabis Sativa "trim". This material is obtained when harvesting cannabis flower, all the non-flower material which does not contain many trichomes is essentially a "waste product" from the production of the flower. It is most commonly the material which is used for cannabinoid extraction. This botanical material is contained in a cloth
bag, which is placed within the extraction vessel in order to contain the material from dispersion through the extraction system. The vessel is evacuated. Subsequently, a premixed liquid phase which contains R-22 fluorocarbon (mole fraction 0.6), R-134a fluorocarbon ( 0.2 mole fraction), and dimethyl ether ( 0.2 mole fraction), is circulated through the plant material. The pressure is increased to 1.3 Mpa and the temperature to \(45^{\circ} \mathrm{C}\). and the circulation is contimued for a \(40-\mathrm{min}\) period. At the end of this time, the liquid phase is pumped in the sealed system to a flash evaporator. The gases are removed and reprocessed through 3A molecular sieves \(\left(2 / 3 \mathrm{~K}_{2} \mathrm{O} .1 / 3 \mathrm{Na}_{2} \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{SiO}_{2} .9 / 2 \mathrm{H}_{2} \mathrm{O}\right)\) and are compressed using a Corkin compressor into a storage vessel. The product oil from the flash evaporator is collected and assayed for cannabinoid content on an Agilent 1200 series HPLC with diode array detector
[0245] Over a four-hour period while the extraction is carried out, the Freon \({ }^{\mathrm{TM}}\) turns bright green due to chlorophyll and other pigments which it contains that have been extracted from it. At the end of the four hour period, the Freon \({ }^{\mathrm{TM}}\) is compressed and recovered in a storage tank. It is regenerated by passing through a column of 4 A molecular sieves to remove water and terpenes which may he present [0246] The extracted material may be separated in the form of multiple components as a function of time during the extraction period. These multiple components contain different chemically distinct fractions, comprised of different approximate mixtures of compounds. Such mixtures may he precisely characterized in terms of composition and quantified in terms of concentration using analytical methodology well known to one normally skilled in the Art, such as Gas Chromatography, High Pressure Liquid Chromatography, Superfluid Critical Liquid Chromatography, Ultrahigh Resolution High Performance Liquid Chromatography, and the like. For the purposes of the present example the total amount of extracted material is quantified.
\begin{tabular}{ccc}
\hline Ruw Number & Oil Recovered & \% tetrahydrocannabinol \\
\hline 1 & 2.2 Kg & 68 \\
2 & 2.4 & 72 \\
3 & 2.1 & 76 \\
4 & 2.0 & 62 \\
Mean & 2.175 Kg & 69.5 \\
\hline
\end{tabular}

\section*{Example 3}
[0247] An extraction vessel is charged with about 50 Kg . of Cannabis Sativa "trim". This material is obtained when harvesting cannabis flower, all the non-flower material which does not contain many trichomes is essentially a "waste product" from the production of the flower. It is most commonly the material which is used for cannabinoid extraction. This botanical material is contained in a cloth bag, which is placed within the extraction vessel in order to contain the material from dispersion through the extraction system. The vessel is evacuated. Subsequently, a premixed liquid phase which contains \(\mathrm{R}-22\) fluorocarbon (mole fraction 0.4), R-134a fluorocarbon ( 0.2 mole fraction) dimethyl ether ( 0.3 mole fraction), ethanol ( 0.05 mole fraction) and isobutane ( 0.05 mole fraction) is circulated through the plant material. The pressure is increased to 1.3 Mpa and the temperature to \(45^{\circ} \mathrm{C}\). and the circulation is continued for a \(40-\mathrm{min}\) period. At the end of this time, the liquid phase is
pumped in the sealed system to a flash evaporator. The gases are removed and reprocessed through 3 A molecular sieves ( \(2 / 3 \mathrm{~K}_{2} \mathrm{O} .1 / 3 \mathrm{Na}_{2} \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{SiO}_{2} .9 / 2 \mathrm{H}_{2} \mathrm{O}\) ) and are compressed using a Corkin compressor into a storage vessel. The product oil from the flash evaporator is collected and assayed for cannabinoid content on an Agilent 1200 series HPLC with diode array detector
[0248] Over a four-hour period while the extraction is carried out, the Freon \({ }^{\text {TM }}\) turns bright green due to chlorophyll and other pigments which it contains that have been extracted from it. At the end of the four hour period, the gases is compressed and recovered in a storage tank. It is regenerated hy passing through a column of 3A molecular sieves to remove water and terpenes which may he present. [0249] The extracted material may be separated in the form of multiple components as a function of time during the extraction period. These multiple components contain different chemically distinct fractions, comprised of different approximate mixtures of compounds. Such mixtures may be precisely characterized in terms of composition and quantified in terms of concentration using analytical methodology well known to one normally skilled in the Art, such as Gas Chromatography, High Pressure Liquid Chromatography, Superfluid Critical Liquid Chromatography, Ultrahigh Resolution High Performance Liquid Chromatography, and the like. For the purposes of the present example the total amount of extracted material is quantified.
[0250] Run 1
[0251] Charge: 48.72 Kg
[0252] Extraction yields 7.82 Kg of oil, \(68 \%\) by weight total cannabinoids
[0253] Run 2
[0254] Extraction yields 779 Kg of oil, \(72 \%\) cannabinoids by weight

Example 4
[0255] An extraction vessel is charged with 10 Kg . of Cannabis Sativa "flower". This botanical material is contained in a cloth bag, which is placed within the extraction vessel in order to contain the material from dispersion through the extraction system. The vessel is evacuated. Subsequently, a premixed liquid phase which contains R-22 fluorocarbon (mole fractiou 0.4), R-134a fluorocarbon ( 0.2 mole fraction) dimethyl ether ( 0.3 mole fraction), ethanol ( 0.05 mole fraction) and isobutane ( 0.05 mole fraction) is circulated through the plant material. The pressure is increased to 1.3 Mpa and the temperature to \(45^{\circ} \mathrm{C}\). and the circulation is continued for a \(40-\mathrm{min}\) period. At the end of this time, the liquid phase is pumped in the sealed system to a flash evaporator. The gases are removed and reprocessed through 3 A molecular sieves \(\left(2 / 3 \mathrm{~K}_{2} \mathrm{O} .1 / 3 \mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} .2\right.\) \(\mathrm{SiO}_{2} .9 / 2 \mathrm{H}_{2} \mathrm{O}\) ) and are compressed using a Corkin compressor into a storage vessel. The product oil from the flash evaporator is collected and assayed for cannabinoid content on an Agilent 1200 series HPLC with diode array detector [0256] Over a four-hour period while the extraction is carried out, the Freon \({ }^{\text {TM }}\) turns bright green due to chlorophyll and other pigments which it contains that have been extracted from it. At the end of the four hour period, the gases is compressed and recovered in a storage tank. It is regenerated by passing through a column of 3A molecular sieves to remove water and terpenes which may be present. [0257] The extracted material may be separated in the form of multiple components as a function of time during the
extraction period. These multiple components contain different chemically distinct fractions, comprised of different approximate mixtures of compounds. Such mixtures may be precisely characterized in terms of composition and quantified in terms of concentration using analytical methodology well known to one normally skilled in the Art, such as Gas Chromatography, High Pressure Liquid Chromatography, Superfluid Critical Liquid Chromatography, Ultrahigh Resolution High Performance Liquid Chromatography, and the like. For the purposes of the present example the total amount of extracted material is quantified.
[0258] Run 1: 2.4 Kg of oil, \(78 \%\) cannabinoids
[0259] Run 2: 2.2 Kg of oil, \(82 \%\) cannabinoids
[0260] Run3: 2.6 Kg of oil, \(79 \%\) cannabinoids

\section*{Example 5}
[0261] A stainless steel tube about 10 " in length and \(1.25^{\prime \prime}\) in diameter was equipped with sanitary flanges at each end, to which could be affixed a pressure transducer and a sight glass. A sample of amount 500 mg to 5 gm was placed in the tube contained in an inert polypropylene mesh bag. The entire apparatus was placed on a toploading balance, and by means of a flexible hose gases could be added to the vessel. By means of the change in weight, different gases could be added in known ratios. The apparatus, after filling, could then be maintained in a constant temperature hath for any desired period of time, and at the end of this time the apparatus could be opened, the bag removed and the gas volatilized, and the extracted residue dissolved in a suitable solvent (generally acetone) in a quantitative manner. The acetone could then be transferred to a tared roundbottom Hask, and solvent removed on a rotary evaporator under vacuum. The amount of the residue in the flask corresponds to the total soluble mass extracted, and this is then quantified by weighing the flask. After determining this weight, the gummy residue could be redissolved in a suitable solvent (generally methanol) in a volumetric flask and aliquots of this material analyzed by HPLC to determine the amounts of cannabinoids (eg. THC, CBD, THCA, and so forth). HPLC analysis is carried out using an Agilent 1100 Series Separation Module, with an Agilent diode array detector, using Agilent Chemstation Software. The column used is a Restek Raptor ARC- \(182.7 \mu \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}\) column, equipped with a Guard Cartridge (Restek Catalog \#9304A0252) or equivalent). Samples are injected and eluted with an isocratic solvent system A/B (25/75). Mobile phase A consists of \(0.1 \%\) Trifluoroacetic acid (TFA) in \(\mathrm{H}_{2} \mathrm{O}\) (chromatography quality). Mobile phase B consists of \(0.1 \%\) TFA in chromatography grade acetonitrile. The Detector Wavelength is 220 nm, Flow Rate is \(1.5 \mathrm{~mL} / \mathrm{min}\), Injection Volume is 10 and Column Temp is \(45.0^{\circ} \mathrm{C}\). Under these conditions the Run time is about 9 minutes. Typically, a standards calibration curve of THC of nine concentrations ( \(5-200 \mathrm{ppm}\) ) is run daily.
[0262] Using these conditions, the efficiency of mixtures of fluorocarbon R22 and dimethyl ether (DME) to extract total cannabinoids in a single 30 -minute extraction at \(26^{\circ} \mathrm{C}\). is shown in FIG. 1.
[0263] Using the same approach, the efficiency of the pure materials to extract cannabinoids in a single 30 -minute procedure at \(26^{\circ} \mathrm{C}\). can be determined and this is shown in FIG. 2.

\section*{Embodiments}
[0264] Embodiments contemplated herein include the following.

\section*{Embodiment 1}
[0265] A method of extracting a natural organic compound from a natural material, said method comprising contacting said natural material with an extraction fluid thereby extracting said natural organic compound from said natural material into said extraction fluid to from an extracted fluid solution, wherein said extraction fluid comprises a fluorophilic compound and a hydrofluorocarbon.

\section*{Embodiment 2}
[0266] The method of embodiment 1 , wherein said extraction fluid is a non-ideal fluid.

\section*{Embodiment 3}
[0267] The method of embodiments 1 or 2 , wherein the natural material is a material derived from a plant, an animal, a fungi, a bacteria or a virus.

\section*{Embodiment 4}
[0268] The method of embodiments 1 or 2 , wherein the natural material is a material derived from a plant.

Embodiment 5
[0269] The method of embodiments 1 or 2 , wherein the plant is Piper methysticum, Cannabis spp., Salvia spp., Banisteriopsis caapi, Psychotria viridis (chacruna), Diplopterys cabrerana, Peganum harmala, Humulus lupulus or mixture thereof.

Embodiment 6
[0270] The method of embodiments 1 or 2 , wherein the plant is Cannabis Sativa.

Embodiment 7
[0271] The method of one of embodiments 1 to 6 , wherein the natural organic compound is a biologically active organic compound.

Embodiment 8
[0272] The method of one of embodiments 1 to 6 , wherein the natural organic compound is an aromatic compound.

\section*{Embodiment 9}
[0273] The method of one of embodiments 1 to 6 , wherein the natural organic compound forms art of an aromatic oil or essential oil

Embodiment 10
[0274] The method of one of embodiments 1 to 6 , wherein the natural organic compound is caffeine.

\section*{Embodiment 11}
[0275] The method of one of embodiments 1 to 6 , wherein the natural organic compound is a terpene, a humulone, a
lupulone, a myrcene, a humulene, a caryophyllene, an alkaloid, a flavonoid, a cannabinoid, menthol, capsaicin, anise or camphor

Embodiment 12
[0276] The method of one of embodiments 1 to 6 , wherein the natural organic compound is xanthohumol, 8-prenylnaringenin or isoxanthohumol.

Embodiment 13
[0277] The method of one of embodiments 1 to 6 , wherein the natural organic compound is a prenylflavonoid.

Embodiment 14
[0278] The method of one of embodiments 1 to 6 , wherein the natural organic compound is a kavalactone or a salvorin.

\section*{Embodiment 15}
[0279] The method of one of embodiments 1 to 6 , wherein the natural organic compound is a camnibinoid.

\section*{Embodiment 16}
[0280] The method of one of embodiments 1 to 6 , wherein the natural organic compound is tetrahydrocannabinol, cannabidiol or cannabinol.

\section*{Embodiment 17}
[0281] The method of one of embodiments 1 to 6 , wherein the natural organic compound is tetrahydrocannabinol.

Embodiment 18
[0282] The method of one of embodiments 1 to 17 , wherein at least \(5,000 \mathrm{~g}\) of said natural organic compound is present in said extracted fluid solution.

\section*{Embodiment 19}
[0283] The method of one of embodiments 1 to 18 , wherein said extraction fluid does not comprise supercritical CO 2 .

\section*{Embodiment 20}
[0284] The method of one of embodiments 1 to 18 , wherein said extraction fluid does not comprise argon.

\section*{Embodiment 21}
[0285] The method of one of embodiments 1 to 18 , wherein said extraction fluid does not comprise xenon.

\section*{Embodiment 22}
[0286] The method of one of embodiments 1 to 18 , wherein said extraction fluid does not comprise nitrous oxide.

\section*{Embodiment 23}
[0287] The method of one of embodiments 1 to 22 , wherein said extraction fluid further comprises trifluorethanol or hexafluoroisopropanol.

Embodiment 24
[0288] The method of one of embodiments 1 to 23 , wherein said extraction fluid is above about \(15^{\circ} \mathrm{C}\).

\section*{Embodiment 25}
[0289] The method of one of embodiments 1 to 23 , wherein said extraction fluid is above about \(20^{\circ} \mathrm{C}\).

Embodiment 26
[0290] The method of one of embodiments 1 to 23, wherein said extraction fluid is from about \(15^{\circ} \mathrm{C}\). to ahout \(35^{\circ} \mathrm{C}\).

Embodiment 27
[0291] The method of one of embodiments 1 to 23, wherein said extraction fluid is from about \(20^{\circ} \mathrm{C}\). to about \(30^{\circ} \mathrm{C}\).

Embodiment 28
[0292] The method of one of embodiments 1 to 27 , wherein the hydrofluorocarbon is a hydrofluoroether, a hydrofluoroketone, a hydrofluoroaromatic or a hydrofluoroolefin.

Embodiment 29
[0293] The method of one of embodiments 1 to 27 , wherein the hydrofluorocarbon is chlorodifluoromethane, methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethylhexane.trifluoromethane (HFC-23), difluoromethane (HFC-32), pentafluoroethane (HFC-125), 1,1,2, 2-tetrafluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a) or fluoroethane (HFC-161).

Embodiment 30
[0294] The method of one of embodiments 1 to 29 . wherein the fluorophilic compound is dimethyl ether.

Embodiment 31
[0295] The method of one of embodiments 1 to 30 , wherein the extraction fluid is a liquid-gas mixture fluid.

Embodiment 32
[0296] The method of one of embodiments 1 to 31, further comprising, prior to said contacting, freezing the natural material at a temperature from about \(0^{\circ} \mathrm{C}\). to about \(-60^{\circ} \mathrm{C}\).

\section*{Embodiment 33}
[0297] The method of one of embodiments 1 to 32 , wherein the mole fraction of the fluorophilic compound is at least four-fold greater than the mole fraction of the hydrofluorocarbon.

Embodiment 34
[0298] The method of one of embodiments 1 to 33, further comprising separating said extraction fluid from said natural material by volatizing said extraction fluid to form a volatilized extraction fluid.

Embodiment 35
[0299] The method of embodiment 34, further comprising chilling and compressing the volatilized extraction fluid to form a liquid extraction fluid.

\section*{Embodiment 36}
[0300] The method of embodiments 34 or 35 , further comprising recirculating the liquid extraction fluid to the natural material.

Embodiment 37
[0301] The method of one of embodiments 34 to 36 , further comprising collecting separated fractions of the liquid extraction fluid.

Embodiment 38
[0302] A fluid comprising chlorodifluoromethane and dimethylether.

\section*{Embodiment 39}
[0303] The fluid of embodiment 38 , wherein said fluid is a non-ideal fluid.

Embodiment P1
[0304] A process for extraction of natural products of medicinal, pharmacological, or other value from plant, animal, fungi, bacteria, or virus mixtures consisting of
[0305] (a) freezing the plant, animal, fungi, bacteria, or virus material to a temperature between \(0^{\circ} \mathrm{C}\). and \(-60^{\circ}\)
C. by the use of a blast freezer or a compressed cryogenic gas
[0306] (b) passing a fluid over the plant, animal, fungi, bacteria, or virus material with the use of a recirculating pump, whereby the fluid consists of three components:
0307] (i) a fluorophilic compound
[0308] (ii) a hydro fluorocarbon
[0309] (iii) a third component which is a fluorophilic amine, alcohol, or nonfluorinated alkanol
[0310] (iv) wherein the mole fraction of the fluorocarbon is at least four-fold greater than the mole fraction of the hydrotluorocarbon, and the mole fraction of the third component is four-fold less than the hydrofluorocarbon
[0311] (c) volatilizing the fluorophilic compound which has been passed over the plant, animal, fungi, bacteria, or virus material using a heated column, whereby the extracted plant, animal, fungi, bacteria, or virus material solubilized by the fluid remains at the bottom of the said column and the fluorophilic compound is extracted in a gaseous form at one end of said column
[0312] (d) chilling the volatilized fluorophilic compound witb a heat excbanger and compressing the fluorophilic compound to the liquid state
[0313] (e) warming the liquefied fluorophilic compound in a controlled manner
[0314] (f) recirculating the liquefied warm Aluorophilic compound back through the plant, animal, fungi, bacteria, or virus material in a continuous manner
[0315] (g) slowly increasing the temperature of the liquefied recirculated fluorophilic compound which flows back over the plant, animal, fungi, bacteria, or virus material, thereby increasing the temperature of
the said plant, animal, fungi, bacteria, or virus material from the temperature range of freezing to a temperature range between \(40^{\circ} \mathrm{C}\). and \(80^{\circ} \mathrm{C}\).
[0316] (h) collecting separated fractions at the bottom of the volatilizing column as the temperature is thereby increased.

Embodiment P2
[0317] A process according to embodiment P1, wherein said fluorocarbon is \(1,1,1,2\) tetrafluoroethane.

\section*{Embodiment P3}
[0318] A process according to embodiment P1, wherein said fluorocarbon is tetrafluoromethane.

Embodiment P4
[0319] A process according to embodiment P1, wherein said fluorocarbon is hexafluoroethane.

Embodiment P5
[0320] A process according to embodiment P1, wherein said fluorocarbon is trifluoromethyl iodide.

Embodiment P6
[0321] A process according to embodiment P1, wherein said fluorocarbon is perfluorocyclobutane.

Embodiment P7
[0322] A process according to embodiment P1, wherein said fluorocarbon is perfluorotributylamine.

Embodiment P8
[0323] A process according to embodiment P1, wherein said fluorocarbon is perfluoro-n-propane.

\section*{Embodiment P9}
[0324] A process for extraction of natural products of medicinal, pharmacological, or other value from plant, animal, fungi, bacteria, or virus mixtures consisting of
[0325] (a) freezing the plant, animal, fungi, bacteria, or virus material to a temperature between \(0^{\circ} \mathrm{C}\). and \(-60^{\circ}\) C. by the use of a blast freezer or a compressed cryogenic gas
[0326] (b) passing a fluid over the plant, animal, fungi, bacteria, or virus material with the use of a recirculating pump, whereby the fluid consists of three components: [0327] (v) a fluorophilic compound [0328] (vi) a hydrofluorocarbon
[0329] (vii) a third component which is an inert gas [0330] (c) volatilizing the fluorophilic compound which has been passed over the plant, animal, fungi, bacteria, or virus material using a heated column, whereby the extracted plant, animal, fungi, bacteria, or virus material solubilized by the fluid remains at the bottom of the said column and the fluoruphilic compound is extracted in a gaseous form at one end of said column
[0331] (d) chilling the volatilized fluorophilic compound with a heat exchanger and compressing the fluorophilic compound to the liquid state
[0332] (e) warming the liquefied fluorophilic compound in a controlled manner

0333] (f) recirculating the liquefied warm fluorophilic compound back through the plant, anmal, fungi, bacteria, or virus material in a continuous manner
[0334] (g) slowly increasing the temperature of the liquefied recirculated fluorophilic compound which flows back over the plant, animal, fungi, bacteria, or virus material, thereby increasing the temperature of the said plant, animal, fungi, bacteria, or virus material from the temperature range of freezing to a temperature range between \(40^{\circ} \mathrm{C}\). and \(80^{\circ} \mathrm{C}\).
[0335] (h) collecting separated fractions at the bottom of the volatilizing column as the temperature is thereby increased.

\section*{Embodiment P10}
[0336] A process according to embodiment P9, wherein said fluorocarbon is \(1,1,1,2\) tetrafluoroethane and the inert gas is \(\mathrm{SF}_{6}\).

Embodiment P11
[0337] A process according to embodiment P9, wherein said fluorocarbon is \(1,1,1,2\) tetrafluoroethane and the inert gas is \(\mathrm{CO}_{2}\).

Embodiment P12
[0338] A process according to embodiment P9, wherein said fluorocarbon is 1,1,1,2 tetrafluoroethane and the inert gas is \(\mathrm{N}_{2} \mathrm{O}\).

Embodiment P13
[0339] A process according to embodiment P9, wherein said fluorocarbon is \(1,1,1,2\) tetrafluoroethane and the inert gas is \(\mathrm{CH}_{4}\)

Embodiment P14
[0340] A process according to embodiment P9, wherein said fluorocarbon is 1,1,1,2 tetrafluoroethane and the inert gas is \(\mathrm{C}_{2} \mathrm{H}_{6}\).

Embodiment P15
[0341] A process according to embodiment P9, wherein said fluorocarbon is tetrafluoromethane and the inert gas is \(\mathrm{SF}_{6}\).

Embodiment P16
[0342] A process according to embodiment P 9 , wherein said fluorocarbon is tetrafluoromethane and the inert gas is \(\mathrm{CO}_{2}\).

Embodiment P17
[0343] A process according to embodiment P9, wherein said fluorocarbon is tetrafluoromethane and the inert gas is \(\mathrm{N}_{2} \mathrm{O}\).

\section*{Embodiment P18}
[0344] A process according to embodiment P9, wherein said fluorocarbon is tetrafluoromethane and the inert gas is \(\mathrm{CH}_{4}\).

Embodiment P19
[0345] A process according to embodiment P9, wherein said fluorocarbon is tetrafluoromethane and the inert gas is \(\mathrm{C}_{2} \mathrm{H}_{6}\).

Embodiment P20
[0346] A process according to embodiment P9, wherein said fluorocarbon is perfluorocyclobutane and the inert gas is \(\mathrm{SF}_{6}\).

\section*{Embodiment P21}
[0347] A process according to embodiment P9, wherein said fluorocarbon is perfluorocyclobutane and the inert gas is \(\mathrm{CO}_{2}\).

Embodiment P22
[0348] A process according to embodiment P9, wherein said fluorocarbon is perfluorocyclobutane and the inert gas is \(\mathrm{N}_{2} \mathrm{O}\).

Embodiment P23
[0349] A process according to embodiment P9, wherein said fluorocarbon is perfluorocyclobutane and the inert gas is \(\mathrm{CH}_{4}\).

Embodiment P24
[0350] A process according to embodiment P9, wherein said fluorocarbon is perfluorocyclobutane and the inert gas is \(\mathrm{C}_{2} \mathrm{H}_{6}\).

\section*{Embodiment P25}
[0351] A process for extraction of natural products of medicinal, pharmacological, or other value from plant, animal, fungi, bacteria, or virus mixtures consisting of
[0352] (a) freezing the plant, animal, fungi, bacteria, or virus material to a temperature between \(0^{\circ} \mathrm{C}\). and \(-60^{\circ}\) C. by the use of a blast freezer or a compressed cryogenic gas
[0353] (b) passing a fluid over the plant, animal, fungi, bacteria, or virus material with the use of a recirculating pump, whereby the fluid consists of three components: [0354] (i) a fluorophilic compound
[0355] (ii) a hydrofluorocarbon [0356] (iii) an ionic liquid
[0357] (c) volatilizing the fluorophilic compound which has been passed over the plant, animal, fungi, bacteria, or virus material using a heated column, whereby the extracted plant, animal, fungi, bacteria, or virus material solubilized by the fluid remains at the bottom of the said column and the fluorophilic compound is extracted in a gaseous form at the top of said column
[0358] (d) chilling the volatilized fluorophilic compound with a heat exchanger and compressing the fluorophilic compound to the liquid state
[0359] (e) warming the liquefied fluorophilic compound in a controlled manner
[0360] (f) recirculating the liquefied warm fluorophilic compound back through the plant, animal, fungi, bacteria, or virus material in a continuous manner
[0361] (g) slowly increasing the temperature of the liquefied recirculated fluorophilic compound which
flows back over the plant, animal. fungi, bacteria, or virus material, thereby increasing the temperature of the said plant, animal, fungi, bacteria, or virus material from the temperature range of freezing to a temperature range between \(40^{\circ} \mathrm{C}\). and \(80^{\circ} \mathrm{C}\).
[0362] (h) collecting separated fractions at the bottom of the volatilizing column as the temperature is thereby increased.
What is claimed is:
1. A method of extracting a natural organic compound from a natural material, said method comprising contacting said natural material with an extraction fluid thereby extracting said natural organic compound from said natural material into said extraction fluid to form an extracted fluid solution, wherein said extraction fluid comprises a fluorophilic compound and a hydrofluorocarbon.
2. The method of claim \(\mathbf{1}\), wherein the natural material is a material derived from a plant, an animal, a fungi, a bacteria or a virus.
3. The method of claim 2, wherein the plant is Piper methysticum, Cannabis spp., Salvia spp., Banisteriopsis caapi, Psychotria viridis (chacruna), Diplopterys cabrerana Peganum harmala, Humulus lupulus or mixture thereof.
4. The method of claim 2, wherein the plant is Cannabis Sativa.
5. The method of one of claims \(\mathbf{1}\), wherein the natural organic compound is a biologically active organic compound, an aromatic compound, or forms part of an aromatic oil or essential oil.
6. The method of one of claims 1 , wherein the natural organic compound is caffeine, a terpene, a humulone, a lupulone, a myrcene, a humulene, a caryophyllene, an alkaloid, a flavonoid, a camnabinoid, menthol, capsaicin, anise, camphor, xanthohumol, 8-prenylnaringenin, isoxanthohumol, a prenylflavonoid, a kavalactone, a salvorin, a cannabinoid, tetrahydrocannabinol, cannabidiol, or cannabinol.
7. The method of one of claims 1 , wherein at least 5000 g of said natural organic compound is present in said extracted fluid solution.
8. The method of one of claims \(\mathbf{1}\), wherein said extraction fluid does not comprise supercritical \(\mathrm{CO}_{2}\).
9. The method of one of claims 1 , wherein said extraction fluid does not comprise argon, xenon, or nitrous oxide.
10. The method of one of claims 1 , wherein said extraction fluid further comprises trifluorethanol or hexafluoroisopropanol.
11. The method of one of claims \(\mathbf{1}\), wherein said extraction fluid is above about \(15^{\circ} \mathrm{C}\).
12. The method of one of claims 1 , wherein the hydrofluorocarbon is a hydrofluoroether, a hydrofluoroketone, a hydrofluoroaromatic or a hydrofluoroolefin.
13. The method of one of claims 1 , wherein the hydrofluorocarbon is chlorodifluoromethane, methyl nonafluoroisobutyl ether, methyl nonafluorobutyl ether, ethyl nonafluoroisobutyl ether, ethyl nonafluorobutyl ether, 3-ethoxy-1, 1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethylhexane. trifluoromethane (HFC-23), difluoromethane (HFC-32), pentafluoroethane (HFC-125), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a), (1,1,1,3,3,3-hexafluoro-2-(fluoromethoxy)propane, 1,2,2,2tetrafluoroethyl difluoromethyl ether, 2-chloro-1,1,2,-trifluoroethyl difluoromethyl ether, 1-chloro-2,2,2-trifluoroethyl difluoromethyl ether, 2,2-dichloro-1,1-difluoromethyl ether, or fluoroethane (HFC-161).
14. The method of one of claims 1 , wherein the fluorophilic compound is dimethyl ether, methyl ethyl ether. methyl n-propyl ether, methyl isopropyl ether, methyl-nbutyl ether, diethyl ether, methyl tert-butyl ether, or ethyl tert-butyl ether.
15. The method of one of claims 1 , further comprising, prior to said contacting, freezing the natural material at a temperature from about \(0^{\circ} \mathrm{C}\). to about \(-60^{\circ} \mathrm{C}\).
16. The method of one of claims 1 , wherein the mole fraction of the fluorophilic compound is at least four-fold greater than the mole fraction of the hydrofluorocarbon.
17. The method of one of claims 1 , further comprising separating said extraction fluid from said natural material by volatizing said extraction fluid to form a volatilized extraction fluid.
18. The method of claim 17 , further comprising chilling and compressing the volatilized extraction fluid to form a liquid extraction fluid.
19. The method of claim 17 , further comprising recirculating the liquid extraction fluid to the natural material.
20. A fluid comprising chlorodifluoromethane and dimethylether.

\section*{EXHIBIT B - PART 3}

Begins on the following page
(19) United States
\({ }_{(12)}\) Patent Application Publication Winnicki et al.
(10) Pub. No.: US 2018/0179564 A1
(43) Pub. Date:
(54) APPARATUS AND METHODS FOR BIOSYNTHETIC PRODUCTION OF CANNABINOIDS
(71) Applicant: Teewinot Technologies Limited, Dublin (IE)
(72) Inventors: Robert Winnicki, Cambridge, MA (US); Mare Donsky, Denver, CO (US); Mingyang Sun, Dublin (IE); Richard Peet, Washington, DC (US)
(73) Assignee: Teewinot Technologies Limited, Dublin (IE)
(21) Appl. No.: 15/881,197
(22) Filed: Jan. 26, 2018

\section*{Related U.S. Application Data}
(63) Continuation of application No. 15/433,270, filed on Feb. 15, 2017, now Pat. No. \(9,879,292\), which is a continuation of application No. \(15 / 232,405\), filed on Aug. 9, 2016, now Pat. No. 9,587,212, which is a continuation of application No. 15/158,565, filed on May 18, 2016, now Pat. No. 9,512,391, which is a continuation of application No. 14/835,444, filed on Aug. 25, 2015, now Pat. No. 9,394,510.
(60) Provisional application No. 62/041,521, filed on Aug. 25, 2014.

Publication Classification
(51) Int. Cl.

C12P 17/06 (2006.01)
C12M 1/34 (2006.01)
\begin{tabular}{ll} 
C12P 7/22 & \((2006.01)\) \\
C12P 7/42 & \((2006.01)\) \\
C12N 9/02 & \((2006.01)\) \\
CO7C 37/74 & \((2006.01)\) \\
CC7C 37/01 & \((2006.01)\) \\
CC7C 29/80 & \((2006.01)\) \\
CC12M 1/00 & \((2006.01)\) \\
C12M 1/40 & \((2006.01)\)
\end{tabular}
(52) U.S. Cl.

CPC ............ C12P 17/06 (2013.01); C12M 41/32 (2013.01); C12M \(47 / 10\) (2013.01); C12M 41/40 (2013.01); C12M 41/30 (2013.01); C12M 41/48 (2013.01); C12P 7/22 (2013.01); C12P \(7 / 42\) (2013.01); C12Y 121/03 (2013.01); C12N 9/0004 (2013.01); C12Y 121/03008 (2015.07); C07C \(37 / 74\) (2013.01); C07C 37/0I (2013.01); C07C 29/80 (2013.01); C12M 29/04 (2013.01); C12M 21/18 (2013.01); C12M 41/26 (2013.01); C12M 41/12 (2013.01); C12M 29/00 (2013.01); C12Y

121/03007 (2015.07)

\section*{ABSTRACT}

The present invention provides an apparatus and methods for producing tetrahydrocannabinolic acid (THCA), cannabichromenic acid (CBCA) and cannabichromenic acid (CBCA) in different ratios. The apparatus comprises: (i) a bioreactor comprising (a) an automated supply system configured to deliver a first automated supply of cannabigerolic acid (CBGA), a cannabinoid acid synthase, and a reaction mixture; and (b) a second automated system to cease the reaction; (ii) a controller configured to modify a property of the reaction mixture to produce the desired products; and (iii) an extractor configured to recover the tetraliydrocannabinolic acid (THCA), cannabichromenic acid (CBCA) or cannabidiolic acid (CBDA) and cannabichromenic acid.

FIGURE 1


\section*{FIGURE 2}


FIGURE 3


FIGURE 4


FIGURE 5


FIGURE 6


FIGURE 7


100

FIGURE 8


FIGURE 9


FIGURE 10


\section*{FIGURE 11}


\section*{FIGURE 12}


FIGURE 13


FIGURE 14


FIGURE 15


FIGURE 16


\section*{FIGURE 17}


\section*{APPARATUS AND METHODS FOR BIOSYNTHETIC PRODUCTION OF CANNABINOIDS}

\section*{CROSS-REFERENCE TO RELATED APPLICATIONS}
[0001] This application is a Continuation of U.S. application Ser. No. 15/433,270 filed Feb. 15, 2017, incorporated herein by reference in its entirety, which is a Continuation of U.S. application Ser. No. 15/232,405 filed Aug. 9, 2016, now U.S. Pat. No. 9,587,212 issued Mar. 7, 2017, incorporated herein by reference in its entirety, which is a Continuation of U.S. application Ser. No. 15/158,565, filed May 18, 2016 now U.S. Pat. No. 9,512,391 issued Dec. 6, 2016, incorporated herein by reference in its entirety, which is a Continuation of U.S. application Ser. No. 14/835,444, filed Aug. 25, 2015, now U.S. Pat. No. 9,394,510 issued Jul. 19, 2016 , incorporated herein by reference in its entirety, which claims priority from Provisional U.S. Application 62/041,521, filed Aug. 25, 2014, incorporated herein by reference in its entirety.

\section*{FIELD OF THE INVENTION}
[0002] The present invention relates to the biosynthesis of cannabinoids. Specifically, the present invention relates to the production and manipulation of enzymes involved in the synthesis of cannabinoids, and to the simultaneous synthesis of various cannabinoids in different ratios.

\section*{BACKGROUND OF THE INVENTION}
[0003] Cannabinoids are terpenophenolic compounds found in Cannabis sativa, an annual plant belonging to the Cannabaceae family. The plant contains more than 400 chemicals and approximately 70 cannabinoids. The latter accumulate mainly in the glandular trichomes. The most active of the naturally occurring cannabinoids is tetrahydrocannabinol (THC), which is used for treating a wide range of medical conditions, including glaucoma, AIDS wasting, neuropathic pain, treatment of spasticity associated with multiple sclerosis, fibromyalgia and chemotherapy-induced nausea. THC is also effective in the treatment of allergies, inflammation, infection, epilepsy, depression, migraine, bipolar disorders, anxiety disorder, drug dependency and drug withdrawal syndromes.
[0004] Additional active cannabinoids include cannabidiol (CBD), an isomer of THC, which is a potent antioxidant and anti-inflammatory compound known to provide protection against acute and chronic neuro-degeneration; cannabigerol ( CBG ), found in high concentrations in hemp, which acts as a high affinity \(\alpha_{2}\)-adrenergic receptor agonist, moderate affinity \(5-\mathrm{HT}_{1 . A}\) receptor antagonist and low affinity CB1 receptor antagonist, and possibly has anti-depressant activity; and cannabichromene (CBC), which possesses anti-inflammatory, anti-fungal and anti-viral properties. Many phytocannabinoids have therapeutic potential in a yariety of diseases and may play a relevant role in plant defense as well as in pharmacology. Accordingly, biotechnological production of cannabinoids and cannabinoid-like compounds with therapeutic properties is of uttermost importance. Thus, cannabinoids are considered to be promising agents for their beneficial effects in the treatment of various diseases.
[0005] Despite their known beneficial effects, therapeutic use of cannabinoids is hampered by the high costs associated with the growing and maintenance of the plants in large scale and the difficulty in obtaining high yields of cannabinoids. Extraction, isolation and purification of cannabinoids from plant tissue is particularly challenging as cannabinoids oxidize easily and are sensitive to light and heat. In addition, although it has heen hypothesized that CBCA is predominantly synthesized from CBGA by the enzyme CBCA synthase, the enzyme has not been isolated or cloned. There is therefore a need for developing methodologies that allow large-scale production of cannabinoids for therapeutic use. The present invention addresses this need.

\section*{SUMMARY OF THE INVENTION}
[0006] It is therefore an object of the invention to provide solutions to the aforementioned deficiencies in the art. To this end the invention provides a method of producing one or more cannabinoids or cannabinoid analogs comprising the steps of: (a) selecting a compound according to Formula I:


Formula I transforming the compound according to Formula I into one or more cannabinoids or camahinoid analogs; (c) reacting the compound of Formula I with the cannabinoid acid synthase in a reaction mixture comprising a solvent and an amphiphilic compound; (d) isolating from the reaction mixture one or more cannabinoid acids or cannabinoid analogs produced in step (c); and (e) optionally decarboxylating the cannabinoid acids or cannabinoid analogs isolated in step (c); wherein R is selected from - OH , halogen, - SH , or a \(-\mathrm{NR}_{a} \mathrm{R}_{b}\) group; \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{OR}_{a}\), an optionally substituted \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkenylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkynylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl \(-\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ) alkynylene, or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring; \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl; and \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\) are each independently \(-\mathrm{H},-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl.
[0007] Preferably, the cannabinoid acid syntbase is cannabidiolic acid (CBDA) synthase or tetrahydrocannabinolic acid (THCA) synthase. In a preferred aspect of the invention, the \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring comprises one or more heteroatoms selected from oxygen, sulfur or nitrogen. In another preferred aspect of the invention, \(\mathrm{R}_{2}\) is a linear alkylene selected from the group consisting of \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}\),
\(\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{C}_{7} \mathrm{H}_{15}\) and \(\mathrm{C}_{8} \mathrm{H}_{17}\). Preferably, \(\mathrm{R}_{2}\) is a \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkenylene selected from the group consisting of

and \(\mathrm{R}_{4}\) is a linear alkylene selected from the group consisting of \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{C}_{7} \mathrm{H}_{15}\) and \(\mathrm{C}_{8} \mathrm{H}_{17}\). In another preferred aspect, \(\mathrm{R}_{2}\) is a \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkynylene selected from the group consisting of

and
[0008] In an additional preferred embodiment, \(\mathrm{R}_{2}\) is

wherein X is \(-\mathrm{OH},-\mathrm{SH}\), or \(-\mathrm{NR}_{a} \mathrm{R}_{b}\), and wherein \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\) are each independently \(-\mathrm{H},-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2}\), \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl. Most preferably, R is \(-\mathrm{OH}, \mathrm{R}_{1}\) is - \(\mathrm{COOH}, \mathrm{R}_{2}\) is \(\mathrm{C}_{5} \mathrm{H}_{11}\) and \(\mathrm{R}_{3}\) is -H .
[0009] In one embodiment, the cannabinoid acid synthase is a recombinant cannabinoid acid synthase obtained by generating one or more copies of a cannabinoid acid synthase gene and overexpressing a protein encoded by the cannabinoid acid synthase gene. In a preferred aspect of the invention, one or more copies of a cannabinoid acid synthase gene are generated in vivo and the method comprises step (i) of integrating one or more copies of the cannabinoid acid synthase gene into the genome of an eukaryotic host to scale up protein expression. Preferably, the eukaryotic host is Pichia pastoris and the cannabinoid acid synthase gene is codon optimized with an alpha secretion sequence to target protein secretion and tagged with six tandem histidine residues (SEQ ID NO: 9). Step (i) may comprise linearizing the cannabinoid acid synthase gene by digestion with one or more restriction enzymes; extracting the cannabinoid acid
synthase gene by gel extraction; ligating the cannabinoid acid synthase gene into a Pichia pastoris plasmid; and electroporating the plasmid into bacterial cells to generate one or more cannabinoid acid synthase gene copy colonies. [0010] In a preferred aspect of the invention, the solvent is DMSO, and the concentration of DMSO in the reaction mixture is \(20 \%(\mathrm{w} / \mathrm{v})\). In an additional preferred aspect, the amphiphilic compound is a surfactant or a cyclodextrin. In a preferred embodiment, the cyclodextrin is \(\alpha\)-cyclodextrin, \(\beta\)-cyclodextrin or \(\gamma\)-cyclodextrin. Even more preferably, the cyclodextrin is sulfobuthylether \(\beta\)-cyclodextrin sodium salt or randomly methylated \(\beta\)-cyclodextrin, and the concentration of cyclodextrin in the reaction mixture is between 2 and \(28 \mathrm{mg} / \mathrm{ml}\). In a most preferred embodiment, the concentration of cyclodextrin in the reaction mixture is \(8 \mathrm{mg} / \mathrm{ml}\).
[0011] In one embodiment, the cannabinoids or cannabinoid analogs are single enantiomers with an enantiomeric purity of at least \(95 \%\), and preferably of at least \(99 \%\).
[0012] In a preferred embodiment, the cannabinoid acid synthase is THCA synthase and the one or more cannabinoids or cannabinoid analogs are tetrahydrocannabinol (THCA), cannabichromene (CBCA), THCA and CBCA, or analogs thereof. In a preferred aspect, the amphiphilic compound is cyclodextrin and the mass:mass ratio of cyclodextrin to the compound of Formula I is \(28: 1\) or the molar ratio of cyclodextrin to the compound of Formula I is 7.3:1. Preferably, step (c) of the reaction is performed at a pH in a range between 3.8 and 7.2 , and the method produces THCA, CBCA, or THCA and CBCA in a ratio as shown in the following table at each specified pH :
\begin{tabular}{cll}
\hline pH & THCA & CBCA \\
\hline 4 & 1 & 0 \\
5 & 2.33 & 1 \\
6 & 1 & 5.67 \\
7 & 0 & 1 \\
8 & 0 & 0 \\
\hline
\end{tabular}
[0013] Preferably, \(98 \%\) of the compound of Formula I is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0014] In a different embodiment, the cannabinoid acid synthase is CBDA synthase and the method produces cannabidiol (CBDA), cannabichromene acid (CBCA), CBDA and CBCA, or analogs thereof. Preferably, the amphiphilic compound is cyclodextrin and the mass:mass ratio of cyclodextrin to the compound of Formula I is \(11: 1\) or the molar ratio of cyclodextrin to the compound of Formula I is \(4: 1\). Preferably, step (c) is performed at a pH in a range between 3.8 and 7.2. In a preferred embodiment, the method produces CBDA, CBCA, or CBDA and CBCA in a ratio as shown in the following table at each specified pH :
\begin{tabular}{clc}
\hline pH & CBDA & CBCA \\
\hline 4.2 & 2.5 & 1 \\
5 & 1.13 & 1 \\
5.2 & 1 & 1.17 \\
5.4 & 1 & 2.45 \\
5.8 & 1 & 6.14 \\
6.2 & 1 & 28.13 \\
6.8 & 0 & 0 \\
\hline
\end{tabular}
[0015] Most preferably, \(98 \%\) of the compound of Formula is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0016] In a different embodiment, the invention provides a method of producing one or more cannabinoids or cannabinoid analogs according to Formula II

wherein the method comprises the steps of: (a) reacting a compound according to Formula III with a compound according to Formula IV;


in the presence of an enzyme that catalyzes the reaction of the Formula III and Formula IV compounds to form a Formula II compound; (b) reacting the Formula II compound with a cannabinoid acid synthase in a reaction mixture comprising a solvent and an amphiphilic compound to produce one or more cannabinoids or cannabinoid analogs; (c) isolating from the reaction mixture one or more cannabinoids or cannabinoid analogs produced in step (b); and (e) optionally decarboxylating the one or more cannahinoids or cannabinoid analogs isolated in step (c); wherein R is selected from - OH , halogen, -SH , or a \(-\mathrm{NR}_{a} \mathrm{R}_{b}\) group; \(R_{1}\) and \(R_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{OR}_{a}\), an optionally substituted linear or branched \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, an optionally substituted linear or branched \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, an optionally substituted linear or branched ( \(\mathrm{C}_{2}-\mathrm{C}_{10}\) ) alkynylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ) alkynylene, or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring; \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl; \(\mathrm{R}_{5}\) is selected from the group consisting of a linear or branched \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, a linear or branched \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, a linear or branched \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkynylene, \(-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(-\mathrm{C}(\mathrm{O})\) -\(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene and \(-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkynylene; wherein any alkylene, alkenylene, alkynylene, aryl, arylalkylene, or cycloalkyl group is further substituted with one or more groups selected from the group consisting of - OH , halogen, \(-\mathrm{NR}_{b} \mathrm{R}_{c},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{C}(\mathrm{O}) \mathrm{NR}_{b} \mathrm{R}_{c},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\)
alkyl, - \(\mathrm{CN},\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) alkoxy, \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) haloalkyl, and \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) hydroxyalkyl; and \(\mathrm{R}_{a}, \mathrm{R}_{b}\) and \(\mathrm{R}_{c}\) are each independently \(-\mathrm{H},-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl.
[0017] In one embodiment, \(\mathrm{R}_{5}\) is a \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene selected from the group consisting of

and \(\mathrm{R}_{4}\) is a linear alkylene selected from the group consisting of \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{C}_{7} \mathrm{H}_{15}\) and \(\mathrm{C}_{8} \mathrm{H}_{17}\). In a preferred aspect of the invention, \(\mathrm{R}_{5}\) is

and \(R_{6}\) is selected from \(\left(C_{1}-C_{10}\right)\) alkylene, \(\left(C_{2}-C_{10}\right)\) alkenylene, \(-\mathrm{OH},-\mathrm{SH}, \mathrm{NO}_{2}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br},-\mathrm{NH}_{2}\), or \(-\mathrm{NHR}_{a}\). [0018] In another preferred embodiment, the cannabinoid acid synthase is a recombinant cannabinoid acid synthase obtained by generating one or more copies of a canuabinoid acid synthase gene and by overexpressing a protein encoded by the cannabinoid acid synthase gene. Preferably, one or more copies of a cannabinoid acid synthase gene are generated in vivo and the method comprises step (i) of integrating one or more copies of the cannabinoid acid synthase gene into the genome of a eukaryotic host to scale up protein expression. Preferably, the eukaryotic host is Pichia pastoris and the cannahinoid acid synthase gene is codon optimized with an alpha secretion sequence to target protein secretion and tagged with six tandem histidine residues (SEQ ID NO: 9). Step (i) may comprise linearizing the cannabinoid acid synthase gene by digestion with one or more restriction enzymes; extracting the cannabinoid acid synthase gene by gel extraction; ligating the cannabinoid acid synthase gene into a Pichia pastoris plasmid; and electroporating the plasmid into bacterial cells to generate one or more cannabinoid acid synthase gene copy colonies.
[0019] In a preferred aspect of the invention, the solvent is DMSO, and the concentration of DMSO in the reaction mixture is \(20 \%(\mathrm{w} / \mathrm{v})\). In an additional preferred aspect, the amphiphilic compound is a surfactant or a cyclodextrin. In a preferred embodiment, the cyclodextrin is \(\alpha\)-cyclodextrin, \(\beta\)-cyclodextrin or \(\gamma\)-cyclodextrin. Even more preferably, the
cyclodextrin is sulfobuthylether \(\beta\)-cyclodextrin sodium salt or randomly methylated \(\beta\)-cyclodextrin, and the concentration of cyclodextrin in the reaction mixture is between 2 and \(28 \mathrm{mg} / \mathrm{ml}\). In a most preferred embodiment, the concentration of cyclodextrin in the reaction mixture is \(8 \mathrm{mg} / \mathrm{ml}\).
[0020] In one embodiment, the cannabinoids or cannabinoid analogs are single enantiomers with an enantiomeric purity of at least \(95 \%\), and preferably of at least \(99 \%\).
[0021] In a preferred embodiment, the cannabinoid acid synthase is THCA synthase and the one or more cannabinoids or cannabinoid analogs are tetrahydrocannabinol (THCA), cannabichromene (CBCA), THCA and CBCA, or analogs thereof. In a preferred aspect, the amphiphilic compound is cyclodextrin and the mass:mass ratio of cyclodextrin to the compound of Formula I is \(28: 1\) or the molar ratio of cyclodextrin to the compound of Formula I is 7.3:1. Preferably, step (c) of the reaction is performed at a pH in a range between 3.8 and 7.2 , and the method produces THCA, CBCA, or THCA and CBCA in different ratios as described above. Preferably, \(98 \%\) of the compound of Formula I is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0022] In a different embodiment, the cannabinoid acid synthase is CBDA synthase and the method produces cannabidiol (CBDA), cannabichromene acid (CBCA), CBDA and CBCA, or analogs thereof. Preferably, the amphiphilic compound is cyclodextrin and the mass:mass ratio of cyclodextrin to the compound of Formula I is 11:1 or the molar ratio of cyclodextrin to the compound of Formula \(I\) is \(4: 1\). Preferably, step (c) is performed at a pH in a range between 3.8 and 7.2, and the method produces CBDA, CBCA, or CBDA and CBCA in different ratios as described above. Most preferably, \(70 \%\) of the compound of Formula I is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0023] In yet another embodiment, the invention provides a method for producing a tetrahydrocannabinol, cannabichromene, or both tetrahydrocamnabinol and cannabichromene, or their analogs, wherein the method comprises the steps of: (a) selecting a compound according to Formula I;

(b) reacting the compound of Formula I with a tetrahydrocamabinolic acid (THCA) synthase in a reaction mixture comprising a solvent and an amphiphilic compound; (c) modifying at least one property of the reaction mixture to obtain a tetrahydrocannabinol, a cannabichromene, or both tetrahydrocannabinol and cannabichromene, or their analogs as products; (d) isolating tetrahydrocaunabinol, caunahichromene, or both tetrahydrocannabinol and cannabichromene, or their analogs from the reaction mixture; and (e) decarboxylating the tetrahydrocannabinolic acid, cannabichromenic acid, or both tetrahydrocannabinolic acid and
cannabichromenic acid, or their analogs; wherein \(R\) is selected from - OH , halogen, -SH , or a \(-\mathrm{NR}_{a} \mathrm{R}_{b}\) group; \(R_{1}\) and \(R_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{OR}_{a}\), an optionally substituted \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkenylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkynylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\left.\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkynylene, or \(R_{1}\) and \(R_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring; \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl; and \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\) are each independently \(-\mathrm{H},-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl.
[0024] In a preferred embodiment, the THCA synthase is a recombinant THCA synthase obtained by generating one or more copies of a THCA synthase gene and by overexpressing a protein encoded by the THCA synthase gene. Preferably, one or more copies of the THCA synthase gene are generated in vivo and the method comprises step (i) of integrating one or more copies of the cannabinoid acid synthase gene into the genome of a eukaryotic host to scale up protein expression. Preferably, the eukaryotic host is Pichia pastoris and the THCA synthase gene is codon optimized with an alpha secretion sequence to target protein secretion and tagged with six tandem histidine residues (SEQ ID NO: 9). Step (i) may comprise linearizing the cannabinoid acid synthase gene by digestion with one or more restriction enzymes; extracting the cannabinoid acid synthase gene by gel extraction; ligating the cannabinoid acid synthase gene into a Pichia pastoris plasmid; and electroporating the plasmid into bacterial cells to generate one or more cannabinoid acid synthase gene copy colonies.
[0025] In a preferred aspect of the invention, the solvent is DMSO, and the concentration of DMSO in the reaction mixture is \(20 \%(\mathrm{w} / \mathrm{v})\). In an additional preferred aspect, the amphiphilic compound is a surfactant or a cyclodextrin. In a preferred embodiment, the cyclodextrin is \(\alpha\)-cyclodextrin, \(\beta\)-cyclodextrin or \(\gamma\)-cyclodextrin. Even more preferably, the cyclodextrin is sulfobuthylether \(\beta\)-cyclodextrin sodium salt or randomly methylated \(\beta\)-cyclodextrin, and the concentration of cyclodextrin in the reaction mixture is between 2 and \(28 \mathrm{mg} / \mathrm{ml}\). In a most preferred embodiment, the concentration of cyclodextrin in the reaction mixture is \(8 \mathrm{mg} / \mathrm{ml}\).
[0026] In a preferred aspect of the invention, the amphiphilic compound is cyclodextrin and the mass:mass ratio of cyclodextrin to the compound of Formula I is \(28: 1\) or the molar ratio of cyclodextrin to the compound of Formula \(I\) is 7.3:1. Preferably, step (c) of modifying at least one property of the reaction mixture comprises modifyiug the pH of the reaction mixture in a range between 3.8 and 7.2 , and the method produces THCA, CBCA, or THCA and CBCA in different ratios as described above. Preferably, \(98 \%\) of the compound of Formula I is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0027] In a different embodiment, the invention provides a method for producing a cannabidiol, cannabichromene, or both cannabidiol and cannabichromene, or their analogs comprising the steps of: (a) selecting a compound according to Formula I;

(b) reacting the compound of Formula I with a cannabinodiolic acid (CBDA) synthase in a reaction mixture comprising a solvent and an amphiphilic compound; (c) modifying at least one property of the reaction mixture to obtain a cannabidiol, a cannabichromene, or both cannabidiol and cannabichromene, or their analogs as products; (d) isolating cannabidiol, eannabichromene, or both cannabidiol and cannabichromene, or their analogs from the reaction mixture; and (e) decarboxylating the cannabidiol, cannabichromene, or both cannabidiol and cannabichromene, or their analogs; wherein R is selected from -OH , halogen, SH , or a \(-\mathrm{NR}_{a} \mathrm{R}_{b}\) group; \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{OR}_{a}\), an optionally substituted \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkenylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkynylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) )alkynylene, or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring; \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl; and \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\) are each independently \(-\mathrm{H},-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl.
[0028] Preferably, the CBDA synthase is a recombinant CBDA synthase obtained by generating one or more copies of a CBDA synthase gene and by overexpressing a protein encoded by the CBDA synthase gene. In a preferred aspect of the invention, one or more copies of a CBDA synthase gene are generated in vivo and the method comprises step (i) of integrating one or more copies of the CBDA synthase gene into the genome of a eukaryotic host to scale up protein expression. Preferably, the eukaryotic host is Pichia pastoris and the CBDA synthase gene is codon optimized with an alpha secretion sequence to target protein secretion and tagged with six tandem histidine residues (SEQ ID NO: 9). Step (i) may comprise linearizing the CBDA synthase gene by digestion with one or more restriction enzymes; extracting the CBDA synthase gene by gel extraction; ligating the CBDA synthase gene into a Pichia pastoris plasmid; and electroporating the plasmid into bacterial cells to generate one or more cannabinoid acid synthase gene copy colonies.
[0029] In a preferred aspect of the invention, the solvent is DMSO, and the concentration of DMSO in the reaction mixture is \(20 \%(\mathrm{w} / \mathrm{v})\). In an additional preferred aspect, the amphiphilic compound is a surfactant or a cyclodextrin. In a preferred embodiment, the cyclodextrin is \(\alpha\)-cyclodextrin, \(\beta\)-cyclodextrin or \(\gamma\)-cyclodextrin. Even more preferably, the cyclodextrin is sulfobuthylether \(\beta\)-cyclodextrin sodium salt or randomly methylated \(\beta\)-cyclodextrin, and the concentration of cyclodextrin in the reaction mixture is between 2 and
\(28 \mathrm{mg} / \mathrm{ml}\). In a most preferred embodiment, the concentration of cyclodextrin in the reaction mixture is \(8 \mathrm{mg} / \mathrm{ml}\).
[0030] In a preferred aspect of the invention, the amphiphilic compound is cyclodextrin and the mass:mass ratio of cyclodextrin to the compound of Formula I is \(28: 1(\mathrm{w} / \mathrm{w})\) or the molar ratio of cyclodextrin to the compound of Formula I is 7.3:1. Preferably, step (c) of modifying at least one property of the reaction mixture comprises modifying the pH of the reaction mixture in a range between 3.8 and 7.2 , and the method produces \(\mathrm{CBDA}, \mathrm{CBCA}\), or CBDA and CBCA in different ratios as described above. In a preferred embodiment, \(98 \%\) of the compound of Formula I is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0031] In a different embodiment, the invention provides a system for producing one or more cannabinoids or cannabinoid analogs, comprising: a fermentor holding a medium and a plurality of cells, wherein the cells are configured to produce and secrete a cannabinoid synthase; a bioreactor containing a reactant in a reaction mixture comprising a solvent and an amphiphilic compound, the reactant configured to interact with cannabinoid acid synthase to form a first cannabinoid and a second cannabinoid; and a control mechanism configured to control a condition of the bioreactor, wherein the condition of the bioreactor influences a quantity formed of the first cannabinoid relative to a quantity formed of a second cannabinoid, and wherein the first and second cannabinoids are each one a cannabinoid or a cannabinoid analog.
[0032] In a preferred embodiment, the bioreactor is a column bioreactor containing nickel, and the cannabinoid acid synthase includes a tag configured to bond to nickel. In some embodiments, the bioreactor is a column bioreactor containing both mickel and another metal.
[0033] In one embodiment, the reactant in the system is a compound according to Formula I;


Formula I

Wherein R is selected from -OH , halogen, -SH , or a \(\mathrm{NR}_{a} \mathrm{R}_{b}\) group; \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{OR}_{a}\), an optionally substituted \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkenylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkynylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ) alkynylene, or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring; \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl; and \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\) are each independently \(-\mathrm{H},-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl.
[0034] In one preferred embodiment, the cannabinoid acid synthase is cannabidiolic acid (CBDA) synthase and the first and the second cannabinoids are one or both of cannabidiolic acid and cannabichromenic acid or their analogs.
[0035] In another preferred embodiment, the cannabinoid acid synthase is tetrahydrocannabinolic acid (THCA) synthase and the first and the second cannabinoids are one or both of tetrahydrocannabinolic acid and cannabichromenic acid, or their analogs.
[0036] Preferably, the cannabinoid acid synthase interacts with the reactant in the bioreactor to form both the first cannabinoid and the second cannabinoid, and the condition of the bioreactor is a function of at least one of pH , solvent, temperature, pressure, and flow rate.
[0037] In a preferred embodiment, a change in the condition of the bioreactor is configured to cause a shift from: 1) formation of the first cannabinoid in greater quantities relative to the second cannabinoid to 2) formation of the second cannabinoid in greater quantities relative to the first cannabinoid.
[0038] Preferably the solvent in the system is DMSO, and the concentration of DMSO in the reaction mixture is \(20 \%\) (w/v).
[0039] In yet another preferred embodiment, the amphiphilic compound in the system is a surfactant or a cyclodextrin. Preferably, the cyclodextrin is \(\alpha\)-cyclodextrin, \(\beta\)-cyclodextrin or \(\gamma\)-cyclodextrin. Even more preferably, the cyclodextrin is sulfobuthylether \(\beta\)-cyclodextrin sodium salt or randomly methylated \(\beta\)-cyclodextrin, and the concentration of cyclodextrin in the reaction mixture is between 2 and \(28 \mathrm{mg} / \mathrm{ml}\). Most preferably, the concentration of cyclodextrin in the reaction mixture is \(8 \mathrm{mg} / \mathrm{ml}\).
[0040] In one aspect of the invention, the amphiphilic compound is cyclodextrin and the mass:mass ratio of cyclodextrin to the compound of Formula I is \(28: 1\) (w/w), or the molar ratio of cyclodextrin to the compound of Formula I is 7.3:1. In a preferred embodiment, \(98 \%\) of the compound of Formula l in the system is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0041] In a preferred aspect of the invention, the cannabinoid acid synthase in the system is CBDA synthase and the change in the condition of the bioreactor comprises modifying the pH of the reaction mixture in a range between 3.8 and 7.2. Preferably, the method produces \(\mathrm{CBDA}, \mathrm{CBCA}\), or CBDA and CBCA in different ratios as described above.
[0042] In another preferred embodiment, the cannabinoid acid synthase is THCA synthase and the change in the condition of the bioreactor comprises modifying the pH of the reaction mixture in a range between 3.8 and 7.2. Preferably, the method produces THCA, CBCA, or THCA and CBCA in different ratios as described above.
[0043] In yet another embodiment, the invention provides a method for producing at least one cannabinoid or cannabinoid analog, that includes the steps of: providing cannabigerol, a cannabinoid acid synthase, and a reaction mixture comprising a solvent and an amphiphilic compound via an automated delivery system; reacting the cannabigerol with the cannabinoid acid synthase in the reaction mixture; adding a solvent via the automated delivery system to cease the reaction; removing the solvent; and recovering the at least one cannabinoid or cannabinoid analog produced by the reaction. Preferably, the reaction mixture comprises DMSO and the cannabinoid acid synthase is CBDA synthase or THCA synthase. Even more preferably, the step of
reacting the cannabigerol with the cannabinoid acid synthase comprises controlling the pH of the reaction mixture via a controller. Thus, in a preferred aspect of the invention, the method further comprises controlling the pH of the reaction mixture to produce a predetermined quantity of at least a first cannabinoid or first cannabinoid analog and controlling the pH of the reaction mixture to produce the predetermined quantity of the first cannabinoid or first cannabinoid analog and a predetermined quantity of a second cannabinoid or second cannabinoid analog. In a preferred embodiment, the first cannabinoid or first cannabinoid analog is THCA or CBDA and the second cannabinoid or second cannabinoid analog is CBCA. In another preferred embodiment, the first cannabinoid or first cannabinoid analog is THCA or CBDA and the second cannabinoid or second cannabinoid analog is CBCA.
[0044] In another embodiment, the invention provides a method for producing at least one cannabinoid or cannabinoid analog, that comprises: reacting cannabigerol with cannabinoid acid synthase in a reaction mixture comprising a solvent and an amphiphilic compound; adding a solvent to cease the reaction; removing the solvent; and recovering the cannabinoid or cannabinoid analog produced by the reaction. In a preferred aspect of the invention, the step of reacting the cannabigerol with the cannabinoid acid synthase comprises controlling the pH of the reaction mixture. Preferably, the pH of the reaction mixture is controlled by adjusting the pH of the reaction mixture to achieve a predetermined ratio of a first cannabinoid or first cannabinoid analog to a second cannabinoid or second cannabinoid analog. Even more preferably, the reaction mixture comprises DMSO and the camabinoid acid synthase is CBDA synthase or THCA synthase. In one embodiment, the first cannabinoid or first cannabinoid analog is THCA or CBDA and the second cannabinoid or second cannabinoid analog is CBCA.
[0045] In an additional embodiment, the invention provides an apparatus that comprises an automated supply system configured to deliver a first automated supply of cannabigerol, a cannabinoid acid synthase, and a reaction mixture comprising a solvent and an amphiphilic compound; a bioreactor configured to receive the first supply and permit reaction of the cannabigerol and cannabinoid acid synthase in the reaction mixture, and a second automated supply of a solvent so as to cease the reaction; and an extractor configured to remove the solvent and recover at least a first cannabinoid or cannabinoid analog. The apparatus may further comprise a controller configured to adjust at least one property of the reaction mixture so as to produce the first cannabinoid or first cannabinoid analog and a second cannabinoid or second cannabinoid in a predetermined ratio. The controller may be also configured to determine a first quantity of the first cannabinoid or first cannabinoid analog and a second quantity of a second cannabinoid or second cannabinoid analog, and adjust at least one property of the reaction mixture so as to produce the first quantity of the first cannabinoid or first cannabinoid analog and the second quantity of a second cannabinoid or second cannabinoid. Preferably, the reaction mixture comprises DMSO and the cannabinoid acid synthase is CBDA synthase or THCA synthase. In a preferred aspect of the invention, the first cannabinoid or first cannabinoid analog is THCA or CBDA and the second cannabinoid or second cannabinoid analog is CBCA.
[0046] In yet another embodiment, the invention provides an apparatus for producing tetrahydrocannabinolic acid (THCA) and cannabichromenic acid (CBCA) or cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA) in different ratios comprising: a bioreactor comprising an automated supply system configured to deliver (a) a first automated supply of camahigerol, a cannabinoid acid synthase, and a reaction mixture comprising a solvent and an amphiphilic compound, wherein the solvent is one or more of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and iso-propoyl alcohol and the concentration of the solvent in the reaction mixture is between \(5 \%\) and \(30 \%(\mathrm{w} / \mathrm{v})\), and wherein the amphiphilic compound is a surfactant or a cyclodextrin and the concentration of the amphiphilic compound in the reaction mixture is between 2 and \(28 \mathrm{mg} / \mathrm{ml}\); and (b) a second automated supply of solvent to cease the reaction; an extractor configured to remove the solvent and recover tetrahydrocannabinolic acid (THCA) and cannabichromenic acid (CBCA) or cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA) from the reaction mixture; and a controller configured to modify the pH of the reaction mixture to produce tetrahydrocannabinolic acid (THCA) and cannahichromenic acid (CBCA) or cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA) in different ratios, and adjust the concentration of the amphiphilic compound in the reaction mixture to affect the conversion rate of camabigerolic acid (CBGA) into tetrahydrocamabinolic acid (THCA) and cannabichromenic acid (CBCA) or into cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA) in different ratios. In a preferred embodiment, the cannabinoid acid synthase is tetrahydrocannabinolic acid synthase (THCA synthase) or cannabidiolic acid synthase (CBDA synthase). In one aspect of the invention, the cannabinoid synthase is immobilized on a solid support. In another aspect of the invention, the cannabinoid synthase is a recombinant cannabinoid synthase, and the apparatus further comprises a system to produce the recombinant cannabinoid synthase in large scale. Preferably, the pH is in the range from about 3.8 to about 8.0.
[0047] In a preferred aspect of the invention, the solvent is one or more of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and iso-propoyl alcohol, and the concentration of the solvent in the reaction mixture is between \(5 \%\) and \(30 \%\) (w/v). In another preferred aspect of the invention, the amphiphilic compound is a surfactant or a cyclodextrin. The cyclodextrin can be \(\alpha\)-cyclodextrin, \(\beta\)-cyclodextrin or \(\gamma\)-cyclodextrin. In one aspect of the invention, the cyclodextrin is sulfobuthylether \(\beta\)-cyclodextrin sodium salt or randomly methylated \(\beta\)-cyclodextrin, and the concentration of cyclodextrin in the reaction mixture is between 2 and \(28 \mathrm{mg} / \mathrm{ml}\). Preferably, the concentration of cyclodextrin in the reaction mixture is \(8 \mathrm{mg} / \mathrm{ml}\).
[0048] In one embodiment, the tetrahydrocannabinolic acid (THCA) and cannabichromenic acid (CBCA) or cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA) are single enantiomers with an enantiomeric purity of at least \(95 \%\).
[0049] In one aspect of the invention, the cannabinoid synthase is THCA synthase and the amphiphilic compound is cyclodextrin. Preferably, the mass:mass ratio of cyclodextrin to cannabigerolic acid (CBGA) is 28:1 or the molar ratio of cyclodextrin to cannabigerolic acid (CBGA) is 7.3:1. In a preferred aspect of the invention, the apparatus produces
tetrahydrocannabinolic acid (THCA) and cannabichromenic acid (CBCA) in the following ratios:
\begin{tabular}{cll}
\hline pH & THCA & CBCA \\
\hline 4 & 1 & 0 \\
5 & 2.33 & 1 \\
6 & 1 & 5.67 \\
7 & 0 & 1 \\
\hline
\end{tabular}
[0050] Preferably, \(98 \%\) of the cannabigerolic acid CBGA is converted into tetrahydrocannabinolic acid (THCA) and cannabichromenic acid (CBCA) within two hours.
[0051] In a different aspect of the invention, the cannabinoid acid synthase is CBDA synthase and the amphiphilic compound is cyclodextrin. Preferably, the mass:mass ratio of cyclodextrin to the cannabigerolic acid (CBGA) is 11:1 or the molar ratio of cyclodextrin to the cannabigerolic acid (CBGA) is \(4: 1\). In a preferred aspect of the invention, the apparatus produces cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA) in the following ratios:
\begin{tabular}{ccc}
\hline pH & CBDA & CBCA \\
\hline 4.2 & 2.5 & 1 \\
5 & 1.13 & 1 \\
5.2 & 1 & 1.17 \\
5.4 & 1 & 2.45 \\
5.8 & 1 & 6.14 \\
6.2 & 1 & 28.13 \\
6.8 & 0 & 0 \\
\hline
\end{tabular}
[0052] Preferably, \(98 \%\) of the cannabigerolic acid (CBGA) is converted into cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA) within two hours.
[0053] The foregoing general description and the detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. For detailed understanding of the invention, reference is made to the following detailed description of the preferred eubodimeuts, taken in conjunction with the accompanying drawing. Other objects, advantages and novel features will be readily apparent to those skilled in the art from the following detailed description of the invention.

\section*{BRIEF DESCRIPTION OF THE DRAWINGS}
[0054] FIG. 1 illustrates the effect of \(10 \%\) DMSO and no cyclodextrin on THCA synthase activity. \(100 \mu 1\) THCA synthase in crude fermentation supernatant ( \(10 \times\) concentrated) were reacted with \(50 \mathrm{kl} 2 \mathrm{mg} / \mathrm{ml}\) CBGA in \(350 \mu \mathrm{l}\) citrate buffer at pH 4.85 . Peaks (from left to right): \#1 CBGA (86.51\%), \#2 THCA (10.4\%), \#3 CBCA (3.09\%).
[0055] FIG. 2 illustrates the effect of \(20 \%\) DMSO and no cyclodextrin on THCA synthase activity. \(100 \mu 1\) THCA synthase in crude fermentation supernatant ( \(10 \times\) concentrated) were reacted with \(50 \mu \mathrm{l} 2 \mathrm{mg} / \mathrm{ml}\) CBGA in \(300 \mu \mathrm{l}\) citrate buffer at pH 4.85 in the presence of \(50 \mu \mathrm{I}\) DMSO. Peaks (from left to right): \#1 CBGA (54.18\%), \#2 THCA ( \(32.39 \%\) ), \#3 CBCA ( \(13.43 \%\) ).
[0056] FIG. 3 illustrates the effect of \(10 \%\) DMSO and 20\% cyclodextrin on THCA synthase activity. \(100 \mu 1\) THCA synthase in crude fermentation supernatant ( \(10 \times\) concentrated) were reacted with \(50 \mu \mathrm{~d} 2 \mathrm{mg} / \mathrm{ml}\) CBGA in \(350 \mu \mathrm{l}\)
citrate buffer at pH 4.85 containing 2 mg cyclodextrin. Peaks (from left to right): \#1 CBGA (10.33\%), \#2 THCA (72. 37\%), \#3 CBCA (17.3\%).
[0057] FIG. 4 illustrates the effect of \(10 \%\) DMSO and \(40 \%\) cyclodextrin on THCA synthase. \(150 \mu \mathrm{l}\) THCA synthase in crude fermentation supernatant ( \(10 \times\) concentrated) were reacted with \(75 \mu 12 \mathrm{mg} / \mathrm{ml}\) CBGA in \(525 \mu \mathrm{l}\) citrate buffer at pH 4.85 containing 3 mg cyclodextrin. Peaks (from left to right): \#1 CBGA (11.50\%), \#2 THCA (72.08\%), \#3 CBCA (16.42\%).
[0058] FIG. 5 illustrates the effect of \(10 \%\) DMSO and \(60 \%\) cyclodextrin on THCA synthase activity. \(200 \mu \mathrm{lHCA}\) synthase in cride fermentation supernatant ( \(10 \times\) concentrated) were reacted with \(100 \mu \mathrm{l} 2 \mathrm{mg} / \mathrm{ml}\) CBGA in \(700 \mu \mathrm{l}\) citrate buffer at pH 4.85 containing 4 mg cyclodextrin. Peaks (from left to right): \#1 CBGA (10.36\%), \#2 THCA (73 \(98 \%\) ), \#3 CBCA ( \(15.65 \%\) ).
[0059] FIG. 6 illustrates the effect of \(10 \%\) DMSO and 20 \(\mathrm{mg} / \mathrm{ml}\) cyclodextrin on CBDA synthase activity. \(200 \mu \mathrm{l}\) CBDA synthase in crude fermentation supernatant ( \(10 \times\) concentrated) were reacted with \(100 \mu 14 \mathrm{mg} / \mathrm{ml}\) CBGA in \(700 \mu 1\) citrate buffer at pH 4.85 containing 4 mg cyclodextrin. Peaks (from left to right): \#1 CBDA (40.63\%), \#2 CBGA ( \(28.43 \%\) ), \#3 CBCA ( \(30.95 \%\) ).
[0060] FIG. 7 is a block diagram of a system for producing cannabinoids and/or cannabinoid analogs.
[0061] FIG. 8 is a block diagram of a system for producing cannabinoids and/or cannabinoid analogs.
[0062] FIG. 9 is a flow diagram illustrating a method for producing cannabinoids.
[0063] FIG. 10 is a block diagram of a controller.
[0064] FIG. 11 illustrates the effect of \(0 \mathrm{mg} / \mathrm{ml}\) cyclodextrin on CBDA synthase reaction conversion rate and product ratio. \(50 \mu \mathrm{l}\) of \(10 \times\) concentrated fermentation supernatant were reacted with \(25 \mu 1\) of \(5 \mathrm{mg} / \mathrm{ml}\) CBGA in \(175 \mu \mathrm{l}\) of citrate buffer pH 4.8. Peaks (Left to right): CBDA (17.99\%), CBGA ( \(65.72 \%\) ), CBCA ( \(16.30 \%\) ).
[0065] FIG. 12 illustrates the effect of \(2 \mathrm{mg} / \mathrm{ml}\) cyclodextrin on CBDA synthase reaction conversion rate and product ratio. \(50 \mu 1\) of \(10 \times\) concentrated fermentation supernatant were reacted with \(25 \mu 1\) of \(5 \mathrm{mg} / \mathrm{ml}\) CBGA in \(175 \mu \mathrm{l}\) of citrate buffer pH 4.8 containing \(2 \mathrm{mg} / \mathrm{ml}\) cyclodextrin. Peaks (Left to right): CBDA (29.53\%), CBGA (47.40\%), CBCA (23.08\%).
[0066] FIG. 13 illustrates the effect of \(8 \mathrm{mg} / \mathrm{ml}\) cyclodextrin on CBDA synthase reaction conversion rate and product ratio. \(50 \mu 1\) of \(10 \times\) concentrated fermentation supernatant were reacted with \(8.25 \mu \mathrm{l}\) of \(5 \mathrm{mg} / \mathrm{ml} \mathrm{CBGA}\) in \(175 \mu \mathrm{l}\) of citrate buffer pH 4.8 containing \(8 \mathrm{mg} / \mathrm{ml}\) cyclodextrin. Peaks (Left to right): CBDA ( \(33 \%\) ), CBGA ( \(41.98 \%\) ), CBCA (25.02\%).
[0067] FIG. 14 illustrates the effect of \(12 \mathrm{mg} / \mathrm{ml}\) cyclodextrin on CBDA synthase reaction conversion rate and product ratio. \(50 \mu \mathrm{l}\) of \(10 \times\) concentrated fermentation supernatant were reacted with \(25 \mu \mathrm{l}\) of \(5 \mathrm{mg} / \mathrm{ml}\) CBGA in \(175 \mu \mathrm{l}\) of citrate buffer pH 4.8 containing \(12 \mathrm{mg} / \mathrm{ml}\) cyclodextrin. Peaks (Left to right): CBDA (30.63\%), CBGA (45.22\%), CBCA (24.15\%).
[0068] FIG. 15 illustrates the effect of \(16 \mathrm{mg} / \mathrm{ml}\) cyclodextrin on CBDA synthase reaction conversion rate and product ratio. \(50 \mu\) of \(10 \times\) concentrated fermentation supernatant were reacted with \(25 \mu 1\) of \(5 \mathrm{mg} / \mathrm{ml}\) CBGA in \(175 \mu \mathrm{l}\)
of citrate buffer pH 4.8 containing \(16 \mathrm{mg} / \mathrm{ml}\) cyclodextrin. Peaks (Left to right): CBDA (28.54\%), CBGA (49.63\%), CBCA (21.84\%)
[0069] FIG. 16 illustrates the effect of \(20 \mathrm{mg} / \mathrm{ml}\) cyclodextrin on CBDA synthase reaction conversion rate and product ratio. \(50 \mu 1\) of \(10 \times\) concentrated fermentation supernatant were reacted with \(25 \mu \mathrm{l}\) of \(5 \mathrm{mg} / \mathrm{ml}\) CBGA in \(175 \mu \mathrm{l}\) of citrate buffer pH 4.8 containing \(20 \mathrm{mg} / \mathrm{ml}\) cyclodextrin. Peaks (Left to right): CBDA (29.05\%), CBGA (50.04\%), CBCA (20.91\%)
[0070] FIG. 17 illustrates the effect of \(28 \mathrm{mg} / \mathrm{ml}\) cyclodextrin on CBDA synthase reaction conversion rate and product ratio. \(50 \mu\) of \(10 \times\) concentrated fermentation supernatant were reacted with \(25 \mu 1\) of \(5 \mathrm{mg} / \mathrm{ml}\) CBGA in \(175 \mu \mathrm{l}\) of citrate buffer pH 4.8 containing \(28 \mathrm{mg} / \mathrm{ml}\) cyclodextrin. Peaks (Left to right): CBDA (22.09\%), CBGA (59.60\%), CBCA (18.32\%)

\section*{DETAILED DESCRIPTION OF THE INVENTION}
[0071] The present invention provides a system and methods for large scale simultaneous enzymatic production of different cannabinoids or cannabinoid analogs, as well as methods for cloning, expressing and purifying enzymes that catalyze large scale simultaneous synthesis of THCA, CBDA, CBCA or analogs thereof under various pH , temperature and aqueous/lipophilic conditions.

\section*{Definitions}
[0072] As used herein, unless otherwise stated, the singular forms "a," "an," and "the" include plural reference. Thus, for example, a reference to "a cell" includes a plurality of cells, and a reference to "a molecule" is a reference to one or more molecules.
[0073] As used herein, "about" will be understood by persons of ordinary skill in the art and will vary to some extent depending upon the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art, given the context in which it is used, "about" will mean up to plus or minus \(10 \%\) of the particular term.
[0074] The term "alkyl" refers to a straight or branched chain, saturated hydrocarbon having the indicated number of carbon atoms. For example, \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkyl is meant to include but is not limited to methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, isohexyl, and neohexyl, etc. An alkyl group can be unsubstituted or optionally substituted with one or more substituents as described herein below.
[0075] The term "alkenyl" refers to a straight or branched chain unsaturated hydrocarbon having the indicated number of carbon atoms and at least one double bond. Examples of a ( \(\mathrm{C}_{2}-\mathrm{C}_{10}\) ) alkenyl group include, but are not limited to, ethylene, propylene, 1-butylene, 2-butylene, isobutylene, sec-butylene, 1 -pentene, 2 -pentene, isopentene, 1 -hexene, 2 -hexene, 3 -hexene, isohexene, 1 -heptene, 2 -heptene, 3 -heptene, isoheptene, 1 -octene, 2 -octene, 3 -octene, 4 -octene, and isooctene. An alkenyl group can be unsubstituted or optionally substituted with one or more substituents as described herein below.
[0076] The term "alkynyl" refers to a straight or branched chain unsaturated hydrocarbon having the indicated number of carbon atoms and at least one triple bond. Examples of a
\(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkynyl group include, but are not limited to, acetylene, propyne, 1-butyne, 2-butyne, 1-pentyne, 2-pentyne, 1 -hexyne, 2 -hexyne, 3 -hexyne, 1 -heptyne, 2 -heptyne, 3-heptyne, 1 -octyne, 2 -octyne, \(\beta\)-octyne and 4 -octyne. An alkynyl group can be unsubstituted or optionally substituted with one or more substituents as described herein below
[0077] The term "alkoxy" refers to an -O-alkyl group having the indicated number of carbon atoms. For example, a ( \(\mathrm{C}_{1}-\mathrm{C}_{6}\) ) alkoxy group includes - O-methyl, -O-ethyl, -O-propyl, O-isopropyl, -O-bntyl, -O-sec-butyl, -O-tert-butyl, -O-pentyl, -O-isopentyl, O-neopentyl, -O-hexyl, -O-isohexyl, and -O-neohexyl.
[0078] The term "aryl" refers to a 3- to 14 -member monocyclic, bicyclic, tricyclic, or polycyclic aromatic hydrocarbon ring system. Examples of an aryl group include naphthyl, pyrenyl, and anthracyl. An aryl group can be unsubstituted or optionally substituted with one or more substituents as described herein below.
[0079] The terms "alkylene," "alkenylene," and "arylene," alone or as part of another substituent, means a divalen radical derived from an alkyl, cycloalkyl, alkenyl, aryl, or heteroaryl group, respectively, as exemplified by \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\). For alkylene, alkenyl, or aryl linking groups, no orientation of the linking group is implied.
[0080] The term "halogen" and "halo" refers to - \(\mathrm{F},-\mathrm{Cl}\), - Br or -I.
[0081] The term "heteroatom" is meant to include oxygen \((\mathrm{O})\), nitrogen \((\mathrm{N})\), and sulfur ( S ).
[0082] A "hydroxyl" or "hydroxy" refers to an - OH group.
[0083] The term "hydroxyalkyl," refers to an alkyl group having the indicated number of carbon atoms wherein one or more of the alkyl group's hydrogen atoms is replaced with an - OH group. Examples of hydroxyalkyl groups include, but are not limited to, \(-\mathrm{CH}_{2} \mathrm{OH},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\), \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \quad-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\) \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\),
\(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\), and branched versions thereof.
[0084] The term "cycloalkyl" refer to monocyclic, bicyclic, tricyclic, or polycyclic, \(\beta\) - to 14 -membered ring sys tems, which are either saturated, unsaturated or aromatic The heterocycle may be attached via any heteroatom or carbon atom. Cycloalkyl include aryls and hetroaryls as defined above. Representative examples of cycloalky include, but are not limited to, cycloethyl, cyclopropyl, cycloisopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropene, cyclohutene, cyclopentene, cyclohexene, phenyl, naphthyl, anthracyl, benzofuranyl, and benzothiophenyl. A cycloalkyl group can be unsubstituted or optionally substituted with one or more substituents as described herein helow.
[0085] The term 'nitrile or cyano" can be used interchangeably and refer to a-CN group which is bound to a carbon atom of a heteroaryl ring, aryl ring and a heterocycloalkyl ring.
[0086] The term "amine or amino" refers to an \(-\mathrm{NR}_{c} \mathrm{R}_{d}\) group wherein \(\mathrm{R}_{c}\) and \(\mathrm{R}_{d}\) each independently refer to a hydrogen, ( \(\mathrm{C}_{1}-\mathrm{C}_{8}\) )alkyl, aryl, heteroaryl, heterocycloalkyl, ( \(\mathrm{C}_{1}-\mathrm{C}_{8}\) )haloalkyl, and ( \(\mathrm{C}_{1}-\mathrm{C}_{6}\) ) hydroxyalkyl group.
[0087] The term "alkylaryl" refers to \(\mathrm{C}_{1}-\mathrm{C}_{8}\) alkyl group in which at least one hydrogen atom of the \(\mathrm{C}_{1}-\mathrm{C}_{8}\) alkyl chain is replaced by an aryl atom, which may be optionally substituted with one or more substituents as described herein
below. Examples of alkylaryl groups include, but are not limited to, methylphenyl, ethylnaphthyl, propylphenyl, and butylphenyl groups.
[0088] "Arylalkylene" refers to a divalent alkylene wherein one or more hydrogen atoms in the \(\mathrm{C}_{1}-\mathrm{C}_{10}\) alkylene group is replaced by a \(\left(\mathrm{C}_{3}-\mathrm{C}_{14}\right)\) aryl group. Examples of \(\left(\mathrm{C}_{3}-\mathrm{C}_{14}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene groups include without limitation 1-phenylbutylene, phenyl-2-butylene, 1-phenyl-2methylpropylene, phenylmethylene, phenylpropylene, and naphthylethylene.
[0089] "Arylalkenylene" refers to a divalent alkenylene wherein one or more hydrogen atoms in the \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkenylene group is replaced by a \(\left(\mathrm{C}_{3}-\mathrm{C}_{14}\right)\) aryl group.
[0090] The term "arylalkynylene" refers to a divalent alkynylene wherein one or more hydrogen atoms in the \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkynylene group is replaced by a ( \(\mathrm{C}_{3}-\mathrm{C}_{14}\) )aryl group.
[0091] The terms "carboxyl" and "carboxylate" include such moieties as may be represented by the general formulas:

[0092] E in the formula is a bond or O and \(\mathrm{R}^{f}\) individually is H, alkyl, alkcnyl, aryl, or a pharmaceutically acceptable salt. Where E is O , and \(\mathrm{R}^{f}\) is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when \(\mathrm{R}^{f}\) is a hydrogen, the formula represents a "carboxylic acid". In general, where the expressly shown oxygen is replaced by sulfur, the formula represents a "thiocarbonyl" group.
[0093] Unless otherwise indicated, "stereoisomer" means one stereoisomer of a compound that is substantially free of other stereoisomers of that compound. Thus, a stereomerically pure compound having one chiral center will be suhstantially free of the opposite enantiomer of the compound. A stereomerically pure compound having two chiral centers will be substantially free of other diastereomers of the compound. A typical stereomerically pnre compound comprises greater than about \(80 \%\) by weight of one stereoisomer of the compound and less than about \(20 \%\) by weight of other stereoisomers of the compound, for example greater than about \(90 \%\) by weight of one stereoisomer of the compound and less than about \(10 \%\) by weight of the other stereoisomers of the compound, or greater than about \(95 \%\) by weight of one stereoisomer of the compound and less than about \(5 \%\) by weight of the other stereoisomers of the compound, or greater than about \(97 \%\) by weight of one stereoisomer of the compound and less than about \(3 \%\) by weight of the other stereoisomers of the compound.
[0094] The present invention provides methods for the enzymatic synthesis of cannabinoids or cannabinoid analogs in a cell-free environment. Also described is an apparatus for the ex vivo manufacture of cannabinoids and analogs of cannabinoids. The term "analog" refers to a compound that is structurally related to naturally occurring cannabinoids, but whose chemical and hiological properties may differ from naturally occurring cannabinoids. In the present context, analog or analogs refer compounds that may not exhibit one or more unwanted side effects of a naturally occurring cannabinoid. Analog also refers to a compound that is
derived from a naturally occurring cannabinoid by chemical, biological or a semi-synthetic transformation of the naturally occurring cannabinoid.
[0095] Cannabinoid compounds include, but are not limited to, cannabinol, cannabidiol, \(\Delta 9\)-tetrahydrocannabinol, \(\Delta 8\)-tetrahydrocannabinol, 11 -hydroxy-tetrahydrocannabinol, 11-hydroxy- \(\Delta 9\)-tetrahydrocannabinol, levonantradol, \(\Delta l l\)-tetrahydrocannabinol, tetrahydrocannabivarin, dronabinol, amandamide and nabilone, as well as natural or synthetic molecules that have a basic cannabinoid structure and are modified synthetically to provide a cannabinoid analog. [0096] The present invention also provides methods for the large scale cloning and expression of the enzymes that play a role in the biosynthesis of cannabinoids and for the use of an eukaryotic expression system for the production of biosynthetic enzymes that can be used for the manufacture of cannabinoids and cannabinoid analogs. Yeast as well as eukaryotic and prokaryotic cells are suitable for the cloning and expression of the cannabinoid acid synthase enzymes and include without limitation E. coli, yeast and baculovirus hosts. Thus, the present invention discloses a method for the large-scale production of several cannabinoid acid synthase enzymes including, but not limited to, tetrahydrocannahinolic acid (THCA) synthase and cannabidiolic acid (CBDA) synthase, using the pink Pichia yeast expression system. Accordingly, large scale production of these enzymes can be carried out by transforming yeast with a DNA construct that comprises a gene for a cannabinoid synthase, generating one or more copies of the canuabinoid acid synthase gene and overexpressing a protein encoded by the cannabinoid acid synthase gene.
[0097] The nucleic acid sequence of the THCA synthase gene is represented by SEQ ID NO: 1 and encodes a polypeptide sequence set forth in SEQ ID NO: 2 . The codon optimized nucleic acid sequence of the THCA synthase gene for Pichia pastoris expression is represented by SEQ ID NO: 3 and encodes a polypeptide sequence set forth in SEQ ID NO: 4 , which is the THCA synthase amino acid sequence comprising the alpha secretion sequence of Pichia pastoris. "THCA synthase expression" refers to the biosynthesis of a gene product encoded by SEQ ID NO: 1 or by SEQ ID NO: 3, or a variant, fragment or portion of SEQ ID NO: 1 or SEQ ID NO: 3. "THCA synthase expression" also refers to the biosynthesis of a polypeptide comprising SEQ ID NO: 2 or SEQ ID NO: 4, or a variant, fragment or portion of a polypeptide comprising SEQ ID NO: 2 or SEQ ID NO: 4. "THCA synthase overexpression" denotes an increase in THCA synthase expression. THCA overexpression affects an increase in THCA or CBCA content for a plant or cell in which the overexpression occurs. THCA overexpression refers to upregulated biosynthesis of a gene product encoded by SEQ ID NO: 1 or by SEQ ID NO: 3, or any variant, fragment or portion of SEQ ID NO: 1 or SEQ ID NO: 3.
[0098] The nucleic acid sequence of the CBDA synthase gene (codon optinuzed for Pichia pastoris expression) is represented by SEQ ID NO: 5 and encodes a polypeptide sequence set forth in SEQ ID NO: 6. The codon optimized nucleic acid sequence of the CBDA synthase gene for Pichia pastoris expression is represented by SEQ ID NO: 7 and encodes a polypeptide sequence set forth in SEQ ID NO: 8, which is the CBDA synthase amino acid sequence comprising the alpha secretion sequence of Pichia pastoris. "CBDA synthase expression" refers to the biosyntbesis of a gene product encoded by SEQ ID NO: 5 or by SEQ ID NO: 7 , or
a variant, fragment or portion of SEQ ID NO: 5 or SEQ ID NO: 7. "CBDA synthase expression" also refers to the biosynthesis of a polypeptide comprising SEQ ID NO: 6 or SEQ ID NO: 8, or a variant, fragment or portion of a polypeptide comprising SEQ ID NO: 6 or SEQ ID NO: 8. "CBDA synthase overexpression" denotes an increase in CBDA synthase expression. CBDA overexpression affects an increase in CBDA or CBCA content for a plant or cell in which the overexpression occurs. CBDA overexpression refers to upregulated biosynthesis of a gene product encoded by SEQ ID NO: 5 or by SEQ ID NO: 7, or any variant, fragment or portion of SEQ ID NO: 5 or SEQ ID NO: 7.
[0099] The present invention encompasses any nucleic acic, gene, polynucleotide, DNA, RNA, mRNA, or cDNA molecule that is isolated from the genome of a plant species, or produced synthetically, that increases biosynthesis of cannabinoids or cannabinoid analogs. Additionally, expression of such cannabinoid acid synthase sequence produces cannabinoids or cannabinoid analogs in a non-cannabinoid producing cell, including yeast, prokariotic cells and eukariotic cells, such as a non-cannabinoid producing plant cell, a bacteria cell, an insect cell, or an yeast cell. The DNA or RNA may be double-stranded or single-stranded. Singlestranded DNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also called the anti-sense strand.
[0100] It is understood that THCA synthase and CBDA synthase include the sequences set forth in SEQ ID NOs: 1 , 3,5 and 7, respectively, as well as nucleic acid molecules comprising variants, fragments or portions of SEQ ID NOs: 1,3,5 and 7, with one or more bases deleted, substituted, inserted, or added, wherein a variant of anyone of SEQ ID Nos: \(1,3,5\) and 7 codes for a polypeptide with cannabinoid or cannabinoid analog biosynthesis activity. Accordingly, sequences having "base sequences with one or more bases deleted, substituted, inserted, or added" retain physiological activity even when the encoded amino acid sequence has one or more amino acids substituted, deleted, inserted, or added. Physiological activity of the encoded amino acid sequences may be tested using conventional enzymatic assays known in the art. Additionally, multiple forms of THCA synthase and CBDA synthase may exist, which may be due to post-translational modification of a gene product, or to multiple forms of the respective THCA synthase and CBDA synthase. Nucleotide sequences that have such modifications and that code for cannabinoid or cannabinoid analog biosynthesis enzymes are included within the scope of the present invention.
[0101] For example, the poly A tail or \(5^{\prime}\) - or \(3^{\prime}\)-end, nontranslation regions may be deleted, and bases may be deleted to the extent that amino acids are deleted. Bases may also be substituted, as long as no frame shift results. Bases also may be "added" to the extent that aunino acids are added. It is essential, however, that any such modification does not result in the loss of cannabinoid acid or camnabinoid acid analog biosynthesis enzyme activity. A modified DNA in this context can be obtained by modifying the DNA base sequences of the invention so that amino acids at specific sites are substituted, deleted, inserted, or added by sitespecific mutagenesis, for example, and that still retain cannabinoid acid or cannabinoid acid analog biosynthesis enzyme activity. Cannabinoid acid or cannabinoid acid analog biosynthesis enzyme activity of the encoded amino acid sequences may be assayed as described above.
[0102] A cannabinoid or cannabinoid analog biosynthesis sequence can be synthesized ab initio from the appropriate bases, for example, by using an appropriate protein sequence disclosed herein as a guide to create a DNA molecule that, though different from the native DNA sequence, results in the production of a protein with the same or similar amino acid sequence. This type of synthetic DNA molecule is useful when introducing a DNA sequence into a non-plant cell, coding for a heterologous protein, that reflects different (non-plant) codon usage frequencies and, if used unmodified, can result in inefficient translation by the host cell.
[0103] By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a DNA construct are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or DNA molecules that are purified, partially or substantially, in solution. Isolated RNA molecules include in vitro RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules, according to the present invention, further include such molecules produced synthetically.
[0104] "Exogenous nucleic acid" refers to a nucleic acid, DNA or RNA, which has been artificially introduced into a cell. Such exogenous nucleic acid may be a copy of a sequence which is naturally found in the cell into which it was introduced, or fragments thereof.
[0105] In contrast, "endogenous nucleic acid" refers to a nucleic acid, gene, polynucleotide, DNA, RNA, mRNA, or cDNA molecule that is present in the genome of a plant or organism that is to be genetically engineered. An endogenous sequence is "native" to, i.e., indigenous to, the plant or organism that is to be genetically engineered.
[0106] "Heterologous nucleic acid" refers to a nucleic acid, DNA or RNA, which has been introduced into a cell which is not a copy of a sequence naturally found in the cell into which it is introduced. Such heterologous nucleic acid may comprise segments that are a copy of a sequence which is naturally found in the cell into which it has been introduced, or fragments thereof.
[0107] A "chimeric nucleic acid" comprises a coding sequence or fragment thereof linked to a transcription initiation region that is different from the transcription initiation region with which it is associated in cells in which the coding sequence occurs naturally.
[0108] The present application is directed to such nucleic acid molecules which are at least \(60 \%, 65 \%, 70 \%, 75 \%\), \(80 \%, 85 \%, 90 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%\) or \(100 \%\) identical to a nucleic acid sequence described in any of SEQ ID NO: 1, 3, 5 and 7. Preferred are nucleic acid molecules which are at least \(95 \%, 96 \%, 97 \%, 98 \%, 99 \%\) or \(100 \%\) identical to the nucleic acid sequence shown in any of SEQ ID NO: 1,3,5 and 7. Differences between two nucleic acid sequences may occur at the \(5^{\prime}\) or \(3^{\prime}\) terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.
[0109] As a practical matter, whether any particular nucleic acid molecule is at least \(95 \%, 96 \%, 97 \%, 98 \%\) or \(99 \%\) identical to a reference nucleotide sequence refers to a comparison made between two molecules using standard
algorithms well known in the art and can be determined conventionally using publicly available computer programs such as the BLAST algorithm.
[0110] The present invention further provides nucleic acid molecules comprising the nucleotide sequence of SEQ ID NOs: 1, 3, 5 and 7, respectively, which encode an active cannabinoid or cannabinoid analog biosynthesis enzyme, wherein the enzyme has an amino acid sequence that corresponds to SEQ ID NOs: 2, 4, 6, and 8, respectively, or a variant, fragment or portion of anyone of SEQ ID Nos: 2, 4, 6 and 8 , and wherein the protein of the invention encompasses amino acid substitutions, additions and deletions that do not alter the function of the cannabinoid or cannabinoid analog biosynthesis enzyme.
[0111] A "variant" is a nucleotide or amino acid sequence that deviates from the standard, or given, nucleotide or amino acid sequence of a particular gene or protein. The terms "isoform," "isotype," and "analog" also refer to "variant" forms of a nucleotide or an amino acid sequence. An amino acid sequence that is altered by the addition, removal, or substitution of one or more amino acids, or a change in nucleotide sequence, may be considered a "variant" sequence. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. A variant may have "nonconservative" changes, e.g., replacenent of a glycine with a tryptophan. Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in deternining which amino acid residues may be substituted, inserted, or deleted may be found using computer programs well known in the art.
[0112] The invention contemplates genetically engineering "non-cannabinoid or cannabinoid analog producing cells" with a nucleic acid sequence encoding an enzyme involved in the production of cannabinoids or cannabinoid analogs. Non-cannabinoid or cannabinoid analog producing cells refer to a cell from any organism that does not produce a cannabinoid or cannabinoid analog. Illustrative cells include but are not limited to plant cells, as well as insect, mammalian, yeast, fungal, algal, or bacterial cells.
[0113] "Fungal cell" refers to any fungal cell that can be transformed with a gene encoding a cannabinoid or cannabinoid analog biosynthesis enzyme and is capable of expressing in recoverable amounts the enzyme or its products. Illustrative fungal cells include yeast cells such as Saccharomyces cerivisae and Pichia pastoris. Cells of filamentous fungi such as Aspergillus and Trichoderma may also be used.
[0114] Cannabinoid acid synthase gene sequences may be obtained from a publicly available database. In a preferred aspect of the invention, one or more copies of a cannabinoid acid synthase gene are generated in vivo and the method comprises integrating one or more copies of the cannabinoid acid synthase gene into the genome of a eukaryotic host, such as Pichia pastoris, to scale up protein expression. Preferably, the cannabinoid acid synthase gene is codon optimized with an alpha secretion sequence to target protein secretion or tagged with six tandem histidine (SEQ ID NO: 9) residues at the \(3^{\prime}\) end to facilitate purification. This process comprises linearizing the cannabinoid acid synthase gene by digestion with one or more restriction enzymes; extracting the cannabinoid acid synthase gene by gel extraction; ligating the cannabinoid acid synthase gene into a

Pichia pastoris plasmid; and electroporating the plasmid into bacterial cells to generate one or more cannabinoid acid synthase gene copy colonies.
[0115] Thus, in one embodiment, one or more copies of alpha-CBDA synthase and alpha-THCA synthase sequences, for example, are generated by modification as described above, insertion into pPink-HC vector (Invitrogen (B) and transformation into \(E\). coli cells. The transformed cells may be stored as agar stabs for future use. Prior to transformation of yeast cells, the vector containing the cannabinoid acid synthase gene of interest (GOI) is isolated from the agar stabs containing the transformed \(E\). coli cells, linearized using Peel or Spel restriction enzymes and the linearized plasmids thus obtained are electroporated into Pichia pastoris pep deficient mutant cells using PichiaPink \({ }^{\mathrm{TM}}\) Yeast Expression Systems (Invitrogen \({ }^{( }\)). Linearization with the restriction enzyme Pmed directs the insert into the AOX1 promoter region of the Pichia genome, whereas linearization with the restriction enzyme Sped directs the insert into the TRP gene.
[0116] The transformed yeast cells may be grown on adenine-deficient selective plates and the colonies thus formed may be screened to identify positive transformants. Screening methods include, but are not limited to, color screening methodology. Typically, cells having 6-10 copies of the gene of interest are desired for obtaining large amounts of recombinant protein, for example, about 1.0 g to about 2.0 g of protein per liter of culture.
[0117] In one embodiment, individual white colonies of yeast cells carrying the THCA synthase gene or the CBDA synthase gene, for example, are separately cultured in flasks using BMGY medium, followed by induction by growth in BMMY medium, to induce the expression of THCA synthese or CBDA synthase as further described below. Briefly, the medium containing the enzyme in each culture is separated from the cells, reacted with a known amount of substrate and the product is analyzed. Cultures of transformants showing greater than \(20 \%\) conversion are used for the commercial synthesis of cannabinoids or cannabinoid analogs pursuant to methods of the invention.
[0118] The cannabinoid acid synthase enzymes, THCA synthase and CBDA synthase, obtained using the PichiaPink \({ }^{\text {TM }}\) Yeast Expression system described above, can be used for the manufacture of caunabinoids or cannabinoid analogs. The cannabinoid or cannabinoid analogs thus obtained are isolated, purified and used as therapeutics. In a further embodiment, the cannabinoids or cannabinoid analogs thus obtained undergo a decarboxylation step.
[0119] Cannabinoid syntheses according to the invention include, but are not limited to, cannahidiolic acid (CBDA) synthase and tetrahydrocannabinolic acid (THCA) synthase. [0120] In one embodiment, the invention provides a method for producing a cannabinoid or a cannabinoid analog by selecting a Formula I compound and a cannabinoid acid syuthase as a catalyst for transforming the Formula I compound to a cannabinoid or a cannabinoid analog.
[0121] In Formula I, R can be selected from hydroxyl (- OH), halogen, thiol (-SH), or a \(-\mathrm{NR}_{a} \mathrm{R}_{b}\) group. Substituent groups \(R_{1}\) and \(R_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{OR}_{a}\), an optionally substituted \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkenylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkynylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylane, ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl- \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) )aryl-\(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkynylene. Alternatively, \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring. For compounds according to Formula I, \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl and \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\) are each independently -H , OH , \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, \(-\mathrm{SH},-\mathrm{NH}_{2}\), or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl.
[0122] \(\mathrm{R}_{2}\) can be a linear alkylene or a branched alkylene. Exemplary of linear alkylenes include without limitation \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{C}_{7} \mathrm{H}_{15}\) and \(\mathrm{C}_{8} \mathrm{H}_{17}\). Illustrative of branched alkylenes are groups selected from, iso-propyl, sec-butyl, iso-butyl, neopentyl, 2-methyl hexyl. or 2,3-dimethyl hexyl groups. In some embodiments, \(\mathrm{R}_{2}\) can be an optionally substituted linear or branched alkylene in which one or more hydrogen atoms is replaced without limitation with a group selected from chlorine, fluorine, bromine, nitro, amino, hydroxyl, phenyl, or benzyl group. [0123] In one embodiment, \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the ring carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring. For such Formula I compounds one or more carbon atoms of the ring can be substituted with a heterotom selected from oxygen, sulfur or nitrogen.
[0124] In another embodiment, \(\mathrm{R}_{2}\) is a \(\mathrm{C}_{2}-\mathrm{C}_{10}\) alkenylene and is selected from the group consisting of

with \(R_{4}\) being a linear or branched alkylene as described above. When \(R_{2}\) is a \(C_{2}-C_{10}\) linear or branched alkynylene, \(\mathrm{R}_{2}\) can be


Formula I


\section*{Altematively, \(\mathrm{R}_{2}\) in Formula I is}

\section*{[0125]}

substituent X is a group selected from
\(-\mathrm{OH},-\mathrm{SH}\), or \(\mathrm{NR}_{a} \mathrm{R}_{b}\) and groups \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\). are as defined above.
[0126] In one embodiment, the cannabinoids and/or cannabinoid analogs synthesized according to the invention have a carboxylic acid ( -COOH ) group as the \(\mathrm{R}_{1}\) substituent and may undergo an optional decarboxylation step prior to their use as pharmaceutical or nutraceutical agents. Examples of cannabinoids or cannabinoid aualogs having a carboxylic acid group include, but are not limited to, compounds obtained by reacting a compound of Formula I in which R is \(-\mathrm{OH}, \mathrm{R}_{1}\) is - \(\mathrm{COOH}, \mathrm{R}_{2}\) is \(\mathrm{C}_{5} \mathrm{H}_{11}\) and \(\mathrm{R}_{3}\) is - H with a cannabinoid acid synthase obtained as described above.
[0127] The synthesis, isolation and purification of cannabinoids or cannabinoid analogs can be improved by immobilization of a cannabinoid acid synthase to a solid support, or by encapsulation of the synthase within a liposome. In one aspect, the enzyme is immobilized to a solid support. Without being bound to any theory, the inventors of the present application have unexpectedly discovered that immobilization facilitates use and recovery of the enzyme catalyst, purification of the desired product, and preservation of the enantioneric excess (ee) of the final product, and provides an overall improvement in the yield of the product. Furthernore, immobilization pennits recycling and reuse of the immobilized enzyme which significantly reduces the costs associated with the manufacture of pharmaceutical grade cannabinoids or cannabinoid analogs. Typically, the enantiomeric purity of the cannabinoids and/or cannabinoid analogs produced according to the invention is from about \(90 \%\) ee to about \(100 \%\) ee, for instance, a cannabinoid or a cannabinoid analog produced using the inventive methodology can have an enantiomeric purity of about \(91 \%\) ee, about \(92 \%\) ee, about \(93 \%\) ee, about \(94 \%\) ee, about \(95 \%\) ee, about \(96 \%\) ee, about \(97 \%\) ee, about \(98 \%\) ee and about \(99 \%\) ee.
[0128] Typically, the enzyme to be immobilized can be absorbed onto a solid support, adsorbed onto a support, covalently linked to a support or can be immobilized onto a solid support through ionic interactions. In one embodiment, the cannabinoid acid synthase is covalently linked to a solid support. Suitable strategies for linking an enzyme to a solid support are well known in the biochemical art and include covalent linkages between an appropriately functionalized support and a side chain of an amino acid group or through covalent linkages using appropriately functionalized linkers or spacers to separate the support from the enzyme. The term "linker" refers to any group that separates the support from the enzyme. Accordingly, a linker is a group that is covalently tethered at one end to a group on the surface of the support and is attached to the enzyme at the other end. Illustrative linkers include ( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ) alkylene linker polymers
of ethylene glycol such as a \(-\left(\mathrm{OCH}_{2}-\mathrm{CH}_{2}\right)_{n}-\mathrm{O}-\) group, where n is an integer from 0 to \(10,-\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene-\(\mathrm{NH}-,-\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylenesiloxy, or a \(-\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene-\(\mathrm{C}(\mathrm{O})-\)
[0129] Supports suitable for immobilizing enzymes include, but are not limited to, Amberlite resins, Duolite resins, acrylic resins such as Eupergit(ß) C, DEAE-Sephadex and gels made using polyvinyl alcohol.
[0130] Cannabinoids exert different physiological properties and are known to lessen pain, stimulate appetite and have been tested as candidate therapeutics for treating a variety of disease conditions such as allergies, inflammation, infection, epilepsy, depression, migraine, bipolar disorders, anxiety disorder, and glaucoma. The physiological effects exerted by cannabinoids is affected by their ability to stimulate or deactivate the cannabinoid receptors, for instance the CB1, CB2 and CB3 receptors. Accordingly, the present invention provides the means to modulate cannabinoid receptor activity and their pharmaceutical properties by modifying the cannabinoid and/or cannabinoid analog binding interactions and the orientation of a ligand within the cannabinoid receptors active site by determining the nature and orientation of substituent groups attached to the cannabinoids and/or cannabinoid analogs produced according to the invention.
[0131] Thus, in one embodiment the invention provides a method for the manufacture of cannabinoids and cannabinoid analogs that have structurally distinct and diverse substituent groups attached to a central core and thus exhibit different pharmaceutically beneficial properties. Structural diversity is accomplished by contacting an appropriately substituted Formula III compound with a Formula IV compound in the presence of an enzyme, such as GPP olivetolate geranyltransferase (a polyketide synthase), to produce a compound of Formula II. Scheme 1 below structurally illustrates the protocol for synthesizing a Formula II compound pursuant to this embodiment.

Scheme 1
[0132]


III


Iv


II
[0133] Different compounds of Formula II that serve as substrates for the manufacture of cannabinoids and/or cannabinoid analogs according to the invention may be obtained by varying the nature and type of substituent groups at \(R, R_{1}\), \(\mathrm{R}_{2}, \mathrm{R}_{3}\) and \(\mathrm{R}_{5}\), in the compounds of Formulas III and IV. According to this embodiment, therefore, different cannabinoids and/or cannabinoid analogs may be obtained by reacting a compound of Formula II with a cannabinoid acid synthase, for example, THCA synthase or CBDA synthase obtained as described above, followed by isolation and decarboxylation of the obtained product to give a cannabinoid or a cannabinoid analog.
[0134] In Formula III, R can be selected from hydroxyl \((-\mathrm{OH})\), halogen, thiol ( -SH ), or a \(-\mathrm{NR}_{a} \mathrm{R}_{b}\) group. Substituents \(R_{1}\) and \(R_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{OR}_{a}\), an optionally substituted linear or branched ( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ) alkylene, an optionally substituted linear or branched ( \(\mathrm{C}_{2}-\mathrm{C}_{10}\) ) alkenylene, an optionally substituted linear or branched ( \(\mathrm{C}_{2}-\mathrm{C}_{10}\) ) alky nylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\left.\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ) alkynylene.
[0135] In certain embodiments \(R_{1}\) and \(R_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring and \(R_{3}\) is selected from the group consisting of \(H\), \(-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl.
[0136] \(\mathrm{R}_{\mathrm{S}}\) in Formula IV can be a linear or branched \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, a linear or branched \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, a linear or branched \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkynylene, \(-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene and \(-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{2}-\right.\) \(\mathrm{C}_{10}\) )alkynylene. For Formulae II, III and IV compounds any alkylene, alkenylene, alkynylene, aryl, arylalkylene, or cycloalkyl group can be further substituted with one or more groups selected from the group consisting of -OH , halogen, \(-\mathrm{NR}_{b} \mathrm{R}_{c},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{C}(\mathrm{O}) \mathrm{NR}_{b} \mathrm{R}_{c},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right.\) )alkyl, -CN, ( \(\mathrm{C}_{1}-\mathrm{C}_{4}\) )alkoxy, ( \(\mathrm{C}_{1}-\mathrm{C}_{4}\) )haloalkyl, and ( \(\mathrm{C}_{1}-\mathrm{C}_{4}\) )hydroxyalkyl with \(\mathrm{R}_{a}, \mathrm{R}_{b}\) and \(\mathrm{R}_{c}\) each independently being selected from \(-\mathrm{H},-\mathrm{OH}\), or \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, \(-\mathrm{SH},-\mathrm{NH}_{2}\), or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl.
[0137] According to one embodiment, \(\mathrm{R}_{5}\) in Formula IV can be a ( \(\mathrm{C}_{2}-\mathrm{C}_{10}\) ) alkenylene selected from

with \(\mathrm{R}_{4}\) being a linear alkylene selected from the group consisting of \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{0}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{C}_{7} \mathrm{H}_{15}\) and \(\mathrm{C}_{8} \mathrm{H}_{17}\). For certain Formula IV compounds \(\mathrm{R}_{5}\) is

and group \(R_{6}\) is selected from ( \(C_{1}-\mathrm{C}_{10}\) )alkylene, \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, \(-\mathrm{OH},-\mathrm{SH}, \mathrm{NO}_{2}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br},-\mathrm{NH}_{2}\), or a \(-\mathrm{NHR}_{a}\) where \(\mathrm{R}_{a}\) is as defined above.
[0138] A recombinant cannabinoid acid synthase obtained by overexpressing a protein encoded by a recombinant cannabinoid acid synthase gene as described above is reacted with a substrate according to Formula I or with a substrate according to Formula II as described above in a reaction mixture comprising a solvent and an amphiphilic compound to produce one or more cannabinoids or cannabinoid analogs. The cannabinoids or cannabinoid analogs thus formed are isolated from the reaction mixture and optionally decarboxylated. Preferably, the recombinant cannabinoid acid synthase is a recombinant CBDA synthase or a recombinant THCA synthase obtained by the method described above. In a preferred aspect of the invention, the solvent in the reaction mixture is a non-aqueous solvent, such as dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), or iso-propoyl alcohol. The concentration of the solvent in the reaction mixture may vary between \(10 \%\) and \(30 \%(\mathrm{v} / \mathrm{v})\). The inventors of the present application have unexpectedly discovered that the concentration of the non-aqueous solvent in the reaction mixture affects the rate of the reaction as well as the ratio between the different cannabinoid products. Thus, the table below shows that in a reaction driven by the THCA synthase, the presence of DMSO in a concentration of \(20 \%(\mathrm{v} / \mathrm{v})\) in the reaction mixture increases the rate of the reaction by 2.5 -fold and causes the reaction to produce THCA and CBCA in a ratio of \(5: 1\), whereas the presence of DMSO in a concentration of \(10 \%(\mathrm{v} / \mathrm{v})\) in the reaction mixture produces THCA and CBCA in a ratio of 10:1. Accordingly, in a preferred aspect of the invention, the non-aqueous solvent in the reaction mixture is DMSO and the concentration of DMSO in the reaction mixture is most preferably \(20 \%\) (v/v).

TABLE 1
\begin{tabular}{clc}
\hline \multicolumn{3}{c}{ Effect of DMSO Concentration on Reaction Rate and Products } \\
\hline DMSO & Rate of Reaction & THCA:CBCA \\
\hline \(0 \%\) & 1 X & \\
\(10 \%\) & 1.2 X & \(10: 1\) \\
\(20 \%\) & 2.5 X & \(5: 1\) \\
\(25 \%\) & 0.3 X & \(1: 1\) \\
\(30 \%\) & & \\
\hline
\end{tabular}
[0139] In an additional preferred embodiment of the invention, the reaction mixture also comprises an amphiphilic compound. Preferably, the amphiphilic compound is a surfactant or a cyclodextrin. Surfactants may include, but are not limited to, cationic surfactants, ionic surfactants and anionic surfactants. Most preferably, the reaction mixture contains a cyclodextrin.
[0140] Cyclodextrins are natural cyclic oligosaccharides consisting of six or more 1-4 linked \(\alpha\)-anhydro-glucose moieties, which may be produced from starch through an enzymatic reaction. Cyclodextrins are classified according to the number of glucose units as \(\alpha\)-cyclodextrin (six units),
\(\beta\)-cyclodextrin (seven units) and \(\gamma\)-cyclodextrin (eight units). The structure of the cyclodextrin is shown below:


10141] The secondary hydroxyl groups on the exterior side of the cyclodextrin molecule are hydrophilic, whereas the primary hydroxyl groups form the hydrophobic central
cavity. Without being bound to any theory, it is believed that the hydrophobic central cavity in cyclodextrin incorporates the substrate in the reaction mixture as a guest molecule and the complex thus formed protects and stabilizes the substrate, although no covalent or ionic bonds are formed.
[0142] The inventors of the present application have unexpectedly discovered that the concentration of cyclodextrin in the reaction mixture affects the conversion rate of the substrate into the products as well as the ratio between the different products of the reaction, as shown in the table below. shows the effect of cyclodextrin concentration in the reaction mixture on CBDA synthase reaction at pH 4.85 .
[0143] As shown in the table below, increasing the concentration of cyclodextrin from \(0 \mathrm{mg} / \mathrm{ml}\) to \(28 \mathrm{mg} / \mathrm{ml}\) in the CBDA synthase enzyme reaction increases the conversion rate of CBGA to CBDA and CBCA, with the highest conversion rates seen when cyclodextrin concentrations were \(8 \mathrm{mg} / \mathrm{ml}\) and \(12 \mathrm{mg} / \mathrm{ml}(20 \%\) higher conversion rate comparing to no cyclodextrin added to the reaction).
[0144] Addition of cyclodextrin also slightly changes the ratio of CBDA:CBCA at pH 5 . The highest CBDA:CBCA ratio (CBDA:CBCA 1.41:1) was observed when cyclodextrin concentration was \(20 \mathrm{mg} / \mathrm{ml}\) and the lowest CBDA: CBCA ratio (CBDA:CBCA 1.04:1) was observed when cyclodextrin concentration was \(16 \mathrm{mg} / \mathrm{ml}\).

TABLE 2
\begin{tabular}{cccc}
\hline Effect of Cyclodextrin on CBDA \\
Product Ratio \\
Pration Conversion Rate and
\end{tabular}
[0145] The cyclodextrin may be \(\alpha\)-cyclodextrin, \(\beta\)-cyclodextrin or \(\gamma\)-cyclodextrin. In some embodiments, the cyclodextrin is sulfobuthylether \(\beta\)-cyclodextrin sodium salt or randomly methylated \(\beta\)-cyclodextrin. When present in the reaction mixture, the cyclodextrin is in a concentration of from about 0.001 to about \(30 \mathrm{mg} / \mathrm{ml}\). Preferahly, the concentration of cyclodextrin in the reaction mixture is between 2 and \(28 \mathrm{mg} / \mathrm{ml}\). In a most preferred embodiment, the concentration of cyclodextrin in the reaction mixture is 8 \(\mathrm{mg} / \mathrm{ml}\).
[0146] As shown in the table below and in FIGS. 11-17, with no cyclodextrin, increasing the amount of DMSO from \(10 \%\) to \(20 \%\) increased the conversion of CBGA from \(13.5 \%\) to \(45.8 \%\) overnight, and changed the ratio of THCA:CBCA from 3.33:1 to 2.24:1. Including cyclodextrin in the reaction with \(10 \%\) DMSO, increased the conversion of CBGA to \(89.7 \%\) and gave a ratio of 4.2:1 THCA:CBCA. Increasing the concentration of cyclodextrin to \(40 \%\) or \(60 \%\) gave the same results.
\begin{tabular}{lccccc}
\hline & & & & & Figure \\
Condition & CBGA & THCA & CBCA & THCA:CBCA & ID \\
\hline \(10 \%\) DMSO, no cyclodextrin & \(86.51 \%\) & \(10.40 \%\) & \(3.0900 \%\) & \(3.37: 1\) & 1 \\
\(20 \%\) DMSO, no cyclodextrin & \(54.18 \%\) & \(32.39 \%\) & \(13.43 \%\) & \(2.1: 1\) & 2 \\
\(10 \%\) DMSO, 20\% & \(10.33 \%\) & \(72.37 \%\) & \(17.300 \%\) & \(4.20: 1\) & 3 \\
\begin{tabular}{l} 
cyclodextrin
\end{tabular} & \(11.50 \%\) & \(72.08 \%\) & \(16.42 \%\) & \(4.39: 1\) & 4 \\
\begin{tabular}{l}
\(10 \%\) DMSO, \(40 \%\)
\end{tabular} & \(10.36 \%\) & \(73.98 \%\) & \(15.65 \%\) & \(4.73: 1\) & 5 \\
\begin{tabular}{l} 
cyclodextrin \\
\(10 \%\) DMSO, \(60 \%\) \\
cyclodextrin
\end{tabular} & & & & & \\
\hline
\end{tabular}
[0147] The cannabinoids or cannabinoid analogs produced according to the methods of the invention are may be single enantiomers with an enantiomeric purity of at least \(95 \%\), and preferably of at least \(99 \%\).
[0148] The inventors of the present application have also unexpectedly discovered that the pH of the reaction mixture affects the ratio between the different cannabinoid products obtained. Accordingly, in a preferred embodiment, the pH of the reaction mixture is modified to obtain the cannabinoid products and/or cannabinoid analog products in the desired ratio. Thus, when reacted with a compound of Formula I according to the invention, THCA synthase may produce tetrahydrocannabinol (THCA), cannabichromene (CBCA), THCA and CBCA, or analogs thereof in different ratios, according to the pH of the reaction. Preferably, the reaction is performed at a pH in a range between 3.8 and 7.2 , and the method produces THCA, CBCA, or THCA and CBCA in a ratio as shown in the following table at each specified pH

TABLE 3
\begin{tabular}{cll}
\multicolumn{4}{c}{ Effect of pH on THCA Synthase Reaction Products } \\
\hline pH & THCA & CBCA \\
\hline 4 & 1 & 0 \\
5 & 2.33 & 1 \\
6 & 1 & 5.67 \\
7 & 0 & 1 \\
\hline
\end{tabular}
[0149] In summary, changing the pH of the THCA synthase enzyme reaction affects the products. At pH 4 THCA is the only product. At pH 5 the ratio of THCA:CBCA is 2.33:1. At pH 6 the ratio is reversed and the product mix is THCA:CBCA 1:5.67. At pH 7 CBCA is the only product. Under these conditions, \(98 \%\) of the compound of Formula I is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0150] Similarly, when reacted wit a compound of Formula I, CBDA synthase may produce cannabidiol (CBDA), cannabichromene acid (CBCA), CBDA and CBCA, or analogs thereof in different ratios, according to the pH of the reaction. Preferably, the reaction is performed at a pH in a range between 3.8 and 7.2 , and the inethod produces CBDA, CBCA , or CBDA and CBCA in a ratio as shown in the following table at each specified pH :

TABLE 4
\begin{tabular}{ccc}
\hline \multicolumn{4}{c}{ Effect of pH on CBDA Synthase Reaction Products } \\
\hline pH & CBDA & CBCA \\
\hline 4.2 & 2.5 & 1 \\
5 & 1.13 & 1
\end{tabular}

TABLE 4-continued
\begin{tabular}{ccc}
\hline \multicolumn{4}{c}{ Effect of pH on CBDA Synthase Reaction Products } \\
\hline pH & CBDA & CBCA \\
\hline 5.2 & 1 & 1.17 \\
5.4 & 1 & 2.45 \\
5.8 & 1 & 6.14 \\
6.2 & 1 & 28.13 \\
6.8 & 0 & 0 \\
\hline
\end{tabular}
[0151] In summary, changing the pH of the CBDA synthase enzyme reaction affects the products. At pH 4.2 the CBDA:CBCA ratio is \(2.5: 1\). At pH 5 the ratio of CBDA: CBCA is 1.13:1. At pH 6.8 there is no product forming from CBDA synthase enzyme reaction. Under these conditions, \(70 \%\) of the compound of Formula I is converted into one or more cannabinoids or cannabinoid analogs within two hours.
[0152] The invention also provides a method of producing one or more cannabinoids or cannabinoid analogs according to Formula II

wherein the method comprises the steps of: (a) reacting a compound according to Fonnula \(\amalg I\) with a compound according to Formula IV;


III

IV

in the presence of an enzyme that catalyzes the reaction of the Formula III and Formula IV compounds to form a

Formula II compound; (b) reacting the compound of Formula II with a camabinoid acid synthase in a reaction mixture comprising a solvent and an amphiphilic compound as described above to produce one or more cannabinoids or camnabinoid analogs; (c) isolating from the reaction mixture one or more cannabinoids or cannabinoid analogs produced in step (b); and (e) optionally decarboxylating the one or more cannabinoids or cannabinoid analogs isolated in step (c). R in Formula III may be selected from - OH, halogen -SH , or a \(-\mathrm{NR}_{a} \mathrm{R}_{b}\) group; \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O})\) \(\mathrm{R}_{a}\), \(\mathrm{OR}_{a}\), an optionally substituted linear or branched \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, an optionally substituted linear or branched \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, an optionally substituted linear or branched \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkynylene, an optionally substi tuted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\left.\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkynylene, or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring; \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H}, \quad \mathrm{C}(\mathrm{O}) \mathrm{R}_{2}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl. \(\mathrm{R}_{5}\) in Formula IV may be selected from the group consisting of a linear or branched ( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ) alkylene, a linear or branched ( \(\mathrm{C}_{2}-\mathrm{C}_{10}\) ) alkenylene, a linear or branched \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right.\) ) alkynylene, \(-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right.\) ) alkylene, \(-\mathrm{C}(\mathrm{O})\) \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene and \(-\mathrm{C}(\mathrm{O})-\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkynylene; wherein any alkylene, alkenylene, alkynylene, aryl, arylalkylene, or cycloalkyl group is further substituted with one or more groups selected from the group consisting of -OH halogen, \(-\mathrm{NR}_{b} \mathrm{R}_{c}, \mathrm{C}(\mathrm{O}) \mathrm{R}_{a}, \quad \mathrm{C}(\mathrm{O}) \mathrm{NR}_{b} \mathrm{R}_{c},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkyl, \(-\mathrm{CN},\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) alkoxy, \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) haloalkyl, and \(\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) hydroxyalkyl; and \(\mathrm{R}_{a}, \mathrm{R}_{b}\) and \(\mathrm{R}_{c}\) are each independently \(-\mathrm{H},-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl.
[0153] In one embodiment, \(\mathrm{R}_{5}\) is a \(\left(\mathrm{C}_{2}-\mathrm{C}_{1}\right)\) alkenylene selected from the group consisting of

and \(\mathrm{R}_{4}\) is a linear alkylene selected from the group consisting of \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{C}_{7} \mathrm{H}_{15}\) and \(\mathrm{C}_{8} \mathrm{H}_{17}\). In a preferred aspect of the invention, \(\mathrm{R}_{5}\) is
and \(\mathrm{R}_{6}\) is selected from \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, \(-\mathrm{OH},-\mathrm{SH}, \mathrm{NO}_{2}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br},-\mathrm{NH}_{2}\), or \(-\mathrm{NHR}_{a}\). [0154] In yet another embodiment, the invention provides a method for producing a tetrahydrocannabinol, cannabichromene, or both tetrahydrocannabinol and cannabichromene, or their analogs, wherein the method comprises the steps of: (a) selecting a compound according to Formula I;


Formula I
b) cannabinolic acid (THCA) synthase in a reaction mixture comprising a solvent and an amphiphilic compound as described above; (c) modifying at least one property of the reaction mixture, such as the pH of the reaction, the nature and/or concentration of the non-aqueous solvent and/or the concentration of an amphiphilic compound, such as cyclodextrin, to obtain a tetrahydrocannabinol, a cannabiclromene, or both tetrahydrocannabinol and cannabichromene, or their analogs as products as described above; (d) isolating tetrahydrocannabinol, cannabichromene, or both tetrahydrocannabinol and cannabichromene, or their analogs from the reaction mixture; and (e) decarboxylating the tetrahydrocannabinol, cannahichromene, or both tetrahydrocannabinol and cannabichromene, or their analogs. R in Formula I may be selected from - OH , halogen, - SH , or \(a-\mathrm{NR}_{a} \mathrm{R}_{b}\) group; \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) \(-\mathrm{OR}_{a}\), an optionally substituted \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkenylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkynylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl-\(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkynylene, or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring; \(\mathrm{R}_{3}\) is selected from the group consisting of \(\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl; and \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\) are each independently \(-\mathrm{H},-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2}\), \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl. [0155] In a different embodiment, the invention also provides a method for producing a cannabidiol, cannabichromene, or both cannabidiol and cannabichromene, or their analogs comprising the steps of: (a) selecting a compound according to Formula I;


(b) reacting the compound of Formula I with a cannabinodiolic acid (CBDA) synthase in a reaction mixture comprising a solvent and an amphiphilic compound as described above; (c) modifying at least one property of the reaction mixture, such as the pH of the reaction, the nature and/or concentration of the non-aqueous solvent and/or the concentration of an amphiphilic compound, such as cyclodextrin, to obtain a cannabidiol, a cannabichromene, or both cannabidiol and cannabichromene, or their analogs as products; (d) isolating cannabidiol, cannabichromene, or both cannabidiol and cannahichromene, or their analogs from the reaction mixture; and (e) decarboxylating the cannabidiol, cannabichromene, or both cannabidiol and cannabichromene, or their analogs. R in Formula I may be selected from - OH , halogen, -SH , or a \(-\mathrm{NR}_{a} \mathrm{R}_{b}\) group; \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are each independently selected from the group consisting of \(-\mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{R}_{a},-\mathrm{OR}_{a}\), an optionally substituted \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkenylene, an optionally substituted \(\mathrm{C}_{2}-\mathrm{C}_{10}\) linear or branched alkynylene, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) aryl, an optionally substituted \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl- \(\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) alkylene, \(\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)\) aryl \(\left(\mathrm{C}_{2}-\mathrm{C}_{10}\right)\) alkenylene, and ( \(\mathrm{C}_{3}-\mathrm{C}_{10}\) ) aryl-( \(\mathrm{C}_{1}-\mathrm{C}_{10}\) ) alkynylene, or \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) together with the carbon atoms to which they are bonded form a \(\mathrm{C}_{5}-\mathrm{C}_{10}\) cyclic ring; \(\mathrm{R}_{3}\) is selected from the group consisting of \(H,-C(O) R_{a}\) and \(\mathrm{C}_{1}-\mathrm{C}_{10}\) linear or branched alkyl; and \(\mathrm{R}_{a}\) and \(\mathrm{R}_{b}\) are each independently - H , \(-\mathrm{OH},-\mathrm{SH},-\mathrm{NH}_{2},\left(\mathrm{C}_{1}-\mathrm{C}_{10}\right)\) linear or branched alkyl, or a \(\mathrm{C}_{3}-\mathrm{C}_{10}\) cycloalkyl. Thus, the present inventors have devised methods that produce different camabinoids and/or cannabinoid analogs in the desired ratio and in a controlled manner, by varying the pH of the reaction, the nature and/or concentration of the non-aqueous solvent and/or the concentration of an amphiphilic compound, such as cyclodextrin, in the reaction mixture.

Apparatus and Methods for Producing Cannabinoids or Cannabinoid Analogs
[0156] An apparatus or system is provided for producing one or more cannabinoids or cannabinoid analogs according to the methods of the invention. The apparatus may comprise a fermentor, a filter, a bioreactor, and a control inechanism. FIG. \(\mathbf{7}\) depicts an apparatus \(\mathbf{1 0 0}\) configured to produee at least one cannabinoid and/or at least one cannabinoid analog according to an embodiment. As shown in FIG. 7, the apparatus \(\mathbf{1 0 0}\) includes a fermentor \(\mathbf{1 0}\), a filter \(\mathbf{2 0}\), a bioreactor 30, and a control mechanism (controller) 40. The fermentor \(\mathbf{1 0}\) holds cell culture medium \(\mathbf{1 2}\) and a plurality of cells 14. The cells \(\mathbf{1 4}\) produce and secrete a cannabinoid acid synthase. The cells \(\mathbf{1 4}\) grown in the fermentor 10 for the manufacture of a cannabinoid acid synthase can be yeast, prokaryotic or eukaryotic cells that have been genetically modified to include a nucleic acid sequence or a gene that encodes a cannabinoid acid synthase protein. In certain embodiments, the nucleic acid sequence that encodes a cannabinoid acid synthase protein is modified to include a yeast alpha secretion sequence at its \(5^{\prime}\) end and to incorporate a 6 -residue histidine tag (SEQ ID NO: 9) at its \(3^{\prime}\) end. The addition of the yeast alpha secretion sequence permits secretion of the cannabinoid acid synthase protein into the medium 12 used for eukaryotic cell growth. Following production of cannabinoid aeid synthase in the fermentor \(\mathbf{1 0}\),
the supernatant comprising the medium 12 and cells 14 (and cannabinoid synthase), is transported along a pathway to the filter 20.
[0157] The filter 20 may filter the supernatant to at least partially separate the cells 14 from the medium 12 containing the expressed enzyme. Typically, the filter 20 separates at least \(80 \%\) of the total cells 14 from the medium. In some embodiments, the filter 20 separates at least \(85 \%\), at least \(90 \%\), at least \(91 \%\), at least \(92 \%\), at least \(93 \%\), at least \(94 \%\), at least \(95 \%\), at least \(96 \%\), at least \(97 \%\), at least \(98 \%\), at least \(99 \%\), or \(100 \%\) of the total cells 14 from the medium 12 . Following filtration, the cells \(\mathbf{1 4}\) are transported back to the fermentor 10. In one embodiment, the filter 20 can be a filtration and purification system that includes multiple filters and reservoirs to purify the cannabinoid synthase.
[0158] After passing through the filter 20, the cannabinoid acid synthase flows into the bioreactor 30 and enters the bioreactor 30 through an inlet 32 . The bioreactor 30 also includes an inlet 34 for reactants, such as the substrate CBGA or other substrates according to the Formula I compound described above.
[0159] In some embodiments, the bioreactor 30 can be a column bioreactor having a support 36 . The support 36 may be a solid support that is impreguated with divalent metal ions or a support whose surface is functionalized with divalent metal ions. Typically, sepharose, agarose or other biopolymers are used as supports for binding divalent metal ions such as nickel, eobalt, magnesium and manganese. Such supports have a strong affinity for the histidine tag that is present on the expressed cannabinoid acid synthase and can be used to sequester the synthase and separate it from other non-essential proteins and debris that may interfere or impede cannabinoid synthesis.
[0160] The bioreactor 30 used for synthesizing cannabinoids is configured for batch and continuous synthetic processes to permit commercial production of pharmaceutically useful cannabinoids. In one embodiment, the bioreactor 30 is configured for batch synihesis in which the composition of the medium, concentration of the enzyme and substrate are fixed at the beginning of the process and not allowed to change during catalysis. Synthesis is terminated when the concentration of the desired product in the medium of the bioreactor 30 reaches a predetermined value or the concentration of substrate falls below a predetermined level, such as to a level where there is no detectable catalytic conversion of substrate to product.
[0161] In one embodiment, therefore, the His-tagged cannabinoid acid synthase is sequestered onto a nickel containing resin support within the bioreactor \(\mathbf{3 0}\) prior to the introduction of a known amount of substrate, for example, cannabigerolic acid (CBGA), or a compound of Fornula I or Formula II into the bioreactor 30. In an alternate embodimeut, CBGA or a compound of Formula I or Formula II can be present within the bioreactor \(\mathbf{3 0}\) having a nickel resin support prior to the introduction of the medium containing a cannabinoid acid synthase into the bioreactor \(\mathbf{3 0}\).
[0162] The progress of the reaction within the bioreactor 30 can be monitored periodically or continuously. For instance, an optical monitoring system \(\mathbf{5 0}\) may be utilized to detect the concentration of product in the medium within the bioreactor as a function of time. Alternatively, the decrease in the concentration of substrate can be monitored to signal termination of synthesis. The cannabinoid product thus produced can be readily recovered from the medium using
standard solvent extraction or chromatographic purification methods. The monitoring system \(\mathbf{5 0}\) may be part of or may interact with a control mechanism 40 (a controller) described further below.
[0163] An alternative to the batch process mode is the continuous process mode in which a defined amount of substrate and medium are continnonsly added to the bioreactor 30 while an equal amount of medium containing the cannabinoid product is simnltaneonsly removed from the bioreactor 30 to maintain a constant rate for formation of product. The medium can enter the bioreactor 30 through the inlet 32 and exit the bioreactor through an outlet 38 .
[0164] The conditions of the bioreactor can be controlled using a control mechanism 40. The control mechanism 40 may be coupled to the bioreactor \(\mathbf{3 0}\) or, altematively, may interact with the bioreactor \(\mathbf{3 0}\) wirelessly or remotely. The control mechanism 40 may also be used to control the conditions of the fermentor 10 , such the oxygen level, agitation, pH , and feed rate. The control mechanism 40 may also control the flow of materials (e.g. by controlling at least one pump) into and out of the fermentor \(\mathbf{1 0}\), filter \(\mathbf{2 0}\), and bioreactor 30. In some embodiments, the control mechanism 40 is configured to control the conditions of at least one of the fermentor \(\mathbf{1 0}\), the filter 20 and the bioreactor \(\mathbf{3 0}\) based on information obtained from the optical monitoring system 50. [0165] The control mechanism 40 may include a processing circuit having a processor and memory device. The processor and memory are configured to complete or facilitate the various processes and functions described in the present application, such as controlling the pH , temperature, and pressure of the bioreactor 30, or altering the flow rate of medium into or out of the bioreactor 30. In some embodiments, for facilitating the control of pH , temperature, pressure and flow rate, the control mechanism 40 may be configured to communicate with at least one sensor in a sensor suite 60 . The sensor suite 60 may include a pH sensor 62, a temperature sensor 64, and a pressure sensor 66 . The control mechanism 40 may include a proportional-integralderivative (PID) controller for feedback-based control. The control mechanism 40 may be further configured to regulate the flow rate of materials into and out of the fermentor 10 , the filter \(\mathbf{2 0}\) and the bioreactor \(\mathbf{3 0}\) via pulse width modulation (PWM) techniques.
[0166] FIG. 10 depicts the control mechanism 40. The control mechanism 40 includes a processor \(\mathbf{4 3}\) coupled to a communication bus 48 . The control mechanism 40 further includes a main memory \(\mathbf{4 2}\), such as a random access memory (RAM) or other dynanic storage device, coupled to the bus 48 for storing information, and configured to store instructions to be executed by the processor 43 . The main memory 42 is further configured to store temporary variables and intermediate information during execution of instructions by the processor 43. The control mechanism 40 may additionally include a read only memory (ROM) 44 or other static storage device connected to the bus \(\mathbf{4 8}\) for storing information and instructions. Additionally, a storage device 46, such as a solid state device, magnetic disk or optical disk, may be coupled to the bus 48 for persistently storing information and instructions.
[0167] Furthermore, the control mechanism 40 may be coupled (via the bus 48) to a display 77, such as a liquid crystal display, or active matrix display, for displaying information to a user. In some embodiments, an input device 11, such as a keyboard, may also be conpled to the bus 48
for communicating information, and to convey commands to the processor 43. In some embodiments, the input device 11 has a touch screen display
[0168] In some embodiments, the bioreactor 30 is not a column reactor. Instead, as shown in FIG. 8, the bioreactor 30 comprises a plurality of microtiter plates and is provided in a system 200. The system 200, like the system 100, includes a controller 40 configured to control the bioreactor 30. The controller 40 may control the environmental conditions of the bioreactor 30 and the supply of materials to the bioreactor 30, and may also control operations performed on the plurality of microtiter plates.
[0169] In some embodiments, each of the microtiter plates of system \(\mathbf{2 0 0}\) has 96 wells. In other embodiments, at least one microtiter plate has 384 wells, 1,536 wells, 3456 wells, or 9600 wells. In embodiments with 96 -well microtier plates, an enzyme reaction may take place in each of the 96 wells. The reaction in each well make take place in a volume of 0.5 ml or in a volume exceeding 0.5 mL . The apparatus described above are configured to produce camabinoid acids or cannabinoid acid analogs, specifically, THCA and CBCA or CBDA and CBCA, by implementing the techniques described below in reference to FIG. 9. FIG. 9 illustrates an automated method (900) for producing cannabinoids or cannabinoid analogs according to an embodiment. The method includes providing cannabinoid CBG, DMSO, and a cannabinoid biosynthetic enzyme in each of the wells ( 901 ). The cannabinoid biosynthetic enzyme may be, for example, THCA synthase. The cannabinoid biosynthetic enzyme is prodnced by the fermentor \(\mathbf{1 0}\) by growing yeast transformed with a gene encoding THCA synthase, as described above. The cannabinoid CBG, on the other hand, is chemically synthesized. The cannabinoid CBG, the DMSO and cannabinoid biosynthetic enzyme may be considered to be the 'starting materials' introduced into the bioreactor to ultimately yield at least one cannabinoid or cannabinoid analog. The cannabinoid CBG, DMSO, and cannabinoid biosynthetic enzyme may be provided in each of the wells via automatic pipetting. In other words, an apparatus such as the systems \(\mathbf{1 0 0}, \mathbf{2 0 0}\) may comprise mechanized componentry that may be controlled, for example, by the control mechanism \(\mathbf{4 0}\), so as to deliver an appropriate amount of at least one of the cannabinoid CBG, DMSO, and cannabinoid biosynthetic enzyme to each well of the microtiter plates. In some implementations, operations shown in FIG. 9 may be performed iteratively by virtne of such automation. For example, an automated dispensing system or automated delivery system may be configured as a supply mechanism and used to deliver at least one or CBG, DMSO and THCA synthase and a solvent. In some implementations, the systems \(\mathbf{1 0 0}, \mathbf{2 0 0}\) may be configured with a programmable sample changer configured to automate sample preparation and transfer. The programmable sample changer may be, for example, the Gilson 223 Sample Changer produced by Gilson, Inc. of Middleton, Wis., USA, and may be operable with peristaltic and/or syringe pumps. [0170] The method further includes reacting the cannabinoid CBG and the cannabinoid biosynthetic enzyme such as THCA synthase in the DMSO once these materials are distributed in the wells (902). The method further includes, in some implementations, determining a ratio of THCA to CBCA or a ratio of CBDA to CBCA to be produced by the reaction ( 903 ). In some implementations, the control mechanism \(\mathbf{4 0}\) determines a quantity of THCA and a quantity of

CBCA to be produced, or a quantity of CBDA and a quantity of CBCA to be produced. Next, the method includes determining whether the pH of the reaction mixture requires adjusting in order to yield the predetermined ratio of THCA to CBCA or the predetermined ratio of CBDA to CBCA (904). Specifically, the pH may be adjusted by altering the composition of the reaction mixture to obtain a desired ratio of THCA:CBCA or a desired ratio of CBDA:CBCA. The reaction culminates in the production of THCA and CBCA or CBDA and CBCA (905).
[0171] The method further includes automatically pipetting a solvent into each well of the microtiter plate (906). The addition of the solvent results in cessation of the reaction. The method additionally includes, following the introduction of the solvent into the wells and cessation of the reaction, recovering cannabinoids or cannabinoid analogs in the solvent layer.
[0172] Once the reaction has ceased, the resulting solvent layer is removed ( 907 ), and the cannabinoids or cannabinoid analogs are recoverable. More specifically, the cannabinoids or cannabinoid analogs are recoverable from a solvent fraction present in each of the wells via vacuum evaporation or ethanol extraction (908). In some embodiments, a rotary evaporator is used to remove the solvent. The rotary evaporator may be an automated rotary evaporator such as the fully automated POWERVAP® rotary evaporator produced by Genser Scientific Instruments of Rothenburg ob der Tauber, Germany. Upon removal of the solvent, the cannabinoids or cannabinoid analogs are left in the bottoms of the wells. The method further includes re-suspending the cannabinoids or cannabinoid analogs (909). The cannabinoids or cannabinoid analogs may be re-suspended in ethanol, liposomes, or lipid micelles.
[0173] The process illustrated in FIG. 9 permits recovery of cannabinoids or cannabinoid analogs that may be readily formulated into pharmaceuticals and marijuana-infused products including beverages, confectionery, and cosmetics, among other examples. The cannabinoids or cannabinoid analogs may be readily purified via HPLC for phammaceutical applications.
[0174] In at least one implementation, 0.5 mg of buffered CBG, buffered THCA synthase or buffered CBDA synthase with or without stabilizer, and DMSO are automatically pipetted into each of a plurality of wells of a microtiter plate. The DMSO that is added may have a final concentration of \(20 \%\), in some implementations. The ensuing reaction in each of the plurality of wells generally yields approximately 0.5 mg of cannabinoids when incubated for 2 hours, 4 hours, 12 hours, and 24 hours. Thus, for a microtiter plate including 96 wells, the system 100 produces about 48 mg of cannabiuoids. It follows that the amount of cannabinoids produced 'scales up' when a plurality of microtiter plates are used. For example, if 21 microtiter plates are used, each having 96 wells, then 1008 mg (about 1 gram of cannabinoids) may be produced according to the techniques described above. Using 315 microtiter plates produces approximately 150 grams of cannabinoids. In some implementations, volumes greater than 0.5 mg may be used for the reaction mixture.
[0175] In some embodiments, the processor of the controller can be implemented as a general purpose processor, an application specifie integrated circuit (ASIC), one or more field programmable gate arrays (FPGAs), a group of processing components, or other suitable electronic processing components. The memory device (e.g., memory,
memory unit, storage device, etc.) is one or more devices (e.g., RAM, ROM, Flash memory, hard disk storage, etc.) for storing data and/or computer code for completing or facilitating the various processes and functions described above. The memory device may be or include volatile memory or non-volatile memory. The memory device may include database components, object code components, script components, or any other type of information structure for supporting the various activities and information structures described in the present application. According to one embodiment, the memory device is communicably connected to the processor via the processing circuit and includes computer code for executing (e.g., by the processing circuit and/or processor) one or more processes described herein.
[0176] The present disclosure contemplates methods, apparatus and program products on any machine-readable media for accomplishing various operations, such as controlling the conditions of the bioreactor. The embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system. Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage, other magnetic storage devices, solid state storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a machine, the machine properly views the connection as a machine-readable medium. Thus, any such connection is properly termed a machine-readable medium. Combinations of the above are also included within the scope of machine-readable media. Machineexecutable instructions include, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
[0177] The control mechanism may further include additional devices, such as a keyboard and display, to allow a user to interact with the control mechanism to control the conditions of the bioreactor. For example, the display may include a screen to allow a user to monitor changes in pH , temperature, pressure, and flow rate of the bioreactor, or to monitor any other condition of the system for producing cannabinoids or cannabinoid analogs. The present invention is further described by the following examples which are not meant to limit the scope of the claims.

EXAMPLES
[0178] A. Molecular Cloning, Screening and Expression of Protein from High Yield Yeast Transformants
1. Restriction Digestion.
[0179] THCA \(\alpha\) plasmid DNA and CBDA a plasmid DNA were linearized by digesting each plasmid with Pme I or Spe

I restriction enzymes at \(37^{\circ} \mathrm{C}\). for two hours. Linearized plasmids were verified on \(0.8 \%\) agarose gel by electrophoresis. Qiagen Gel Extraction kit was used to extract the linearized plasmid from the agarose gel and the plasmids were frozen at \(-20^{\circ} \mathrm{C}\). until use. 2. Preparation of Electrocompetent Yeast Cells.
Electrocompetent PichiaPink (pPink) cells were made by inoculating 10 mL of YPD media with a glycerol stock of a genetically engineered Ade2, pep4 knockout pPink yeast strain 2. These cells were grown overnight in a 125 ml baffled flask at \(28^{\circ} \mathrm{C}\)., using a shaker spinning at 270 rpm until the \(\mathrm{OD}_{600}\) of the culture reached a value of 1.3 units indicating log phase growth. This culture was then added to 100 ml of YPD media and allowed to incubate overnight under the same conditions. The \(\mathrm{OD}_{600}\) was checked hourly and after a 12 hour incubation period reached a value of 1.3 units.
[0180] After reaching log phase growth the cells were transferred to a 500 ml centrifuge tube and spun down for 5 minutes at \(4^{\circ} \mathrm{C}\). and 2500 rpm . The YPD broth was decanted and 250 ml of sterile ice-cold water was added and the cells re-suspended. The cells were then centrifuged at \(4^{\circ} \mathrm{C}\)., 2500 rpm for another 5 minutes, re-suspended with an additional 250 ml of water to ensure removal of all YPD media and centrifuged under the same conditions again. The water was then decanted and 50 ml of sterile ice-cold water was added and the cells re-suspended and centrifuged under the same conditions. The water was then decanted and 10 ml of sterile, ice-cold 1M sorbitol was added and the cells resuspended. The suspension was then transferred to a sterile 15 ml conical tube and centrifuged under the same conditions as before. The 1 M sorbitol was then decanted, \(300 \mu \mathrm{l}\) of sterile ice-cold 1 M sorbitol was added and the cells were re-suspended and placed on ice for use.

\section*{3. Electroporation}
[0181] The previously frozen linearized plasmid DNA was thawed on ice and \(80 \mu \mathrm{l}\) of the electrocompetent pPink cells were added to the tube. This volume was then transferred to a 0.2 cm electroporation cuvette and incubated on ice for 5 minutes. The cuvette was then pulsed at \(1640 \mathrm{~V}, 200 \Omega\), and \(25 \mu \mathrm{~F}\) for a total pulse time of approximately 4 minutes. Immediately after pulsing, 1 ml of YPDS media was added to the cuvette and mixed by pipetting. The cuvette was then placed in a \(28^{\circ} \mathrm{C}\). incubator, without shaking, for 2 hours, after which \(300 \mu 1\) was spread onto fresh PAD plates. The PAD plates were then placed into the \(28^{\circ} \mathrm{C}\). incubator for approximately 7-10 days and inspected each day for cell growth.

\section*{4. Screening}
[0182] White colonies are indicative of positive expression of the gene of interest, whereas red colonies indicate no expression. All white colonies were selected and re-streaked onto fresh PAD plates and allowed to grow for 3-5 days until individual colonies appeared. A single colony was then used to inoculate 10 ml of BMGY in a 125 ml baffled flask and placed into an incubator overnight shaking at \(28^{\circ} \mathrm{C}\). and 270 rpm . When the \(\mathrm{OD}_{600}\) reached 1.2-1.5 (after 1:10 dilution in water) the inoculum was transferred to a 50 ml conical tube and centrifuged at 2500 rpm for 5 minutes. The BMGY was decanted and 1 ml of BMMY was added. The tubes were
then covered with air porous tape to allow for sterile air exchange and placed into the shaking incubator at \(28^{\circ} \mathrm{C}\). and 270 rpm .
[0183] After 24 hours \(100 \mu 1\) of the sample were removed and \(100 \mu \mathrm{l}\) of \(40 \%\) methanol were added. The removed portion was then centrifuged at \(12,000 \mathrm{rpm}\) for 5 minutes and the supernatant and pellet were saved as \(\mathrm{T}=1\) (day 1) samples. This procedure was then repeated after 48 hours ( \(\mathrm{T}=2\) ). After 72 hours ( \(\mathrm{T}=3\) ) the remaining sample was harvested as the final time point. The \(\mathrm{T}=3\) supernatant was then spun through an Amicon 30 kD protein filter and run on an SDS-PAGE for visualization of protein.

\section*{5. Enzymatic Conversion}
[0184] Samples that had greater than \(20 \%\) conversion of CBGA to CBDA over 4-24 hours were then scaled up. Briefly, enzymatic conversion reaction was as follows: \(25 \mu \mathrm{l}\) of cell free supernatant from the \(\mathrm{T}=3\) samples was incubated for 2 hours at \(30^{\circ} \mathrm{C}\)., with \(25 \mu \mathrm{l}\) of a \(1 \mathrm{mg} / \mathrm{ml}\) CBGA stock in DMSO in \(200 \mu 1\) of \(\mathrm{pH} 4.8,100 \mathrm{mM}\) citrate buffer. Reaction yielded a final concentration of CBGA of 0.1 \(\mathrm{mg} / \mathrm{ml}\) at pH 5.0 .
[0185] For Scale-Up, a single colony was used to inoculate 10 ml of BMGY in a 125 ml baflled flask which was incubated overnight at \(28^{\circ} \mathrm{C}\). and 270 rpm . The \(\mathrm{OD}_{600}\) was measured after 24 hours, and once it reached 1.2 the 10 ml suspension was then used to inoculate 90 ml of BMGY in a 1 L haffled flask. The suspension was then allowed to incubate overnight at \(28^{\circ} \mathrm{C}\). and 270 rpm . When the \(\mathrm{OD}_{600}\) reached 1.2-1.5 the inoculum was then transferred to a 500 ml centrifuge bottle and pelleted at 2500 rpm for 5 minutes.
[0186] The BMGY was decanted and the cell pellet washed with 10 ml of BMMY. After 2 washings the pellet was re-suspended with 10 ml of BMMY, transferred to a 500 mi baffled flask and allowed to incubate overnight at \(28^{\circ} \mathrm{C}\). and 270 rpm . After 24 hours 1 ml of the sample was removed ( \(\mathrm{T}=1\) ) and 1 ml of \(40 \%\) methanol was added. This was repeated after 48 and after 72 hours the full sample volume was harvested, separated and analyzed.
[0187] Table 5 helow shows the results of small scale screening samples with greater than \(20 \%\) conversion of CBGA to THCA that were selected for scale-up.

TABLE 5
\begin{tabular}{|c|c|}
\hline Small Scale Sc & ing Samples with Greater than 20\% Conversion of CBGA to THCA \\
\hline Sample ID & \% Conversion of CBGA to THCA in reaction containing \(0.1 \mathrm{mg} / \mathrm{ml}\) CBGA. \\
\hline Spe THC \#3 & 20.6 \\
\hline Spe THC 44 & 28.7 \\
\hline Spe THC H22 & 20.6 \\
\hline Spe THC H23 & 18.7 \\
\hline Pme THC \({ }^{\text {5 }}\) 5 & 32.5 \\
\hline Pme THC(2) \#1 & 29.1 \\
\hline Pme THC(2) \#2A & 27.2 \\
\hline Pme THC(2) \#25 & 31.6 \\
\hline Pme THC(2) \#36 & 27.7 \\
\hline Pme THC(2) \#41 & 32.5 \\
\hline Pme THC(2) \#42 & 27.6 \\
\hline Pme THC(2) \#46 & 40.7 \\
\hline Pme THC(2) \#51 & 26.8 \\
\hline Pme THC(3) \#1 & 55.2 \\
\hline
\end{tabular}

TABLE 5-continued
\(\left.\begin{array}{lc}\text { Small Scale Screening Samples with Greater than 20\% Conversion } \\ \text { of CBGA to THCA }\end{array}\right]\)
6. Cloning Strategy for Generating Multi-Copy GOI Inserts In Vitro.
[0188] An alternate yeast expression system was used to obtain transformed cells having one or more copies of the gene of interest. Tbe multi-copy Pichia Expression Kit from Invitrogen was used to construct new plasmids that could generate multi-copy gene inserts in vitro or in vivo.

In Vitro Generation of Multi-Copy Inserts
[0189] To generate multi-copy GOI inserts in vitro, the pAO815 vector was used to clone the gene of interest. \(\alpha-\) CBDA synthase and \(\alpha\)-THCA synthase were cut with EcoR I and Bam HI from pPink-HC plasmid by incubating 100 ng of the pPink-HC vector containing the \(\alpha\)-CBDA synthase gene or the \(\alpha\)-THCA synthase gene with \(1 \mu 1\) of EcoR I buffer, \(1 \mu \mathrm{l}\) of each restriction enzyme ( 10 units \(/ \mu \mathrm{l}\) ) and \(1 \mu\) l of BSA in \(20 \mu\) l total reaction volume at \(37^{\circ} \mathrm{C}\). for 2 hr .100 ng of pAO815 vector was also digested with Eco R I and Bam HI enzymes following the same protocol.
[0190] After digestion, the GOI and vectors mixture were run on a \(0.8 \%\) agarose gel at 95 V for 1 hr . Bands of correct size were excised and extracted from the gel with Invitrogen gel extraction kit. The linearized vector and gene inserts were ligated using T4 DNA ligase protocol from NEB®. Upon ligation, the circular vector containing the gene of interest was transformed into E. coli Top \(10 \mathrm{~F}^{-}\)cells to harvest plasmid by electroporation at \(1500 \mathrm{~V}, 200 \Omega\) and 25 \(\mu \mathrm{F}\) for 4 milliseconds. The transformed cells were then mixed with \(250 \mu \mathrm{l}\) of SOC medium (provided with One Shot \({ }^{\circledR}\) Top 10 Electrocomp \({ }^{\mathrm{TM}}\) E. coli from Invitrogen) and plated on a LB-Amp 100 plate at \(37^{\circ} \mathrm{C}\). overnight. The next moming, positive colonies were identified with colony PCR protocol with \(5^{\prime} \mathrm{AOX} 1\) and \(3^{\prime} \mathrm{AOX} 1\) primers. Positive colonies containing the gene of interest were grown in liquid LB-Amp 100 media overnight at \(37^{\circ} \mathrm{C}\). The next day plasmid mini-preps were done with Invitrogen's fast prep kit and the concentration of the plasmid was analyzed on \(0.8 \%\) agarose gel before further amplification.
[0191] The recombinant pAO815 plasmid containing the alpha-THCA synthase and alpha-CBDA synthase genes was divided into 2 batches, one batch was used as a vector in which was inserted a second copy of the gene of interest and one batch was used for extracting the alpha-THCA synthase or alpha-CBDA synthase genes. The vector batch was first digested with Bam HI following NEB's single digest protocol. The second batch was digested with Bgl II and Bam HI restriction enzymes. The linearized vector and genes were purified on a \(0.8 \%\) agarose gel and extracted. The vector and genes were then ligated following NEB's T4 DNA ligase protocol and then transformed into \(E\). coli Top \(10 \mathrm{~F}^{-}\)cells by electroporation as described above. The
cells were incubated at \(37^{\circ} \mathrm{C}\). overnight and then screened for the correct gene insert by PCR. Gene sequences were confirmed by sequencing. The multi-copy plasmids were linearized at the His4 sequence region by restriction enzyme digestion and transformed into competent Pichia pastoris strain G115 (his4, Mut+) cells. The transformed cells were grown on His-plates for screening. Screening was done on His' plates to confirm integration of the plasmid at the His site of the Pichia Pastoris genome. Positive colonies were chosen for methanol induction of protein, time points protein SDS-gel and enzyme assay.

In Vivo Generation of Multi-Copy Inserts
[0192] To generate multi-copy GOI inserts in vivo, the pPIC- 3.5 K vector was used as the backbone to carry and insert one or more copies of the \(\alpha\)-CBDA synthase gene or the \(\alpha\)-THCA synthase gene into the Pichia pastoris GS115 strain genome. \(\alpha\)-CBDA synthase and \(\alpha\)-THCA synthase genes were excised out with Pme I and Bam HI from pPink-HC plasmid, separated from the pPink-HC backbone on a \(0.8 \%\) agarose gel at 95 V for 1 hr and extracted from the gel with Qiagen or Invitrogen gel extraction kit. pPIC3.5 K plasmid was digested by PmeI and BamHi from NEB, run on \(0.8 \%\) agarose gel and extracted from the gel with Qiagen or Invitrogen gel extraction kit.
[0193] The linearized vector and gene inserts were ligated together using Invitrogen T4 DNA ligase protocol from NEB®. Ligated circular recombinant plasmids were electroporated into E. coli Top \(10 \mathrm{~F}^{-}\)strain and the cells were plated on LB-Amp-100 plates. The plates were incubated were incubated overnight at \(37^{\circ} \mathrm{C}\). for colonies to form. Colony PCR was applied to verify successful transformation and colonies bearing pPIC-3.5K-alpha-THCA synthase or pPIC-3.5K-alpha-CBDA synthase were re-streaked on new LB-Amp-100 plates to generate more plasmids.
[0194] pPIC-3.5K-alpha-THCA synthase and pPIC-3.5K-alpha-CBDA synthase were inserted into GS115 strain by electroporation as described above. The transformed GS1 15 cells were then plated on YPD-geneticin plates with 0.25 \(\mathrm{mg} / \mathrm{mml}-3 \mathrm{mg} / \mathrm{ml}\) geneticin to select for one or more THCA synthase gene and CBDA synthase gene copy colonies. Colonies grown on \(3 \mathrm{mg} / \mathrm{ml}\) YPD-geneticin plates were selected for THCA synthase and CBDA synthase production screeuing.

Results
[0195] The conversion rate from CBGA to THCA and CBCA was greater than \(90 \%\) in two hours using crude fermentation supernatant (FIGS. 3 and 5).
[0196] The conversion rate from CBGA to CBDA and CBCA was greater than 70\% overnight using crude fermentation supernantant. (FIG. 6).

\section*{7. Enzyme Purification}
[0197] The cannabinoid acid synthase enzymes thus obtained were purified by size exclusion chromatography (SEC) using a 2.2 cm inner diameter column and 5 ml supernatant in a column volume to crude enzyme supernatant ratio of 20:1. Briefly, 10 g of dry sephadex beads were measured and added to a Pyrex glass container. 100 ml of 50 mM Phosphate buffer pH 7.4 were added to Bio-GEL P-100 beads with excess amount and let sit for more than 12 hours. (P-100 beads swollen \(12 x\) when completely hydrated).

Using a vacuum pump, the hydrated P-100 beads and another 1 L pH 7.450 mM Phosphate buffer were de-gassed to cause the beads to settle in the excess buffer. The buffer was poured off, and 100 mL de-gassed Phosphate buffer were poured into the beads, such that the beads settled again. These steps were repeated two more times. The hydrated P-100 was then poured into a glass column until 2.5 cm of the gel bed was formed, then more gel was poured to the desired height and let it settle. The column thus formed was stored at \(4^{\circ} \mathrm{C} .5 \mathrm{~mL}\) of either THCA or CBDA synthase crude supernatant was run through the column at \(4^{\circ} \mathrm{C}\). and the fractions were collected at \(5 \mathrm{~mL} /\) fraction Ior 25 fractions. All fractions were saved, stored at \(4^{\circ} \mathrm{C}\). and analyzed for enzyme activity and by SDS-PAGE gel to examine purification efficiency and resolution.
B. Cannabinoid and Cannabinoid Analog Enzymatic Production

\section*{1. Enzymatic Assay Conditions}
[0198] The Standard CBDA synthase enzyme/THCA synthase enzyme reaction assay conditions were as follows: enzyme reaction was conducted in a 1.5 ml Eppendorf snap cap tube. \(25 \mu 1\) substrate, such as CBGA, dissolved in DMSO at \(1.0 \mathrm{mg} / \mathrm{ml}\) in \(200 \mu 1\) of 100 mM citrate buffer pH 4.85 was incubated with \(25 \mu \mathrm{l}\) enzyme solution at \(30^{\circ} \mathrm{C}\). for 2 hours. The reaction was terminated by the addition of 250 \(\mu \mathrm{MeOH}\) and analyzed by HPLC.
[0199] Enzyme activity was tested under a variety of conditions as follows:
[0200] 1. Different solvents and conditions were tested to enhance substrate solubility and delivery, including but not limited to DMSO, DMF, IPA, cyclodextrin (CD), SDS, Triton-X.
[0201] 2. Assays were run at pH 's \(4,5,6,7\), and 8 .
[0202] 3. Enzyme assays were run in either Sodium phosphate buffer or Citrate buffer with or without SDS or Triton-X
[0203] 4. Enzyme assays were run uuder a variety of ionic strengths
[0204] 5. Results of incubation times between 2 hrs to 4 days were compared.

Results
[0205] Table 6 below shows that DMSO, DMF, IPA and cyclodextrin facilitated solubilization of cannabinoids. Cyelodextrin solubilized up to \(20-25 \mathrm{~g} / \mathrm{L}\) of CBGA for conversion. Enzymatic rate was enhanced when 20\% DMSO ( \(\mathrm{v} / \mathrm{v}\) ) was added to the reaction mixture and THCA synthase produced both THCA and CBCA in the reaetion (Table 7).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Effects of solvents on THCA Synthase Activity} \\
\hline Reaction Condition Studies & Parameters & \% CBGA conversion & THCA:CBCA \\
\hline 100 mM Solvents & 100 mM Cit 50 ug Enzyme in DMF & 84 & 1.066:1 \\
\hline & 100 mM Cit 50 ug Enzyme in DMSO & 85 & 7.96:1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Effects of solvents on THCA Synthase Activity} \\
\hline Reaction Condition Studies & Parameters & \% CBGA conversion & THCA:CBCA \\
\hline & 100 mM Cit 50 ug Enzyme in CD & 81 & 12.34:1 \\
\hline & 400 mM cit 50 ug Enzyme in IPA & 61 & 11.9:1 \\
\hline & 100 mM NaP 50 ug Enzyme in 20 ul CD & 79 & 1.11:1 \\
\hline & 100 mM NaP 50 ug Enzyme in 20 ul SDS & 72 & 1.22:1 \\
\hline & 100 mM Cit 50 ug Enzyme + SDS in CD & 8 & 10.45:1 \\
\hline
\end{tabular}

TABLE 7
\begin{tabular}{clc}
\hline \multicolumn{3}{c}{\begin{tabular}{c} 
Effects of DMSO \\
Concentration on THCA \\
Product Ratio
\end{tabular}} \\
\hline DMSO & FASTER & THCA:CBCA Rate and \\
\hline \(0 \%\) & 1 X & \\
\(10 \%\) & 1.2 X & \(10: 1\) \\
\(20 \%\) & 2.5 X & \(5: 1\) \\
\(25 \%\) & - & \(1: 1\) \\
\(30 \%\) & 0.3 X & \\
\hline
\end{tabular}
[0206] The effect of pH on THCA Synthase activity is shown in Tables 8 and 9 below.

TABLE 8
\begin{tabular}{ccc}
\hline \multicolumn{4}{c}{ Etfects of pH on THCA Synthase Activity } \\
\hline pH & THCA & CBCA \\
\hline 4 & 1 & 0 \\
5 & 2.33 & 1 \\
6 & 1 & 5.67 \\
7 & 0 & 1 \\
\hline
\end{tabular}
[0207] In summary, changing the pH of the THCA synthase enzyme reaction affects the products. At pH 4 THCA is the only product. At pH 5 the ratio of THCA:CBCA is 2.33:1. At pH 6 the ratio is reversed and the product mix is THCA:CBCA \(1: 5.67\). At pH 7 CBCA is the only product.

TABLE 9
\begin{tabular}{|c|c|c|c|}
\hline Reaction Condition & Parameters & \% CBGA conversion & THCA CBCA \\
\hline \multirow[t]{4}{*}{pH exchange} & 400 mM Cit pH \(5.0,50 \mu \mathrm{~g}\) & 59 & 14.9:1 \\
\hline & 400 mM Cit pH \(6.5,50 \mu \mathrm{~g}\) Enzyme iu CD & 42 & 1.1:1 \\
\hline & 400 mM NaPi pH 5.0 , \(50 \mu \mathrm{~g}\) Enzyme in CD & 59 & 17.37:1 \\
\hline & 400 mM NaPi pH \(6.550 \mu \mathrm{~g}\) enzyme \(20 \mu \mathrm{~g}\) in CD & 65 & 1.11:1 \\
\hline
\end{tabular}
[0208] The effect of pH on CBDA synthase activity is shown in Table 10 below.

TABLE 10
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Effects of pH on CBDA Synthase Activity} \\
\hline pH & CBDA & CBCA \\
\hline 4.2 & 2.5 & 1 \\
\hline 5 & 1.13 & 1 \\
\hline 5.2 & 1 & 1.17 \\
\hline 5.4 & 1 & 2.45 \\
\hline 5.8 & 1 & 6.14 \\
\hline 6.2 & 1 & 28.13 \\
\hline 6.8 & 0 & 0 \\
\hline
\end{tabular}
[0209] In summary, changing the pH of the CBDA synthase enzyme reaction affects the products. At pH 4.2 CBDA:CBCA ratio is 2.5:1. At pH 5 the ratio of CBDA: CBCA is 1.13:1. At pH 6.8 there is no product forming from CBDA synthase enzyme reaction.
[0210] These results clearly show that it is possible to control the ratio of THCA:CBCA produced by the THCA synthase by controlling the pH of the enzymatic reaction. Enzyme assays were run in either Sodium phosphate buffer or Citrate buffer with or without SDS or Triton-X.
[0211] The effect of different concentrations of cyclodextrin on cannabinoid acid synthase activity was evaluated. The results for the CBDA synthase at pH 4.85 are shown in Table 11 below.

TABLE 10
\begin{tabular}{ccc}
\hline \begin{tabular}{c} 
Effect of Cyclodextrin on CBDA Synthase Reaction Conversion Rate and \\
Product Ratio
\end{tabular} \\
\hline & Conversion rate & CBDA:CBCA ratio \\
\hline & \(40 \%\) & \(1.13: 1\) \\
\hline \(0 \mathrm{mg} / \mathrm{ml}\) & \(57 \%\) & \(1.24: 1\) \\
\(2 \mathrm{mg} / \mathrm{ml}\) & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\(4 \mathrm{mg} / \mathrm{ml}\) & \(61 \%\) & \(1.27: 1\) \\
\(8 \mathrm{mg} / \mathrm{ml}\) & \(60 \%\) & \(1.33: 1\) \\
\(12 \mathrm{mg} / \mathrm{ml}\) & \(50 \%\) & 1.04 .1 \\
\(16 \mathrm{mg} / \mathrm{ml}\) & \(53 \%\) & 1.001 \\
\(20 \mathrm{mg} / \mathrm{ml}\) & \(45 \%\) & \(1.24: 1\) \\
\(28 \mathrm{mg} / \mathrm{ml}\) & & \\
\hline
\end{tabular}
[0212] These results clearly show that the concentration of cyclodextrin in the reaction mixture affects the enzymatic conversion rate of the substrate into the products as well as the ratio between the different products of the reaction.
[0213] These experiments also showed that the optimal cyclodextrin (CD):CBGA ratio in the enzyme reaction mix was 11:1 (mass:mass) or \(4: 1\) (molar ratio) for CBDA synthase, and that the optimal cycloclextrin (CD):CBGA ratio in the enzyme reaction mix was \(28: 1\) (mass:mass) or 7.3:1 (molar ratio) for THCA synthase CD:CBGA. The presence of cyelodextrin in the reaction mix in such concentration resulted in \(98 \%\) conversion in 2 hours (data not shown).

\section*{B. Cannabinoid Extraction and Purification}
[0214] Canuabinoids and cannabinoid analogs obtained from the enzymatic reactions with the cannabinoid acid synthase as descrihed above were extracted by solvent extraction as follows:
[0215] Solvent was added to the reaction mix at a ratio of 1:3 (v/v), the mixture was vigorously vortexed at room temperature for 2 minutes and centrifuged at 3200 g for 10 minutes. The solvent fraction was separated and stored in a
glass vial. These steps were repeated and all extractions were combined and analyzed by HPLC.
C. Production of Cannabinoid acid synthase Enzymes by Fermentation
[0216] Cannabinoid acid synthase enzymes were produced by fermentation following Invitrogen 'Pichia Fermentation Process Guidelines'. Some modifications were as follows:
[0217] A. Inoculum Flask Preparation
[0218] From a frozen glycerol stock of Pichia strain GS115 (Mut+, Arg+, His-), a YPD plate was inoculated. After 48 hours a single colony on YPD was used to inoculate 300 ml of BMGY, in a 2 L baffled flask. The culture was grown at \(28^{\circ} \mathrm{C}\)., 270 rpm , until \(\mathrm{OD}_{600}\) reached 2-6 (approximately 15 hours).
[0219] B. Fermentor Preparation/Batch Glycerol
[0220] After sterilization and cooling of the 3.5 L of Basal Salts Medium in the Glass vessel of the BioFlo 3000 Fermentor, the temperature was set to no less than \(27^{\circ} \mathrm{C}\). and no more than \(30^{\circ} \mathrm{C}\). Aeration and Agitation were set to the PID mode (dissolved Oxygen dependent). pH was continually adjusted to 6.5 with \(30 \%\) NH4OH. The Fermentor was inoculated with 300 ml of the culture generated above. 200 ml of \(20 \%\) casamino acids prepared in sterile \(100 \mathrm{mM}, \mathrm{pH}\) 6.5 Phosphate Buffer, were added. The dissolved oxygen was adjusted to be maintained above \(20 \%\). After the glycerol from the BMGY medium was completely consumed (approximately 24 hours), a 10 ml sample was taken at the end of this first fermentation stage and analyzed for cell growth (OD600) and wet cell weight. The pellet was frozen at \(-80^{\circ}\) C. for later analysis of protein. The sampling was repeated at end of each stage.
[0221] C. Glycerol Fed-Batch Phase
[0222] \(50 \% \mathrm{w} / \mathrm{v}\) glycerol with 12 ml PTM trace salts per liter of glycerol solution was added to increase cell biomass. Feed rate was set to \(18.15 \mathrm{ml} /\) hr./liter initial fermentation volume. Glycerol feed was continued until wet cell weight reached \(180-220\) g/liter and DO spike was used to monitor the end point of glycerol fed batch phase.
[0223] D. Methanol Fed-Batch Phase
[0224] Methanol induction was initiated after all glycerol was consumed to induce the AOX1 promoter and express the cannabinoid synthases. \(100 \%\) methanol with 12 ml PTM trace salts per liter of methanol was added. Feed rate was initially set at \(3.6 \mathrm{ml} / \mathrm{hr}\)./liter initial fermentation volume. Agitation, aeration and oxygen feed were adjusted for the next two hours to maintain the DO above \(20 \%\). A steady DO reading inferred a full adaptation to methanol at which point methanol feed was doubled to \(7.3 \mathrm{ml} / \mathrm{hr}\)./liter. After 2 hours methanol feed was further increased to \(10.9 \mathrm{ml} / \mathrm{hr}\)./liter initial fermentation volume. After about 2 hours or at the first sign of foaming, 20-50 \(\mu 1\) Sterile Pure Anti-Foam 204, Sigma were added so as to keep the headspace of the fermentor clear and prevent the foam from interfering with the agitation and various feeds. Additional \(20-50 \mu \mathrm{l}\) aliquots were added as needed approximately once a day or every other day of the entire run of fermentation. Once 10.9 \(\mathrm{ml} / \mathrm{hr}\) /liter was established, enzyme activity was measured and monitored every 8 hours thereafter. Fermentation was stopped 5 days after initial inoculation or upon reaching a plateau in protein concentration.
[0225] E. Harvesting Cells and Supernatant
[0226] At harvest time, the final fermentation volume was almost double the initial volume. The cell density was
increased to \(-400 \mathrm{~g} /\) liter wet cells. The 7 liter of culture was collected into 500 ml centrifuge bottles and centrifuged at 10,000 RPM for 15 min to separate cells from the supernatant. The supernatant was concentrated \(10 \times\) using Tangential Flow Filtration. A sample of supernatant was loaded onto a polyacrylamide gel for protein analysis. THCA synthase was around 80 KDa .30 Kda TFF filter was used to concentrate the fermentation supernatant \(10 \times\). A portion of the TFF concentrated supematant was loaded onto a nickel column for purification of the enzyme. A portion of the original fermentation supernatant was fractioned by ammonium sulfate precipitation ( \(45 \%-75 \%\) ).
[0227] F. Standard Enzyme Activity Assay
[0228] In \(200 \mu \mathrm{l}\) of 100 mM pH 4.8 Citrate buffer; \(25 \mu \mathrm{l}\) Substrate (CBGA) dissolved in DMSO at \(1 \mathrm{mg} / \mathrm{mL}\) concentration; and \(25 \mu\) enzyme (supernatant) were added in a 1.5 mL Eppendorf snap cap tube. The tube was incubated at \(30^{\circ}\) C. for 2 hours and the reaction was terminated by adding 250 \(\mu \mathrm{MeOH}\). Activity of the enzymes was analyzed by HPLC. E. Concentration/Purification of Cannabinoid Acid Synthase Enzymes from Fermentation
[0229] After fermentation the cells were separated from the supernatant by centrifugation at \(10,000 \mathrm{RPM} \times 15 \mathrm{~min}\). The enzyme was then concentrated and purified as follows: the supernatant was concentrated \(10 \times\) using Tangential Flow Filtration and then fractionated using ammonium sulfate precipitation; the protein fraction salting out between \(45 \%\) \(75 \%\) ( NH 4 )2SO4 contained the synthase. The TFF filtered supernatant was loaded onto a nickel column for purification of the enzyme.
F. Chemical Synthesis of Cannabinoid Substrates
A. Synthesis of Geraniol
(3,7-Dimethylocta-2,6-dien-1-ol,)
[0230]

[0231] Geraniol was obtained by distillation of palmarosa oil. Palmarosa oil (New Directions Aromatics) was distilled under reduced pressure and the fractions that distil between \(139-145^{\circ} \mathrm{C}\). and under a reduced pressure of 25 mm Hg were pooled to obtain pure geraniol.
B. Synthesis of Olivetol
[0232]

[0233] Olivetol was synthesized using a published procedure (Focella, A, et al., J. Org. Chem., Vol. 42, No. 21, (1977), p. 3456-3457).
1. Methyl 6-N-Pentyl-2-hydroxy-4-oxo-cyclohex-2-ene-1-carboxylate
[0234]

[0235] To a stirring solution of sodium methoxide \((32.4 \mathrm{~g}\), 0.60 mol ) and dimethyl malonate ( \(90 \mathrm{~g}, 0.68 \mathrm{~mol}\) ) in 230 mL of anhydrous methanol was added portion wise \(75 \mathrm{~g}(0.48\) \(\mathrm{mol})\) of \(90 \% \beta\)-nonen- 2 -one. The reaction mixture was then refluxed for 3 h under \(\mathrm{N}_{2}\) and allowed to cool to room temperature. The solvent was distilled under reduced pressure and the residue dissolved in 350 mL of water. The slurry of white crystals and the almost clear solution was extracted thrice with 80 mL of chloroform. The aqueous layer was acidified to pH 4 with concentrated HCl and the white precipitate that formed was allowed to stand overnight prior to filtration. The crystals were dried at \(50^{\circ} \mathrm{C}\). under high vacuum for 5 hours to yield \(106.5 \mathrm{~g}(0.4416 \mathrm{~mol})(92 \%)\) of methyl 6-n-Pentyl-2-hydroxy-4-oxo-cyclohex-2-ene-1-carboxylate ( \(m\) p \(96-98 \mathrm{C}\) ). The product was recrystallized using a inixture of petroleum ether:ethyl acetate (9:1), and gave 94 g of pure methyl 6-n-Pentyl-2-hydroxy-4-oxo-cyclohex-2-ene-1-carboxylate (melting point of 98-100 C).

> 2. 1-N-Pentyl-3,5-dihydroxybenzene (Olivetol)
[0236]

[0237] To a stirring ice-cooled solution of methyl \(6-\mathrm{N}\) -pentyl-2-hydroxy-4-oxo-cyclohex-2-ene-1-carboxylate \((58.4 \mathrm{~g}, 0.24 \mathrm{~mol})\) dissolved in 115 mL dimethylformamide was added dropwise \(37.9 \mathrm{~g}(0.23 \mathrm{~mol})\) of bromine dissolved in 60 mL of dimethylformamide. At the end of the addition (ca. 90 min ) the reaction mixture was slowly heated to \(80^{\circ}\) C. during which time the evolution of carbon dioxide became quite vigorous.
[0238] The reaction was maintained at this temperature until gas evolution had ceased following which the reaction was further heated to \(160^{\circ} \mathrm{C}\). and held at this temperature for approximately 10 hours. After heating, the reaction was allowed to cool and the solvent DMF was removed under reduced pressure. The residue thus obtained was treated with water \((80 \mathrm{~mL})\) and extracted twice with 250 mL of ether. The combined ether layers were washed with water, then washed with \(2 \times 80 \mathrm{~mL}\) of a \(10 \%\) solution of sodium bisulfite, \(2 \times 80\) mL of a \(10 \%\) solution of acetic acid, and then again with water.
[0239] After drying over anhydrous sodium sulfate the solvent was removed under reduced pressure to give 46.8 g of a viscous oil. The oil was distilled under reduced pressure to give \(30.3 \mathrm{~g}(0.168 \mathrm{~mol})(69.3 \%)\) of olivetol as product. HPLC analysis indicated \(97.5 \%\) purity.

\section*{C. Synthesis of CBG}
[0240] CBG was synthesized following the protocol disclosed by Taura et al., (1996), The Journal of Biological Chemistry, Vol. 271, No. 21, p. 17411-17416.
1. Synthesis of 2-[(2E)-3,7-dimethylocta-2,6-di-enyl]-5-pentyl-benzene-1,3-diol (Cannabigerol (CBG))
[0241]

[0242] Geraniol ( \(3 \mathrm{~g}, 0.0194 \mathrm{~mol}\) ) and olivetol ( \(2 \mathrm{~g}, 0.0111\) mol ) were dissolved in 400 mL of chloroform containing 80 mg of p -toluenesulfonic acid as catalyst and the reaction mixture was stirred at room temperature for 12 h in the dark. After 12 hours, the reaction mixture was washed with saturated sodium bicarbonate ( 400 mL ) and then with \(\mathrm{H}_{2} \mathrm{O}\) \((400 \mathrm{~mL})\). The chloroform layer was concentrated at \(4^{\circ} \mathrm{C}\). under reduced pressure, and the residue obtained was chromatographed on a \(2.0 \mathrm{~cm} \times 25 \mathrm{~cm}\) silica gel column using benzene \((1000 \mathrm{~mL})\) as the eluent to give \(1.4 \mathrm{~g}(0.00442\) \(\mathrm{mol})(39.9 \%) \mathrm{CBG}\) as product.
[0243] Alternatively crude CBG was purified as follows. To a 250 mL beaker was added 7.25 g crude CBG and 50 mL benzene. The flask was swirled to dissolve the CBG and 50 g silica gel was added, along with a stir bar. The solution was stirred overnight, and then poured into a \(44 \mathrm{~cm} \times 2.75 \mathrm{~cm}\) column. The column was eluted with 300 mL benzene. The eluent, approximately 70 mL fractions were assayed for CBG. Fractions 1, 2, and \(3(\sim 230 \mathrm{~mL})\) that contained CBG were combined and the solvent removed under pressure to give 6.464 g residue containing \(>80 \% \mathrm{CBG}\), having a purity suitable for use in the next synthetic step.
[0244] In one embodiment, crude CBG was purified by mixing 7.25 g crude CBG residue with a slury of silica gel \((50 \mathrm{~mL})\), in a 250 ml Beaker. This mixture was slowly agitated for 1 hour and then vacuum filtered using a fine mesh filter paper. The filter cake was washed with 250 ml benzene until a clear filtrate was obtained. The solvent from the filtrate was removed under reduced pressure to give 6.567 g of a residue having \(>80 \% \mathrm{CBG}\).

\section*{A. Synthesis of Methylmagnesium Carbonate (MMC)}
[0245] Methylmagnesium Carbonate (MMC) was synthesized following the protocol disclosed by Balasubrahmanyam et al., (1973), Organic Synthesis, Collective Volume V, John Wiley \& Sons, Inc., p. 439-444.
[0246] A dry 2 liter, three necked flask was fitted with a mechanical stirrer, a condenser, and a 1 litre, pressureequalizing addition fiunel, the top of which was fitted with
a gas inlet tube. A clean, dry magnesium ribbon \((40.0 \mathrm{~g}, 1.65\) mol) was placed in the flask and the system was flushed with nitrogen prior to the addition of anhydrous methanol ( 600 mL ). The evolution of hydrogen gas was controlled by cooling the reaction mixture externally. When hydrogen evolution had ceased, a slow stream of nitrogen was passed through the system and the condenser was replaced by a total condensation-partial take-off distillation head. The nitrogen flow was stopped and the bulk of the methanol distilled from the solution under reduced pressure. Distillation was stopped when stirring of the pasty suspension of magnesium methoxide was no longer practical. The system was again flushed using nitrogen and the outlet from the distillation head was attached to a small trap containing mineral oil so that the volume of gas escaping from the reaction system could be estimated.
[0247] Anhydrous dimethylformanide (DMF)( 700 mL ) was added to the reaction flask, and the resulting suspension was stirred vigorously while a stream of anhydrous carbon dioxide was passed into the reaction vessel through the gas inlet tube attached to the addition funnel. The dissolution of carbon dioxide was accompanied by an exothermic reaction with the suspended magnesium methoxide. When no more \(\mathrm{CO}_{2}\) is absorbed, the colorless solution was heated under a slow stream of \(\mathrm{CO}_{2}\) gas until the temperature of the liquid distilling reached \(140^{\circ} \mathrm{C}\)., indicating that residual methanol had been removed from the reaction mixture. The reaction mixture was flushed using a slow stream of nitrogen to aid in cooling the mixture to room temperature under an inert atmosphere. This yielded a solution having 536 mg MMC/ mL of DMF. \({ }^{8}\)

\section*{B. Synthesis of CBGA}
[0248] 6-carboxylic acid-2-[(2E)-3,7-dimethylocta-2,6-dienyl]-5-pentyl-benzene-1,3-diol, Cannabigerolic Acid (CBGA) was prepared as follows. To a 10 mL conical flask was added 1 mL of a DMF solution of MMC. To this solution was added 2-[(2E)-3,7-dimethylocta-2,6-dienyl]-5-pentyl-benzene-1,3-diol ( \(120 \mathrm{mg}, 0.379 \mathrm{mmol}\) ). The flask was heated at \(120^{\circ} \mathrm{C}\). for 1 hour, following which the reaction mixture was dissolved in 100 mL of chloroform: methanol (2:1) solution. The pH of this solution was adjusted with dilute HCl to pH 2.0 , and then partitioned using \(50 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\).
[0249] The organic layer was dried over sodium sulfate and the solvent was removed by evaporation. HPLC analysis of the crude reaction showed \(\sim 40 \%\) conversion of CBG to CBGA.
[0250] Alternatively, \(3.16 \mathrm{~g}(10 \mathrm{mmols})\) of CBG (or any other neutral cannabinoid), \(8.63 \mathrm{~g}(100 \mathrm{mmols})\) magnesium methylate and \(44 \mathrm{~g}(1 \mathrm{~mol})\) of dry ice were sealed in a pressure compatible vessel. The vessel is heated to \(50^{\circ} \mathrm{C}\)., and the temperature held at this value for three hours. Following heating, the vessel is cooled to room temperature and slowly vented.
[0251] The reaction mixture was dissolved in 100 mL of a chloroform: methanol (2:1) solvent. The pH of this solution was adjusted with dilute HCl to pH 2.0 and this solution was then partitioned using 50 mL of \(\mathrm{H}_{2} \mathrm{O}\). The organic layer was dried over sodium sulfate and the solvent was removed by evaporation. HPLC analysis of crude reaction mixture showed \(\sim 85 \%\) conversion of CBG to CBGA using this protocol.
[0252] Crude CBGA was purified by chromatography using a \(2.0 \mathrm{~cm} \times 25 \mathrm{~cm}\) silica gel column. The product was eluted using a mixture of \(n\)-hexane:ethyl acetate (2:1) ( 1000 \(\mathrm{mL})\), to obtain \(45 \mathrm{mg}(0.125 \mathrm{mmol})(37.5 \%)\) of the desired product.
[0253] Alternatively, ultra high purity CBGA was obtained by chromatographing the crude using LH-20 lipophilic resin as the medium. 400 g of LH- 20 Sephadex resin was first swollen using 2 L of DCM:chloroforn (4:1) solvent. The swollen resin was gravity packed in a \(44 \times 2.75\) cm column. The column was loaded with 2.1 g of crude CBGA dissolved in a minimum amount of DCM:chloroform (4:1) solvent and eluted with 1.7 L of the same solvent. 100 mL fractions were collected. The unreacted CBG was eluted as a yellow/orange solution using this solvent system. After the passage of about 1.7 L of this solvent, no more yellow/ orange fraction were observed and the eluting solvent was changed to \(100 \%\) acetone to elute the bound CBGA.
[0254] The fractions containing CBGA were pooled and the solvent was removed to obtain \(0.52 \mathrm{~g} \mathrm{CBGA}(\sim 90 \%\) recovery). Increasing the volume of DCM:chloroform (4:1) solvent passed through the column prior to eluting with acetone, yielded CBGA having purity greater than \(99.5 \%\).

\section*{C. Synthesis of CBG V}
[0255] CBGV was synthesized as follows.
A. Methyl 6-N-Propyl-2-hydroxy-4-oxo-cyclohex-2-ene-1-carboxylate

\section*{[0256]}

[0257] Briefly, 3-hepten-2-one ( \(30.1 \mathrm{~g}, 0.25 \mathrm{~mol}\) ) was added dropwise to a dry methanolic ( 125 mL dry MeOH) solution of diethyl malonate ( \(52.016 \mathrm{~g}, 0.323 \mathrm{~mol}\) ) and sodium methoxide ( \(16.206 \mathrm{~g}, 0.3 \mathrm{~mol}\) ). The crude product weighed 46.315 g upon drying at \(45^{\circ} \mathrm{C}\). overnight in a vacuum oven. The crude product was dissolved in petroleum ether ( 300 mL ). After stirring, any undissolved material was filtered from the solution prior to the addition of ethyl acetate \((30 \mathrm{~mL})\), to precipitate CBGV. The precipitate was filtered and dried overnight at \(44^{\circ} \mathrm{C}\). in a vacuum oven. A total of \(33.569 \mathrm{~g}(0.157 \mathrm{~mol})(52.3 \%)\) of the desired product was recovered.
B. 1-N-Propyl-3,5-dihydroxybenzene
[0258]

[0259] A procedure similar to the one described above for the synthesis of olivetol was used to manufacture the titled compound, except that methyl 6-N-propyl-2-hydroxy-4-oxo-cyclohex-2-ene-1-carboxylate was used as the starting material. Briefly, to a stirring ice cold DMF solution of methyl 6-N-propyl-2-hydroxy-4-oxo-cyclohex-2-ene-1-carboxylate was added a DMF solution of bromine. Following the addition of bromine the reaction mixture was heated to \(80^{\circ} \mathrm{C}\). Heating was accompanied by the generation and release of carbon dioxide gas. After gas evolution has ceased, the temperature of the reaction was increased to \(160^{\circ}\) C. and heating was continued for 10 hours. The reaction was then cooled and DMF was removed under reduced pressure. The crude mixture was diluted with water and subjected to solvent extraction using diethyl ether. The titled compound was obtained by removing the ether and distilling the oil that remains.

\section*{C. 2-[(2E)-3,7-dimethylocta-2,6-dieny1]-5-propyl-benzene-1,3-diol, (CBGV)}
[0260] The synthesis of CBGV proceeded by adding p-toluenesulfonic acid to a chloroform solution of geraniol and 1 -N-Propyl-3,5-dihydroxybenzene. After stirring the reaction at room temperature in the dark for 12 hours, water was added to partition the crude product into the chloroform layer. The chloroform layer was then washed with saturated sodium bicarbonate, dried and the organic solvent removed prior to purification as described above for the synthesis of CBG.
D. 6-carboxylic acid-2-[(2E)-3,7-dimethylocta-2,6-dienyl]-5-propyl-benzene-1,3-diol (CBGVA)
[0261] 6-carboxylic acid-2-[(2E)-3,7-dimethylocta-2,6-dienyl]-5-propyl-benzene-1,3-diol, cannabigerolic Acid (CBGVA) was prepared as follows. Methyl magnesium carbonate (MMC) was prepared as described above. To a DMF solution of MMC in a flask was added 2-[(2E)-3,7-dimethylocta-2,6-dienyl]-5-propyl-benzene-1,3-diol. The flask was heated at \(120^{\circ} \mathrm{C}\). for 1 hour, following which the reaction mixture was dissolved in a \(2: 1\) mixture of chloroform:methanol. The pH of this solution was adjusted with dilute HCl to pH 2.0 , and the reaction mixture was extracted using \(\mathrm{H}_{2} \mathrm{O}\). The organic layer was dried over sodium sulfate and the solvent was removed by evaporation.
[0262] G. Large Scale Enzymatic Production of Cannabinoids
[0263] 100 ml of a 10 mM sodium phosphate buffer \((\mathrm{pH}\) 5.0 ) were placed in a glass reaction vessel equipped with oxygen gas sparger and a stirrer. To this solution \(35 \mathrm{~g} / 1\) of either 2-hydroxypropyl- \(\beta\)-cyclodextrin (HP \(\beta\) CD; Kleptose (B HPB), a sulfobutylether \(\beta\)-cyclodextrin sodium salt (SBERCD; Captisol(B), or a randomly methylated \(\beta\)-cyclodextrin (RM \(\beta \mathrm{CD}\) ) were added. The CD was added in small 5 g portions to ensure full dissolution.
[0264] 2.5 g of a cannabinoid acid synthase substrate, for example, CBGA or CBGV-A or a Formula I, II or V compound, were added to the buffered cyclodextrin solution. The molar ratio of CD to substrate was about \(4: 1.60 \mathrm{mg}\) of purified synthase were added to the solution and the reaction mixture was incubated at \(30^{\circ} \mathrm{C}\). for 8 hours. Progress of the reaction was periodically monitored by HPLC, and using an enzymatic assay to detect and quantify the evolution of hydrogen peroxide.
[0265] After 8 hours, greater than \(90 \%\) of a CBGA substrate was converted to THCA and CBCA. The ratio of THCA to CBCA was approximately \(10: 1\) at an acidic pH of 5.0. The ratio of the CBC isomers was \(5: 1\).
[0266] The aqueous solution was diluted \(10: 1\) with \(95 \%\) EtOH . This causes cyclodextrin to precipitate out leaving the cannabinoids in solution. The cyclodextrin was vacuun filtered, washed with 1 L of \(90 \% \mathrm{EtOH}\), and dried to permit its reuse in a future reaction
[0267] Concentration of the ethanolic solution containing the cannabinoids followed suspension of the residue in DCM:chlorofrom (4:1) solvent yields \(\sim 25 \mathrm{~g}\) crude orangeyellow residue.
[0268] H. Large Scale Purification of Cannabinoids
[0269] Purification of cannabinoids synthesized using a method of this technology was accomplished chromatographically using LH-20 lipophilic resin. Briefly, 4000 g of the resin was swollen using 20 L of DCM:chloroform (4:1). The swollen resin was gravity packed in a \(44 \times 27.5 \mathrm{~cm}\)
column. The volume of the swollen resin is -1350 mL . The column was loaded with 25 g crude residue dissolved in a minimum amount of the solvent and then washed with 4 L DCM:chloroform ( \(4: 1\) ) solvent to elute CBG. No cannabinoid acids were eluted from the column during this elution. [0270] Gradient elution with a 1:1 to 0:1 DCM: acetone solvent was used to elute the cannabinoid acids. Each step of the gradient used one column volume ( 4 L ) of solvent. CBCA eluted first, followed by CBGA, and then THCA. The purity of each cannabinoid was \(>99.5 \%\).
[0271] The pure cannabinoids can further be processed to their neutral or "active" form by heating the acid forms at \(90^{\circ} \mathrm{C}\). under vacuum. Decarboxylation was quantitative to give the neutral cannabinoid. If necessary, recrystallization can be performed to obtain pharmaceutical grade cannabinoids.
[0272] Those of skill in the art will recognize that numerous modifications and changes may be made to the exemplary designs and embodiments described herein and that the invention is not limited to such embodiments.

\section*{SEOUENCE LISTING}
\(160>\) NUMBER OF SEQ ID NOS:
210> SEQ ID NO 1
211> LENGTH: 1638
212> TYPE. DNA
213> ORGANISM: Cannabis sativ
400> SEQUENCE: 1
atgaattgct cagcatttce cttttggttt gtttgcaaaa taatattttt ctttctctca ..... 60
trccatatcc aaatrtcaar agctaatcct cgagaaaact tecttaaatg crtctcaaaa ..... 120
catattccca acaatgtagc aaatccaaaa ctcgtataca ctcaacacga ccaattgtat ..... 180
atgtctatcc tgaattcgac aatacaaaat cttagattca tctetgatac aaccccaaaa ..... 240
ccactcgtta ttgtcactcc ttcaaataac teccatatcc aagcaactat tttatgctct ..... 300
aagaaagttg gettgcagat tcgaactcga agcggtggcc atgatgctga gggtatgtcc ..... 360
deatatctc aagtcccatt tgttgtagta gacttgagaa acatgcattc gatcaaaata ..... 420
gatgttcata gccaaactgc gtgggttgaa gccggagcta cccteggaga agtttattat ..... 480
ggatcaatg agaagaatga gaatcttagt tttcctggtg ggtattgcce tactgttggc ..... 540
gtaggtggac actttagtgg aggaggctat ggagcattga tgcgaaatta tggccttgcg ..... 600
gctgataata tcattgatgc acacttagte aatgttgatg gaaaagttct agatcgaaaa ..... 660
ccatgggag aagatctgtt ttgggctata cgtggtggtg gaggagaaaa ctttggaatc ..... 720
attgcagcat ggaaaatcaa actggttgct gtcccatcaa agtctactat attcagtgtt ..... 780
aaaagaaca tggagataca tgggcttgtc aagttattta acaaatggca aaatattgct ..... 840
tacaagtatg acaagattt agtactcatg actcacttca taacaagaa tattacagat ..... 900
atcatggga agaataagac tacagtacat ggttacttct cttcaatttt tcatggtgga ..... 960
gtggatagtc tagtcgactt gatgaacaag agctttcgtg agttgggtat taaaaaaact ..... 020
gattgcaaag aattgagctg gattgataca accatcttct acagtggtgt tgtaaattac ..... 1080
acactgcta atttraaaaa ggaaattttg cttgatagat cagctgggaa gaagacggct ..... 1140
ttctcaatta agttagacta tgttaagaaa ccaattccag aaactgcaat ggtcaaaatt ..... 1200
trggaaaaat catatgaaga agatgtagga getgggatgt atgrgttgta ecettacggt ..... 1260
ggtataatgg aggagatttc agaatcagca attccattce ctcatcgage tggaataatg ..... 1320
tatgaacttt ggtacactgc ttcctgggag aagcaagaag ataatgaaaa gcatataaac ..... 1380
tgggttegaa gtgrteataa \(\tau \tau \tau \mathrm{tacgact}\) ecttatgtgt cccaaaatcc aagattggeg ..... 1440
tatctcaatt atagggacet tgatttagga aaaactaatc atgegagtec taataattac ..... 1500
acacaagcac gtatttgggg tgaaagtat tttggtaaaa attttaacag gttagttaag ..... 1560
gtgaaaacta aagttgatce caataatttt tttagaaacg aacaaagtat cocacctctt ..... 1620
ccaccgcatc atcattaa ..... 1638
<210> SEQ ID NO 2
212> TYPE PRT
12> TYPE: PRT
<213> ORGANISM: Cannabis sativa
<400> SEQUENCE: 2


<210> SEO ID NO 3
<211> LENGTH: 1830
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polynucleotide
<400> SEQUENCE: 3
atgagattcc catccatctt cactgctgtt ttgttcgetg cttcttccge tttggctgct 60
ccagttaaca ctactactga ggacgagact gctcagattc cagctgaage tgttattggt 120
tactccgact tggaaggtga cttcgacgtt getgtttgc cattctccaa ctccactaac 180
aacggttgt tgttcatcaa cactacaatc gettccattg ctgctaaaga agagggagtt 240
tcertggaga agagagaggc tgaagctaac ceaagagaaa acttcttgaa gtgtttttcc 300
aagcacatce caaacaacgt tgctaaccet aagttggttt acactcagca egaccagttg 360- cont inued
tacatgtcet tgtrgaactc cacaatccag aacttgagat tcatctccga cactactcca ..... 420
aagccattgg ttatcgttac tccatccaac aactcccaca tccaggctac tatcttgtg ..... 480
tccaagaagg ttggattgca gatcagaaca agatccggtg gtcatgacgc tgaaggtatg ..... 540
tectacattt cecaggttce attcgttgrt gttgacttga gaaacatgea etccatcaag ..... 600
atcgacgttc actcceaaac tgcttgggtt gaagctggtg ctactttggg tgaagtttac ..... 660
tactggatca acgagaagaa cgagaacttg tccttcccag gtggttactg tccaactgtt ..... 720
ggtgttggtg gtcacttttc tggtggtggt tacggtgctt tgatgagaaa ctacggattg ..... 780
gctgctgaca acatcatcga cgctcacttg gttaacgttg acggtaaggt tttggacaga ..... 840
aagtccatgg gtgaggactt gttctgggct attagaggtg gtggtggtga gaacttcggt ..... 900
attattgctg cttggaagat caagttggtt gctgttccat ccaagtccac tatcttctcc ..... 960
gttaagaaaa acatggaaat ceacggtttg gttaagttgt ttaacaagtg geagaacatt ..... 1020
gettacaagt acgacaagga cttggttttg atgactcact tcatcactaa gaacatcact ..... 1080
gacaaccacg gtaagaacaa gactactgtt cacggttact tctctccat cttccacggt ..... 1140
ggtgttgatt cettggttga tetgatgaac aagtctttcc cagagttggg tatcaagaaa ..... 1200
actgactgta aagagttctc ctggatcgac acaacaatct tctactcogg tgttgttaac ..... 260
ttcaacactg ctaactttaa gaaagagatc ttgttggaca gatccgctgg taaaaagact ..... 320
gctttcteca ttaagttgga ctacgttaag aagccaatcc cagagactgc tatggttaag ..... 1380
attttggaga agttgtacga agaggacgtt ggtgctggta tgtacgtttt gtacccatac ..... 1440
ggtggtatca tggaagaaat ctccgagtcc getattecat teccacacag agctggtatt ..... 1500
atgracgagt tgtggtacac tgcttcttgg gagaagcaag aggacaacga aaagcacatc ..... 1560
aactgggtta gatccgttea caacttcact actccttacg tttcccagaa cccaagattg ..... 1620
gcttacttga actacagaga cttggacttg ggtaagacta accacgcttc cccaaacaat ..... 1680
tacacacagg ctagaatctg gggtgaaaag tacttcggaa agaactttaa cagattggtt ..... 1740
aaggttaaga ctaaggttga ccctaacaac ttcttcagaa acgagcagtc catcccacca ..... 1800
ttgccaccac atcatcatca ccatcactad ..... 1830
<210> SEQ ID NO 4
<211> LENGTH: 609
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
        polypeptide
<400> SEQUENCE: 4
Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser
\begin{tabular}{llll}
1 & 5 & 10 & 15
\end{tabular}Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln20 25 30
Ile Pro Ala Glu Ala Val
35 354045
Asp Val Ala Val Leu Pro phe Ser Asn Ser Thr Asn Asn Gly Leu Leu505560

65

\(485 \quad 490\) 495
Arg Ala Gly Ile Met Tyr Glu Leu Trp Tyr Thr Ala Ser Trp \(\begin{array}{r}505 \\ 500\end{array}\)
Gln Glu Asp Asn Glu Lys His Ile Asn Trp Val Arg Ser Val Tyr Asn Phe Thr Thr Pro Tyr Val Ser Gln Asn Pro Arg Leu Ala Tyr Leu Asn 530535 Glo

Tyr Thr Gln Ala Arg \(\underset{565}{ }\) Ile Trp Gly Glu Lys Tyr Phe Gly Lys Asn \(\begin{gathered}570\end{gathered}\)

Arg Asn Glu
595 Gln Ser Ile Pro Pro Leu Pro Pro His His His His His
His
<210> SEQ ID NO 5
211> LENGTH: 163<213> ORGANISM: Cannabio gativa
<400> SEQUENCE: 5
atgaagtgct caacattctc cttttggttt gtttgeaaga taatatttet ctttetctca ..... 60
ttcaatatce aaacttccat tgetaatcet egagaaaact tecttaaatg ettetcgeaa ..... 120
tatattccea ataatgcaac aaatctaaaa ctcgtataca ctcaaaacaa cccattgtat ..... 180
atgtctgtcc taaattcgac aaracacaat cttagattca cotetgacac aaccecaaaa ..... 240
ccacttgtta tegtcactcc ttcacatgtc tctcatatcc aaggcactat tetatgctec ..... 300
aagaaagttg gettgeagat tcgaactcga agtggtggtc atgattctga gggcatgtcc ..... 360
tacatatetc aagtcccatt tgttatagta gacttgagaa acatgegttc aarcaaaara ..... 420
gatgttcata gccaaactgc atgggttgaa gccggagcta cccttggaga agtttattat ..... 480
tgggttaatg agaaaaatga gaatcttagt ttggcggctg ggtattgcce tactgtttge ..... 540
gcaggtggac actttggtgg aggaggctat ggaccattga tgagaaacta tggcctcgcg ..... 600
gctgataata tcattgatgc acacttagtc aacgttcatg gaaaagtgct agatcgaaaa ..... 660
tctatggggg aagatctctt ttgggcttta cgtggtggtg gagcagaaag cttcggaatc ..... 720
attgtagcat ggaaaattag actggttgct gtcccaaagt ctactatgtt tagtgttaaa ..... 780
aagatcatgg agatacatga gcttgtcaag ttagttaaca aatggcaaaa tattgcttac ..... 840
aagtatgaca aagatttatt actcatgact cacttcataa ctaggaacat tacagataat ..... 900
caagggaaga ataagacagc aatacacact tacttctctt cagttttcct tggtggagtg ..... 960
gatagtetag tegacttgat gaacaagagt tttcctgagt tgggtattaa aaaaacggat ..... 1020
tgeagacaat tgagetggat tgatactatc atcttctata gtggtgttgt aaattacgac ..... 1080
actgataatt ttaacaagga aattttgctt gatagatccg ctgggcagaa cggtgctttc ..... 1140
aagattaagt tagactacgt taagaaacca attccagaat ctgtatttgt ccaaattttg ..... 1200
gaaaaattat atgaagaaga tataggagct gggatgtatg cgttgtaccc ttacggtggt ..... 1260
ataatggatg agatttcaga atcagcaatt ccattccctc atcgagctgg aatcttgtat ..... 1320
gagttatggt acatatgtag ttgggagaag caagaagata acgaaaagca tctaaactgg ..... 1380
attagaaata tttataacte catgactcct tatgtgtcca aaaatccaag attggcatat ..... 1440
ctcaattata gagaccttga tataggaata aatgatccea agaatccaaa taattacaca ..... 1500
caagcacgta tttggggtga gaagtatttt ggtaaaaatt ttgacaggct agtaaaagtg ..... 1560
aaaaccetgg ttgatcccaa taactttttt agaaacgaac aaagcatcce acctcttcca ..... 1620
cggcategtc attaa ..... 1635
<210> SEQ ID NO 6

11) TENP PRT

213> ORGANISM: Cannabis eativa
<400> SEQUENCE: 6
Met Lys Cys Ser Thr Phe Ser Phe Trp Phe Val Cys Lys Ile Ile phe
    \(20 \quad 25\)
Asn Phe Leu Lys Cys Phe Ser Gln Tyr ile Pro Asn Asn Ala Thr Asn
            354045
\(\begin{array}{cc}\text { Leu Lys Leu Val Tyr Thr Gln Asn Asn Pro Leu Tyr Met Ser Val Leu } \\ 50 & 55 \\ 60\end{array}\)
Asn Ser Thr Ile His Asn Leu Arg Phe Thr Ser Asp Thr Thr Pro Lys
65 70 \(\quad 70 \begin{array}{lll} & 75 & 80\end{array}\)
Pro Leu Val Ile Val Thr Pro Ser His Val Ser His Ile Gln Gly Thr
85
90

Gly His Asp
115

\(\begin{array}{ll}\text { ln } \\ 45 & \text { Thr Ala } \operatorname{Trp} \text { Val Glu Ala Gly Ala Thr } \\ 150 & \text { Leu Gly Glu Val Tyr Tyr } \\ 155\end{array}\)
\(\begin{array}{rlrl}\text { Trp Val Asn Glu } \\ & \text { Lys Asn Glu Asn Leu Ser } \\ 165 & 170 & \text { Leu Ala Ala Gly Tyr Cys } \\ 175\end{array}\)
\(\begin{array}{cc}\text { Pro Thr Val Cys Ala Gly Gly His Phe Gly Gly Gly Gly Tyr Gly Pro } \\ \text { 180 } & 185 \\ 190\end{array}\)
\(\begin{array}{rl}\text { Leu Met Arg Asn Tyr Gly Leu Ala Ala Asp Asn Ile } \\ 195 & 200 \\ 205\end{array}\)
Leu Val Asn Val His Gly Lys Val Leu Asp Arg Lys Ser Met Gly glu
sp
25 Leu Phe \(\operatorname{Trp}\) Ala Leu Arg Gly Gly Gly Ala Glu Ser Phe Gly \(\begin{aligned} & \text { Ile } \\ & 230\end{aligned}\)
\(\begin{array}{rl}\text { Ile Val Ala } & \text { Trp } \begin{aligned} \text { Lys } \\ 245\end{aligned} \text { Ile Arg Leu Val Ala Val Pro Lys Ser Thr Met } \\ 250 & 255\end{array}\)
\(\begin{array}{rl}\text { Phe Ser Val Lys Lys Ile Met Glu Ile His Glu Leu Val lys Leu Val } \\ 260 & 265\end{array}\)
Asn Lys Trp Gln Asn Ile Ala Tyr Lys Tyr Asp Lye Asp Leu Lell Leu
Met Thr His Phe Ile Thr Arg Asn Ile Thr Asp Asn Gln Gly Lys Asn

tectacatct cecaggttec eftcgttatc gttgacttga gaaacatgag atccatcaag ..... 600
atcgacgttc actcccagac tgcttgggtt gaagctggtg ctactttggg tgaagtttac ..... 660
tactgggtta acgagaagaa cgagaacttg tecttggctg ctggttactg tccaactgtt ..... 720
tgtgetggtg gtcatttcgg tggtggtggt tatggtccat rgatgagaaa etacggterg ..... 780
gctgctgaca acatcatcga egctcacttg gttaacgttc acggtaaggt tttggacaga ..... 840
aagtccatgg gtgaggactt gttctgggct ttgagaggtg gtggtgctga atccttcggt ..... 900
attatcgttg cttggaagat cagattggtt getgttccaa agtceactat gttctcegtt ..... 960
aagaaaatca tggaaatcca cgaattggtt aagttggtta acaagtggca gaacattgct ..... 1020
tacaagtacg acaaggattt gttgttgatg actcacttca tcactagaaa catcactgac ..... 1080
aaccagggta agaacaagac tgctatccac acttacttct cttcegtttt cttgggtggt ..... 1140
getgactect tggetgattt gatgaacaag tectecceag agttgggtat caagaaaact ..... 1200
gactgtagac agttgtcetg gatcgacact atcatcttct actcoggtgt tgttaactac ..... 1260
gacacagaca acttcaacaa agagatcttg ttggacagat ccgctggaca gaacggtgct ..... 1320
trcaagatca agteggacta egrtaagaag ecaateccag agtcegrttt egrtcagart ..... 1380
ttggagaagt tgtacgaaga ggacateggt getggtatgt acgetttgta cccatacggt ..... 1440
ggtatcatgg acgaaatttc cgagtccget attccattcc cacacagage tggtatcttg ..... 1500
tacgagttgt ggtacatctg ttcttgggag aagcaagagg acaacgagaa gcacttgaac ..... 1560
tggatcagaa acatctacaa cttcatgact ccatacgttt ccaagaacce aagattggct ..... 1620
tacttgaact acagagactt ggacatcgga atcaacgacc caaagaacce taacaactac ..... 1680
actcaggeta gaatctgggg tgaaagtac ttcggtaaga acttcgacag attggttaag ..... 1740
gttaagactt tggttgaccc aaacaatte ttcagaaacg agcagtccat ccctccattg ..... 1800
ccaagacata gacatcatca ccatcaccac taa ..... 1833
\(210>\) SEQ ID NO 8

<211> LENGTH: 610

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic

    polypeptide

<400> SEQUENCE: 8
Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser
\(15010 \quad 15\)
Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln\(20 \quad 25\)hr Thr Glu Asp Glu Thr Ala Gln
                                    Gy Asp Phe
                                    \(\begin{array}{rl}35 & 40 \\ 45\end{array}\)
Asp Val Ala Val Leu Pro Phe Ser Aen Ser Thr Asn Asn Gly Leu Leu
        \(50 \quad 55 \quad \begin{gathered}\text { Ser Aen Ser Thr Asn } \\ 60\end{gathered}\)
Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val
\(65 \quad 70 \quad 75\)
Ser Leu Glu Lys Arg glu Ald Glu Ala Asn Pro Arg Glu Asn Phe Leu
                    859095
Lys Cys Phe Ser Gln Tyr Ile Pro Ann Asn Ala Thr Asn Leu Lys Leu
                                    100105110


<210> SEQ ID NO 9
211> LENGTH:-
212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE
223 > OTHER INFORMATION: Description of Artificial Sequence: Symthetic 6 xHis tag
<400> SEQUENCE: 9
His Hie His His His His
1
1.-6. (canceled)
7. A system for producing cannabinoids wherein the system comprises:
(i) a bioreactor comprising cells stably transformed with one or more cannabinoid acid synthase genes;
(ii) a reaction mixture; and
(iii) a controller configured to modify one or more reaction conditions to modulate the ratio of the cannabinoid products.
8. The system of claim 1, wherein the one or more cannabinoid acid synthase genes comprises a tetrahydrocannabinolic acid (THCA) synthase gene.
9. The system of claim 2 , wherein the THCA synthase gene comprises a nucleic acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, or a variant or fragment thereof.
10. The system of claim 2 , wherein the THCA synthase gene comprises a nucleic acid sequence that encodes a polypeptide of SEQ ID NO: 2, SEQ ID NO: 4, or a variant or fragment thereof.
11. The system of claim \(\mathbf{1}\), wherein the one or more cannabinoid acid synthase genes comprises a cannabidiolic acid (CBDA) synthase gene.
12. The system of claim 5 , wherein the CBDA synthase gene comprises a nucleic acid sequence of SEQ ID NO: 5, SEQ ID NO: 7, or a variant or fragment thereof.
13. The system of claim 5 , wherein the CBDA synthase gene comprises a nucleic acid sequence that encodes a polypeptide of SEQ ID NO: 6, SEQ ID NO: 8, or a variant or fragment thereof.
14. The system of claim 1, wherein the cannabinoid acid synthase gene is codon optimized with an alpha secretion sequence.
15. The system of claim 1, wherein the cannabinoid acid synthase gene is tagged with six tandem histidine residues (SEQ ID NO: 9).
16. A method for producing a cannabinoid product comprises:
(1) reacting a CBDA synthase in a reaction mixture with a compound according to Formula I:

wherein \(\mathrm{R}_{1}\) is H or -COOH and \(\mathrm{R}_{2}\) is a linear or branched \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13}\), \(\mathrm{C}_{7} \mathrm{H}_{15}\), or \(\mathrm{C}_{8} \mathrm{H}_{17}\) group;
(2) recovering the cannabinoid product.
17. The method of claim 10 , further comprises producing the CBDA synthase.
18. The method of claim 11, wherein the CBDA synthase is a recombinant synthase.
19. The method of claim 10 , wherein the CBDA synthase is encoded by a nucleic acid sequence of SEQ ID NO: 5 , SEQ ID NO: 7, or a variant or fragment thereof.
20. The method of claim \(\mathbf{1 0}\), wherein the CBDA synthase comprises a polypeptide of SEQ ID NO: 6, SEQ ID NO: 8, or a variant or fragment thereof.
21. The system of claim 10 , wherein the CBDA synthase is encoded by a cannabinoid acid synthase gene that is tagged with six tandem histidine residues (SEQ ID NO: 9),
22. The method of claim 10, wherein the CBDA synthase is encoded by a cannabinoid acid synthase gene that is codon optimized with an alpha secretion sequence.
23. The method of claim \(\mathbf{1 0}\), wherein the pH in the reaction mixture is in the range from about 4.2 to about 6.2 .
24. The method of claim 10 , wherein the reaction mixture comprises a solvent that comprises dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), iso-propoyl alcohol, or combination thereof.
\(\mathbf{2 5}\). The method of claim 18, wherein the solvent comprises DMSO.
26. The method of claim 18, the concentration of the solvent in the reaction mixture is between \(5 \%\) and \(30 \%\) (w/v).
27. A method for producing a cannabinoid product comprises:
(1) reacting a THCA synthase in a reaction mixture with a compound according to Formula I:

wherein \(R_{1}\) is \(H\) or -COOH and \(\mathrm{R}_{2}\) is a linear or branched \(\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13}\), \(\mathrm{C}_{7} \mathrm{H}_{15}\), or \(\mathrm{C}_{8} \mathrm{H}_{17}\) group;
(2) recovering the cannabinoid product so produced.
28. The method of claim 21, further comprises producing the THCA synthase.
29. The method of claim 22, wherein the THCA synthase is a recombinant synthase.
30. The method of claim 21, wherein the THCA synthase is encoded by a nucleic acid sequence of SEQ ID NO: 1 , SEQ ID NO: 3 , or a variant or fragment thereof.
31. The method of claim 21, wherein the wherein the THCA synthase comprises a polypeptide of SEQ ID NO: 2 , SEQ ID NO: 4, or a variant or fragment thereof.
32. The system of claim 21, wherein the THCA synthase is encoded by a cannabinoid acid synthase gene that is tagged with six tandem histidine residues (SEQ ID NO: 9).
33. The method of claim 21, wherein the THCA synthase is encoded by a cannabinoid acid synthase gene that is codon optimized with an alpha secretion sequence.
34. The method of claim 21, wherein the pH in the reaction mixture is in the range from about 3.8 to about 7.2
35. The method of clain 21, wherein the reaction mixture comprises a solvent that comprises dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), iso-propoyl alcohol, or combination thereof.
36. The method of claim 29 , wherein the solvent comprises DMSO.
37. The method of claim 29, the concentration of the solvent in the reaction mixture is between \(5 \%\) and \(30 \%\) (w/v).

\section*{EXHIBIT C}

Begins on the following page

Generated on: This page was generated by TSDR on 2018-11-09 14:37:52 EST
Mark: HEMPCHEW

US Serial Number: 86668083

US Registration 5139076
Number:
Filed as TEAS RF: Yes
Register: Supplemental
Mark Type: Trademark
Amended to No
Principal Register:
Date Amended to Dec. 06, 2016 Current Register:

Status: Registered. The registration date is used to determine when post-registration maintenance documents are due.
Status Date: Feb. 07, 2017

\section*{Mark Information}
```

    Mark Literal HEMPCHEW
        Elements:
    Standard Character Yes. The mark consists of standard characters without claim to any particular font style, size, or color.
Claim:
Mark Drawing 4-STANDARD CHARACTER MARK
Type:

```

\section*{Goods and Services}

Note: The following symbois indicate that the registrant/owner has amended the goods/services:
- Brackets [..] indicate deleted goods/services;
- Double parenthesis ((..)) identify any goods/services not claimed in a Section 15 affidavit of incontestability; and
- Asterisks *... identify additional (new) wording in the goods/services.

For: chewing gum; confectionery, namely, hard candies, chewable candies, lozenges, and lollipops; all the foregoing contain hemp, hemp extract, or hemp oil
International 030 - Primary Class
U.S Class(es); 046

Class(es):
Class Status: ACTIVE
Basis: 1(a)
First Use: Dec. 05, \(2016 \quad\) Use in Commerce: Dec. 05, 2016

\section*{Basis Information (Case Level)}
\begin{tabular}{lll} 
Filed Use: No & Currently Use: Yes & Amended Use: No \\
Filed ITU: Yes & Currently ITU: No & Amended ITU: No \\
Filed 44D: No & Currently 44D: No & Amended 44D: No \\
Filed 44E: No & Currently 44E: No & Amended 44E: No \\
Filed 66A: No & Currently 66A: No &
\end{tabular}
Filed No Basis: No Currently No Basis: No

\section*{Current Owner(s) Information}
\[
\begin{aligned}
\text { Owner Name: } & \text { Axim Biotechnologies, Inc. } \\
\text { Owner Address: } & 18 \text { E 50th St., 5th Floor } \\
& \text { New York, NEW YORK } 10022 \\
& \text { UNITED STATES }
\end{aligned}
\]

Legal Entity Type: CORPORATION
State or Country NEVADA Where Organized:

\title{
Attorney/Correspondence Information
}


TM Staff and Location Information

\section*{M Staff Information - None}

\section*{File Location}
States of Zarerica HEMPCHEW

Reg. No. 5,139,076
Registered Feb. 07, 2017
Int. Cl.: 30
Trademark
Supplemental Register

Axim Biotechnologies, Inc. (NEVADA CORPORATION)
18 E 50th St., 5th Floor
New York, NY 10022
CLASS 30: chewing gum; confectionery, namely, hard candies, chewable candies, lozenges, and lollipops; all the foregoing contain hemp, hemp extract, or hemp oil

FIRST USE 12-5-2016; IN COMMERCE 12-5-2016
THE MARK CONSISTS OF STANDARD CHARACTERS WITHOUT CLAIM TO ANY PARTICULAR FONT STYLE, SIZE OR COLOR

Michele K. Len
Director of the United States
Patent and Trademark Office

\section*{REQUIREMENTS TO MAINTAIN YOUR FEDERAL TRADEMARK REGISTRATION}

\section*{WARNING: YOUR REGISTRATION WILL BE CANCELLED IF YOU DO NOT FILE THE DOCUMENTS BELOW DURING THE SPECIFIED TIME PERIODS.}

\section*{Requirements in the First Ten Years* \\ What and When to File:}
- First Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) between the 5th and 6th years after the registration date. See 15 U.S.C. \(\$ \$ 1058,1141 \mathrm{k}\). If the declaration is accepted, the registration will continue in force for the remainder of the ten-year period, calculated from the registration date, unless cancelled by an order of the Commissioner for Trademarks or a federal court.
- Secona Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between the 9th and 10th years after the registration date.* See 15 U.S.C. § 1059.

\section*{Requirements in Successive Ten-Year Periods*}

What and When to File:
- You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between every 9th and 10th-year period, calculated from the registration date.*

\section*{Grace Period Filings*}

The above documents will be accepted as timely if filed within six months after the deadines listed above with the payment of an additional fee.
*ATTENTION MADRID PROTOCOL REGISTRANTS: The holder of an international registration with an extension of protection to the United States under the Madrid Protocol must timely file the Declarations of Use (or Excusable Nonuse) referenced above directly with the United States Patent and Trademark Office (USPTO). The time periods for filing are based on the U.S. registration date (not the international registration date). The deadlines and grace periods for the Declarations of Use (or Excusable Nonuse) are identical to those for nationally issued registrations. See 15 U.S.C. \(\S \S 1058,1141 \mathrm{k}\). However, owners of international registrations do not file renewal applications at the USPTO. Instead, the holder must file a renewal of the underlying international registration at the International Bureau of the World Intellectual Property Organization, under Article 7 of the Madrid Protocol, before the expiration of each ten-year term of protection, calculated from the date of the international registration. See 15 U.S.C. \(\$ 1141 \mathrm{j}\). For more information and renewal forms for the international registration, see http://www.wipo.int/madrid/en/.

NOTE: Fees and requirements for maintaining registrations are subject to change. Please check the USPTO website for further information. With the exception of renewal applications for registered extensions of protection, you can file the registration maintenance documents referenced above online at \(h\) ttp://www.uspto.gov.

NOTE: A courtesy e-mail reminder of USPTO maintenance filing deadlines will be sent to trademark owners/holders who authorize e-mail communication and maintain a current e-mail address with the USPTO. To ensure that e-mail is authorized and your address is current, please use the Trademark Electronic Application System (TEAS) Correspondence Address and Change of Owner Address Forms available at http://www.uspto.gov.

Mark: VITACANNABIS
```

US Serial Number: 86754656 Application Filing Sep. 11,2015
Date:
US Registration 5498192
Number:
Filed as TEAS RF: Yes
Currently TEAS RF: Yes
Register: Principal
Mark Type: Trademark
Status: Registered. The registration date is used to determine when post-registration maintenance documents are due.
Status Date: Jun. 19, 2018
Publication Date: Aug. 30, 2016 Notice of Oct. 25, 2016
Allowance Date:

```

\section*{Mark Information}

\section*{Mark Literal VITACANNABIS}

Elements:
Standard Character Yes. The mark consists of standard characters without claim to any particular font style, size, or color Claim:

Mark Drawing 4-STANDARD CHARACTER MARK
Type:

\section*{Goods and Services}

Note: The following symbols indicate that the registrant/owner has amended the goods/services:
- Brackets [..] indicate deleted goods/services;
- Double parenthesis ((..)) identify any goods/services not claimed in a Section 15 affidavit of incontestability; and
- Asterisks *.. \({ }^{*}\) identify additional (new) wording in the goods/services.

For: Dietary and nutritional supplements; hemp powder for use as a nutritional supplement; nutritional supplement meal replacement powders for medical purposes; nutritional supplement meal replacement bars for medical purposes; nutritional supplement meal replacement drink mixes for medical purposes and dietary supplement drink mixes; nutraceuticals for use as a dietary supplement; topical creams, gels, salves, sprays, balms and ointments for analgesic purposes; nutrition supplements in drop form, capsule form and in liquid form; edible hemp oil for use as a dietary supplement; hemp oil as a nutritional supplement; all of the foregoing containing hemp or hemp-based extracts or oils as an ingredient

International 005 - Primary Class U.S Class(es): 006, 018,044, 046, 051, 052
Class(es):
Class Status: ACTIVE
Basis: 1 (a)
First Use: Mar. 14, \(2018 \quad\) Use in Commerce: Mar. 14, 2018

\section*{Basis Information (Case Level)}

Filed Use: No
Filed ITU: Yes
Filed 44D: No
Filed 44E: No
Filed 66A: No
Filed No Basis: No

Currently Use: Yes Amended Use: No
Currently ITU: No Amended ITU: No
Currently 44D: No Amended 44D: No
Currently 44E: No Amended 44E: No
Currently 66A: No
Currently No Basis: No

\section*{Current Owner(s) Information}
```

Owner Name: HDDC Holdings LLC
Owner Address: 10525 Vista Sorrento Pkwy Suite 200
San Diego, CALIFORNIA 92121
UNITED STATES

```

Legal Entity Type: LIMITED LIABILITY COMPANY \(\begin{array}{r}\text { State or Country NEVADA } \\ \text { Where Organized: }\end{array}\)

\section*{Attorney/Correspondence Information}

Jun. 16, 2016 TEAS RESPONSE TO OFFICE ACTION RECEIVEDJun. 16,2016 TEAS CHANGE OF CORRESPONDENCE RECEIVED
Jun. 07, 2016 ATTORNEY/DOM.REP.REVOKED AND/OR APPOINTEDJun. 07, 2016 TEAS REVOKE/APP/CHANGE ADDR OF ATTY/DOM REP RECEIVED
Dec. 16, 2015 NOTIFICATION OF NON-FINAL ACTION E-MAILED ..... 6325
Dec. 16, 2015 NON-FINAL ACTION E-MAILED ..... 6325
Dec. 16, 2015 NON-FINAL ACTION WRITTEN ..... 82107
Dec. 15, 2015 ASSIGNED TO EXAMINER ..... 82107
Dec. 07, 2015 APPLICANT/CORRESPONDENCE CHANGES (NON-RESPONSIVE) ENTERED ..... 88888
Dec. 07, 2015 TEAS CHANGE OF OWNER ADDRESS RECEIVED
Oct. 05, 2015 ASSIGNED TO EXAMINER ..... 76072
Oct. 05, 2015 ASSIGNED TO EXAMINER ..... 82107
Sep. 16, 2015 NEW APPLICATION OFFICE SUPPLIED DATA ENTERED IN TRAM
Sep. 15, 2015 NEW APPLICATION ENTERED IN TRAM
TM Staff and Location Information
TM Staff Information - None
File Location

\title{
States of \(\mathfrak{A m p r i c a}\)
}

\section*{VITACANNABIS}

Reg. No. 5,498,192
Registered Jun. 19, 2018

\title{
Int. Cl.: 5
}

Trademark
Principal Register

\section*{HDDC Holdings LLC (NEVADA LIMITED LIABILITY COMPANY) \\ 525 B Street, Suite 2200}

San Diego, CALIFORNIA 92101
CLASS 5: Dietary and nutritional supplements; hemp powder for use as a nutritional supplement; nutritional supplement meal replacement powders for medical purposes; nutritional supplement meal replacement bars for medical purposes; nutritional supplement meal replacement drink mixes for medical purposes and dietary supplement drink mixes; nutraceuticals for use as a dietary supplement; topical creams, gels, salves, sprays, balms and ointments for analgesic purposes; nutrition supplements in drop form, capsule form and in liquid form; edible hemp oil for use as a dietary supplement; hemp oil as a nutritional supplement; all of the foregoing containing hemp or hemp-based extracts or oils as an ingredient

FIRST USE 3-14-2018; IN COMMERCE 3-14-2018
THE MARK CONSISTS OF STANDARD CHARACTERS WITHOUT CLAIM TO ANY PARTICULAR FONT STYLE, SIZE OR COLOR

SER. NO. 86-754,656, FILED 09-11-2015



Director of the United States Patent and Trademark Office

\section*{REQUIREMENTS TO MAINTAIN YOUR FEDERAL TRADEMARK REGISTRATION}

\section*{WARNING: YOUR REGISTRATION WILL BE CANCELLED IF YOU DO NOT FILE THE DOCUMENTS BELOW DURING THE SPECIFIED TIME PERIODS.}

\section*{Requirements in the First Ten Years* \\ What and When to File:}
- First Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) between the 5th and 6th years after the registration date. See 15 U.S.C. \(\$ \$ 1058,1141 \mathrm{k}\). If the declaration is accepted, the registration will continue in force for the remainder of the ten-year period, calculated from the registration date, unless cancelled by an order of the Commissioner for Trademarks or a federal court.
- Secona Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between the 9th and 10th years after the registration date.* See 15 U.S.C. § 1059.

\section*{Requirements in Successive Ten-Year Periods*}

What and When to File:
- You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between every 9th and 10th-year period, calculated from the registration date.*

\section*{Grace Period Filings*}

The above documents will be accepted as timely if filed within six months after the deadines listed above with the payment of an additional fee.
*ATTENTION MADRID PROTOCOL REGISTRANTS: The holder of an international registration with an extension of protection to the United States under the Madrid Protocol must timely file the Declarations of Use (or Excusable Nonuse) referenced above directly with the United States Patent and Trademark Office (USPTO). The time periods for filing are based on the U.S. registration date (not the international registration date). The deadlines and grace periods for the Declarations of Use (or Excusable Nonuse) are identical to those for nationally issued registrations. See 15 U.S.C. \(\S \S 1058,1141 \mathrm{k}\). However, owners of international registrations do not file renewal applications at the USPTO. Instead, the holder must file a renewal of the underlying international registration at the International Bureau of the World Intellectual Property Organization, under Article 7 of the Madrid Protocol, before the expiration of each ten-year term of protection, calculated from the date of the international registration. See 15 U.S.C. \(\$ 1141 \mathrm{j}\). For more information and renewal forms for the international registration, see http://www.wipo.int/madrid/en/.

NOTE: Fees and requirements for maintaining registrations are subject to change. Please check the USPTO website for further information. With the exception of renewal applications for registered extensions of protection, you can file the registration maintenance documents referenced above online at \(h\) ttp://www.uspto.gov.

NOTE: A courtesy e-mail reminder of USPTO maintenance filing deadlines will be sent to trademark owners/holders who authorize e-mail communication and maintain a current e-mail address with the USPTO. To ensure that e-mail is authorized and your address is current, please use the Trademark Electronic Application System (TEAS) Correspondence Address and Change of Owner Address Forms available at http://www.uspto.gov.

Generated on: This page was generated by TSDR on 2018-11-09 14:39:49 EST
Mark: NATURAL COLORADO WELLNESS
\begin{tabular}{|c|c|c|}
\hline US Serial Number: 87036912 & Application Filing Date: & May 13, 2016 \\
\hline US Registration 5193224 Number: & Registration Date: & Apr. 25, 2017 \\
\hline Filed as TEAS RF: Yes & Currently TEAS RF: & Yes \\
\hline Register: Supplemental & & \\
\hline Mark Type: Trademark & & \\
\hline Amended to No Principal Register: & Date Amended to Current Register: & Mar. 02, 2017 \\
\hline
\end{tabular}

Status: Registered. The registration date is used to determine when post-registration maintenance documents are due.
Status Date: Apr. 25, 2017

\section*{Mark Information}

Mark Literal NATURAL COLORADO WELLNESS Elements:

Standard Character Yes. The mark consists of standard characters without claim to any particular font style, size, or color Claim:

Mark Drawing 4 - STANDARD CHARACTER MARK
Type:

\section*{Goods and Services}

Note: The following symbols indicate that the registrant/owner has amended the goods/services:
- Brackets [..] indicate deleted goods/services;
- Double parenthesis ((..)) identify any goods/services not claimed in a Section 15 affidavit of incontestability; and
- Asterisks *... identify additional (new) wording in the goods/services.

For: Nutritional supplements containing essential hemp oils found in plant extracts
International 005 -Primary Class
Class(es):
Class Status: ACTIVE
Basis: 1 (a)
First Use: May 12, 2016 \(\quad\) Use in Commerce: May 12, 2016

\section*{Basis Information (Case Level)}

Filed Use: Yes
Filed ITU: No
Filed 44D: No
Filed 44E: No
Filed 66A: No
Filed No Basis: No

Currently Use: Ye
Currently ITU: No
Currently 44D: No
Currently 44E: No
Currently 66A: No
Currently No Basis: No

\section*{Current Owner(s) Information}
```

Owner Name: CWB Holdings, Inc.
Owner Address: Suite 700
1720 S. Bellaire Street
Denver, COLORADO 80222
UNITED STATES

```
```

Legal Entity Type: CORPORATION State or Country COLORADO

```

\section*{Attorney/Correspondence Information}


TM Staff and Location Information

\section*{TM Staff Information - None}

File Location
Current Location: PUBLICATION AND ISSUE SECTION
Date in Location: Apr. 25, 2017

\title{

}

\section*{NATURAL COLORADO WELLNESS}

\author{
Reg. No. 5,193,224 CWB Holdings, Inc. (COLORADO CORPORATION) Suite 700 \\ \section*{Registered Apr. 25, 2017 1720 S. Bellaire Street} \\ Int. Cl.: 5 \\ Trademark \\ CLASS 5: Nutritional supplements containing essential hemp oils found in plant extracts \\ FIRST USE 5-12-2016; IN COMMERCE 5-12-2016 \\ \section*{Supplemental Register} \\ THE MARK CONSISTS OF STANDARD CHARACTERS WITHOUT CLAIM TO ANY PARTICULAR FONT STYLE, SIZE OR COLOR
}

\title{
Trichele K. Len
}

Director of the United States
Patent and Trademark Office

\title{
REQUIREMENTS TO MAINTAIN YOUR FEDERAL TRADEMARK REGISTRATION
}

WARNING: YOUR REGISTRATION WILL BE CANCELLED IF YOU DO NOT FILE THE DOCUMENTS BELOW DURING THE SPECIFIED TIME PERIODS.

\section*{Requirements in the First Ten Years* \\ What and When to File:}
- First Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) between the 5th and 6th years after the registration date. See 15 U.S.C. \(\$ \$ 1058,1141 \mathrm{k}\). If the declaration is accepted, the registration will continue in force for the remainder of the ten-year period, calculated from the registration date, unless cancelled by an order of the Commissioner for Trademarks or a federal court.
- Secona Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between the 9th and 10th years after the registration date.* See 15 U.S.C. § 1059.

\section*{Requirements in Successive Ten-Year Periods* \\ What and When to File:}
- You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between every 9 th and 10th-year period, calculated from the registration date.*

\section*{Grace Period Filings*}

The above documents will be accepted as timely if filed within six months after the deadlines listed above with the payment of an additional fee.
*ATTENTION MADRID PROTOCOL REGISTRANTS: The holder of an international registration with an extension of protection to the United States under the Madrid Protocol must timely file the Declarations of Use (or Excusable Nonuse) referenced above directly with the United States Patent and Trademark Office (USPTO). The time periods for filing are based on the U.S. registration date (not the international registration date). The deadines and grace periods for the Declarations of Use (or Excusable Nonuse) are identical to those for nationally issued registrations. See 15 U.S.C. \(\S \S 1058,1141 \mathrm{k}\). However, owners of international registrations do not file renewal applications at the USPTO. Instead, the holder must file a renewal of the underlying international registration at the International Bureau of the World Intellectual Property Organization, under Article 7 of the Madrid Protocol, before the expiration of each ten-year term of protection, calculated from the date of the international registration. See 15 U.S.C. §1141j. For more information and renewal forms for the international registration, see http://www.wipo.int/madrid/en/.

NOTE: Fees and requirements for maintaining registrations are subject to change. Please check the USPTO website for further information. With the exception of renewal applications for registered extensions of protection, you can file the registration maintenance documents referenced above online at \(h\) ttp://www.uspto.gov.

NOTE: A courtesy e-mail reminder of USPTO maintenance filing deadlines will be sent to trademark owners/holders who authorize e-mail communication and maintain a current e-mail address with the USPTO. To ensure that e-mail is authorized and your address is current, please use the Trademark Electronic Application System (TEAS) Correspondence Address and Change of Owner Address Forms available at http://www.uspto.gov.
```

US Serial Number: }8708005
Application Filing Jun. 22, 2016
Date
US Registration 5288805
Registration Date: Sep. 19, 2017
Number:
Filed as TEAS RF: Yes
Currently TEAS RF: Yes
Register: Principal
Mark Type: Trademark
TM5 Common Status
Descriptor:

```

The trademark application has been registered with the Office.
Status: Registered. The registration date is used to determine when post-registration maintenance documents are due.
Status Date: Sep. 19, 2017
Publication Date: Jul. 04, 2017
```


## Mark Information

Mark Literal GREEN ROADS
Elements:
Standard Character Yes. The mark consists of standard characters without claim to any particular font style, size, or color Claim:

Mark Drawing 4-STANDARD CHARACTER MARK Type:

## Related Properties Information

Parent Of: 87975187

## Goods and Services

Note: The following symbols indicate that the registrant/owner has amended the goods/services:

- Brackets [..] indicate deleted goods/services;
- Double parenthesis ((..)) identify any goods/services not claimed in a Section 15 affidavit of incontestabilify; and
- Asterisks *..* identify additional (new) wording in the goods/services.

For: dietary and nutritional supplements; neutraceuticals for use as a dietary supplement drink mix; nutraceuticals for use as dietary supplement; nutritional supplements in drop form, capsule form, and liquid form; edible hemp oil for use as a dietary supplement; all of the foregoing containing hemp oil and only naturally occurring amounts of CBD

International 005 - Primary Class
U.S Class(es): 006, 018, 044, 046, 051, 052

Class(es):
Class Status: ACTIVE
Basis: 1(a)
First Use: Nov. 18, $2014 \quad$ Use in Commerce: Nov. 18, 2014

## Basis Information (Case Level)

| Filed Use: Yes | Currently Use: Yes |
| :--- | ---: |
| Filed ITU: No | Currently ITU: No |
| Filed 44D: No | Currently $44 \mathrm{E}:$ No |
| Filed 44E: No | Currently 66A: No |
| Filed 66A: No | Currently No Basis: No |

## Current Owner(s) Information

```
    Owner Name:Green Roads of Florida, LLC.
Owner Address: }6891\mathrm{ Stirling Road
    Davie, FLORIDA UNITED STATES }3331
Legal Entity Type: LIMITED LIABILITY COMPANY
    State or Country FLORIDA
    Where Organized:
```


## Attorney/Correspondence Information

| Attorney of Record |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Attorney Name: Grace R Neibaron |  |  |  |  |
| Attorney Primary grace@neibaronlaw.com Email Address: |  | Attorney Emai Authorized |  |  |
| Correspondent |  |  |  |  |
| Correspondent Grace R Neibaron <br> Name/Address: Hoban Law Group 235 Foss Creek Circle Healdsburg, CALIFORNIA UNITED STATES 95448 |  |  |  |  |
| Phone: 7078436645 |  |  |  |  |
| Correspondent e- grace@neibaronlaw.com davidk@hoban.law mail: |  | Correspondent e mail Authorized |  |  |
| Domestic Representative - Not Found |  |  |  |  |
| Prosecution History |  |  |  |  |
| Date | Description |  |  | Proceeding Number |
| Sep. 19, 2017 | REGISTERED-PRINCIPAL REGISTER |  |  |  |
| Jul. 27, 2017 | ATTORNEY/DOM.REP.REVOKED AND/OR APPOINTED |  |  |  |
| Jul. 27, 2017 | TEAS REVOKE/APP/CHANGE ADDR OF ATTY/DOM REP | ECEIVED |  |  |
| Jul. 04, 2017 | OFFICIAL GAZETTE PUBLICATION CONFIRMATION E-M |  |  |  |
| Jul. 04, 2017 | PUBLISHED FOR OPPOSITION |  |  |  |
| Jun. 14, 2017 | NOTIFICATION OF NOTICE OF PUBLICATION E-MAILED |  |  |  |
| May 31, 2017 | LAW OFFICE PUBLICATION REVIEW COMPLETED |  |  | 70633 |
| May 26, 2017 | APPROVED FOR PUB - PRINCIPAL REGISTER |  |  |  |
| May 15, 2017 | TEAS/EMAIL CORRESPONDENCE ENTERED |  |  | 70633 |
| May 15, 2017 | CORRESPONDENCE RECEIVED IN LAW OFFICE |  |  | 70633 |
| May 04, 2017 | TEAS REQUEST FOR RECONSIDERATION RECEIVED |  |  |  |
| Apr. 20, 2017 | NOTIFICATION OF FINAL REFUSAL EMAILED |  |  |  |
| Apr. 20, 2017 | FINAL REFUSAL E-MAILED |  |  |  |
| Apr. 20, 2017 | FINAL REFUSAL WRITTEN |  |  | 82107 |
| Mar. 24, 2017 | DIVISIONAL PROCESSING COMPLETE |  |  |  |
| Feb. 20, 2017 | DIVISIONAL REQUEST RECEIVED |  |  |  |
| Mar. 20, 2017 | CASE ASSIGNED TO INTENT TO USE PARALEGAL |  |  | 66530 |
| Mar. 15, 2017 | TEAS/EMAIL CORRESPONDENCE ENTERED |  |  | 70633 |
| Mar. 15, 2017 | CORRESPONDENCE RECEIVED IN LAW OFFICE |  |  | 70633 |
| Mar. 09, 2017 | ASSIGNED TO LIE |  |  | 70633 |
| Feb. 21, 2017 | TEAS RESPONSE TO OFFICE ACTION RECEIVED |  |  |  |
| Feb. 20, 2017 | TEAS REQUEST TO DIVIDE RECEIVED |  |  |  |
| Sep. 09, 2016 | NOTIFICATION OF NON-FINAL ACTION E-MAILED |  |  | 6325 |
| Sep. 09, 2016 | NON-FINAL ACTION E-MAILED |  |  | 6325 |
| Sep. 09, 2016 | NON-FINAL ACTION WRITTEN |  |  | 82107 |
| Sep. 02, 2016 | ASSIGNED TO EXAMINER |  |  | 82107 |
| Jul. 08, 2016 | ASSIGNED TO EXAMINER |  |  | 76072 |
| Jul. 07, 2016 | ASSIGNED TO EXAMINER |  |  | 82107 |



# States of $\mathfrak{A m r e r i c i}$ 

## GREEN ROADS

Reg. No. 5,288,805
Registered Sep. 19, 2017
Int. CL.: 5
Trademark
Principal Register

Green Roads of Florida, LLC. (FLORIDA LIMITED LIABILITY COMPANY) 6891 Stirling Road
Davies, FL 33314
CLASS 5: dietary and nutritional supplements; neutraceuticals for use as a dietary supplement drink mix; nutraceuticals for use as dietary supplement; nutritional supplements in drop form, capsule form, and liquid form; edible hemp oil for use as a dietary supplement; all of the foregoing containing hemp oil and only naturally occurring amounts of CBD

FIRST USE 11-18-2014; IN COMMERCE 11-18-2014
THE MARK CONSISTS OF STANDARD CHARACTERS WITHOUT CLAIM TO ANY PARTICULAR FONT STYLE, SIZE OR COLOR

SER. NO. 87-080,056, FILED 06-22-2016
ROBERT J STRUCK, EXAMINING ATTORNEY


Joseph aMatol
Performing the Functions and Duties of the Under Secretary of Commerce for
Intellectual Property and Director of the
United States Patent and Trademark Office

# REQUIREMENTS TO MAINTAIN YOUR FEDERAL TRADEMARK REGISTRATION 

WARNING: YOUR REGISTRATION WILL BE CANCELLED IF YOU DO NOT FILE THE DOCUMENTS BELOW DURING THE SPECIFIED TIME PERIODS.

## Requirements in the First Ten Years* <br> What and When to File:

- First Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) between the 5th and 6th years after the registration date. See 15 U.S.C. $\$ \$ 1058,1141 \mathrm{k}$. If the declaration is accepted, the registration will continue in force for the remainder of the ten-year period, calculated from the registration date, unless cancelled by an order of the Commissioner for Trademarks or a federal court.
- Secona Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between the 9th and 10th years after the registration date.* See 15 U.S.C. § 1059.


## Requirements in Successive Ten-Year Periods* <br> What and When to File:

- You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between every 9 th and 10 th-year period, calculated from the registration date.*


## Grace Period Filings*

The above documents will be accepted as timely if filed within six months after the deadines listed above with the payment of an additional fee.
*ATTENTION MADRID PROTOCOL REGISTRANTS: The holder of an international registration with an extension of protection to the United States under the Madrid Protocol must timely file the Declarations of Use (or Excusable Nonuse) referenced above directly with the United States Patent and Trademark Office (USPTO). The time periods for filing are based on the U.S. registration date (not the international registration date). The deadines and grace periods for the Declarations of Use (or Excusable Nonuse) are identical to those for nationally issued registrations. See 15 U.S.C. $\S \S 1058,1141 \mathrm{k}$. However, owners of international registrations do not file renewal applications at the USPTO. Instead, the holder must file a renewal of the underlying international registration at the International Bureau of the World Intellectual Property Organization, under Article 7 of the Madrid Protocol, before the expiration of each ten-year term of protection, calculated from the date of the international registration. See 15 U.S.C. §1141j. For more information and renewal forms for the international registration, see http://www.wipo.int/madrid/en/.

NOTE: Fees and requirements for maintaining registrations are subject to change. Please check the USPTO website for further information. With the exception of renewal applications for registered extensions of protection, you can file the registration maintenance documents referenced above online at $h$ ttp://www.uspto.gov.

NOTE: A courtesy e-mail reminder of USPTO maintenance filing deadlines will be sent to trademark owners/holders who authorize e-mail communication and maintain a current e-mail address with the USPTO. To ensure that e-mail is authorized and your address is current, please use the Trademark Electronic Application System (TEAS) Correspondence Address and Change of Owner Address Forms available at http://www.uspto.gov.

```
US Serial Number: 87276686
                                    Application Filing Dec. 21,2016
                                    Date:
    US Registration 5543497
                            Registration Date: Aug. 21,2018
            Number:
Filed as TEAS RF: Yes
Currently TEAS RF: Yes
            Register: Principal
        Mark Type: Trademark
            Status: Registered. The registration date is used to determine when post-registration maintenance documents are due.
        Status Date: Aug. 21, 2018
Publication Date: Jun. 05,2018
```


## Mark Information

Mark Litera! CANNABITES
Elements:
Standard Character Yes. The mark consists of standard characters without claim to any particular font style, size, or color Claim:

Mark Drawing 4-STANDARD CHARACTER MARK
Type:

## Goods and Services

Note: The following symbois indicate that the registrant/owner has amended the goods/services:

- Brackets [..] indicate deleted goods/services;
- Double parenthesis ((..)) identify any goods/services not claimed in a Section 15 affidavit of incontestability; and
- Asterisks *..* identify additional (new) wording in the goods/services.

For: dietary and nutritional supplements for pets; edible hemp cil animal treats for use as a dietary supplement; nutritional food additives for culinary purposes; all of the foregoing containing edible hemp seed oil and vitamins for animals

```
International 005 - Primary Class
U.S Class(es): 006, 018, 044, 046, 051, 052
```

Class(es):
Class Status: ACTIVE
Basis: 1(a)
First Use: Dec. 20, $2016 \quad$ Use in Commerce: Dec. 20, 2016

## Basis Information (Case Level)

Filed Use: Yes
Filed ITU: No
Filed 44D: No
Filed 44E: No
Filed 66A: No
Filed No Basis: No

Currently Use: Ye
Currently ITU: No
Currently 44D: No
Currently 44E: No
Currently 66A: No
Currently No Basis: No

Amended Use: No
Amended ITU: No
Amended 44D: No
Amended 44E: No

## Attorney/Correspondence Information



## TM Staff Information - None

File Location

#  

## CANNABITES

## Reg. No. 5,543,497 Victory Gardens, LLC (CALIFORNIA LIMITED LIABILITY COMPANY) 785 La Mirada Ave

Registered Aug. 21, 2018
Int. Cl.: 5
Trademark
Principal Register


Andrei lance
Director of the United States
Patent and Trademark Office

## REQUIREMENTS TO MAINTAIN YOUR FEDERAL TRADEMARK REGISTRATION

## WARNING: YOUR REGISTRATION WILL BE CANCELLED IF YOU DO NOT FILE THE DOCUMENTS BELOW DURING THE SPECIFIED TIME PERIODS.

## Requirements in the First Ten Years* <br> What and When to File:

- First Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) between the 5th and 6th years after the registration date. See 15 U.S.C. $\$ \$ 1058,1141 \mathrm{k}$. If the declaration is accepted, the registration will continue in force for the remainder of the ten-year period, calculated from the registration date, unless cancelled by an order of the Commissioner for Trademarks or a federal court.
- Secona Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between the 9th and 10th years after the registration date.* See 15 U.S.C. § 1059.


## Requirements in Successive Ten-Year Periods*

What and When to File:

- You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between every 9th and 10th-year period, calculated from the registration date.*


## Grace Period Filings*

The above documents will be accepted as timely if filed within six months after the deadines listed above with the payment of an additional fee.
*ATTENTION MADRID PROTOCOL REGISTRANTS: The holder of an international registration with an extension of protection to the United States under the Madrid Protocol must timely file the Declarations of Use (or Excusable Nonuse) referenced above directly with the United States Patent and Trademark Office (USPTO). The time periods for filing are based on the U.S. registration date (not the international registration date). The deadlines and grace periods for the Declarations of Use (or Excusable Nonuse) are identical to those for nationally issued registrations. See 15 U.S.C. $\S \S 1058,1141 \mathrm{k}$. However, owners of international registrations do not file renewal applications at the USPTO. Instead, the holder must file a renewal of the underlying international registration at the International Bureau of the World Intellectual Property Organization, under Article 7 of the Madrid Protocol, before the expiration of each ten-year term of protection, calculated from the date of the international registration. See 15 U.S.C. $\$ 1141 \mathrm{j}$. For more information and renewal forms for the international registration, see http://www.wipo.int/madrid/en/.

NOTE: Fees and requirements for maintaining registrations are subject to change. Please check the USPTO website for further information. With the exception of renewal applications for registered extensions of protection, you can file the registration maintenance documents referenced above online at $h$ ttp://www.uspto.gov.

NOTE: A courtesy e-mail reminder of USPTO maintenance filing deadlines will be sent to trademark owners/holders who authorize e-mail communication and maintain a current e-mail address with the USPTO. To ensure that e-mail is authorized and your address is current, please use the Trademark Electronic Application System (TEAS) Correspondence Address and Change of Owner Address Forms available at http://www.uspto.gov.

```
US Serial Number: }8742693
            Application Filing Apr. 26,2017
        Date:
US Registration 5363541
                            Registration Date: Dec. 26, 2017
            Number:
    Filed as TEAS Yes Currently TEAS Yes
            Plus: Plus:
            Register: Principal
        Mark Type: Trademark
            Status: Registered. The registration date is used to determine when post-registration maintenance documents are due.
        Status Date: Dec. 26,2017
Publication Date: Oct. 10,2017
```


## Mark Information

## Mark Literal STONED COLD

Elements:
Standard Character Yes. The mark consists of standard characters without claim to any particular font style, size, or color. Claim:
Mark Drawing 4-STANDARD CHARACTER MARK
Type:

## Goods and Services

Note: The following symbols indicate that the registrant/owner has amended the goods/services:

- Brackets [..] indicate deleted goods/services;
- Double parenthesis ((..)) identify any goods/services not claimed in a Section 15 affidavit of incontestability; and
- Asterisks *.. ${ }^{*}$ identify additional (new) wording in the goods/services.

For: Medicated lip balm and medicated skin care preparations comprised of hemp seed oil and menthol
International 005 - Primary Class
U.S Class(es): 006, 018, 044, 046, 051, 052

Class(es):
Class Status: ACTIVE
Basis: 1 (a)
First Use: Mar. 01, 2017 Use in Commerce: Apr. 11, 2017

## Basis Information (Case Level)

Filed Use: Yes
Filed ITU: No
Filed 44D: No
Filed 44E: No
Filed 66A: No
Filed No Basis: No

Currently Use: Yes Amended Use: No
Currently ITU: No Amended ITU: No
Currently 44D: No Amended 44D: No
Currently 44E: No Amended 44E: No
Currently 66A: No
Currently No Basis: No

## Current Owner(s) Information

## Owner Name: LOVEBUD, LLC

DBA, AKA, DBA LOVEBUD Formerly:

Owner Address: 578 Washington Blyd., \#507

Marina del Rey, CALIFORNIA 90292
UNITED STATES
Legal Entity Type: LIMITED LIABILITY COMPANY
State or Country CALIFORNIA Where Organized:

## Attorney/Correspondence Information

| Attorney of Record - None |  |  |
| :---: | :---: | :---: |
| Correspondent |  |  |
| Correspondent LOVEBUD, LLC <br> Name/Address: 578 WASHINGTON BLVD., \#507 <br> MARINA DEL REY, CALIFORNIA 90292 <br> UNITED STATES |  |  |
| Phone: 424-781-4135 |  |  |
| Correspondent e- becky@lovebudshop.commail: $\quad$Correspondent e- Yes <br> mail Authorized: |  |  |
| Domestic Representative - Not Found |  |  |
| Prosecution History |  |  |
| Date | Description | Proceeding <br> Number |
| Dec. 26, 2017 | REGISTERED-PRINCIPAL REGISTER |  |
| Oct. 10, 2017 | OFFICIAL GAZETTE PUBLICATION CONFIRMATION E-MAILED |  |
| Oct. 10, 2017 | PUBLISHED FOR OPPOSITION |  |
| Sep. 20, 2017 | NOTIFICATION OF NOTICE OF PUBLICATION E-MAILED |  |
| Sep. 01, 2017 | APPROVED FOR PUB - PRINCIPAL REGISTER |  |
| Aug. 24, 2017 | TEAS/EMAIL CORRESPONDENCE ENTERED | 68171 |
| Aug. 24, 2017 | CORRESPONDENCE RECEIVED IN LAW OFFICE | 68171 |
| Aug. 22, 2017 | TEAS RESPONSE TO OFFICE ACTION RECEIVED |  |
| Aug. 16, 2017 | COMBINED EXAMINER'S AMENDMENT/PRIORITY ACTION ENTERED | 68171 |
| Aug. 16, 2017 | ASSIGNED TO LIE | 68171 |
| Aug. 15, 2017 | NOTIFICATION OF EXAMINER'S AMENDMENT/PRIORITY ACTION E-MAILED | 6326 |
| Aug. 15, 2017 | EXAMINER'S AMENDMENT/PRIORITY ACTION E-MAILED | 6326 |
| Aug. 15, 2017 | EXAMINERS AMENDMENT AND/OR PRIORITY ACTION - COMPLETED | 72008 |
| Jul. 24, 2017 | ASSIGNED TO EXAMINER | 72008 |
| Jul. 22, 2017 | ASSIGNED TO EXAMINER | 91238 |
| Jun. 05, 2017 | NEW APPLICATION OFFICE SUPPLIED DATA ENTERED IN TRAM |  |
| Apr. 29, 2017 | NEW APPLICATION ENTERED IN TRAM |  |

## TM Staff and Location Information

# $\mathscr{S t a t e s}$ of $\mathfrak{A m r e r i c}$ 

## stoned cold

Reg. No. 5,363,541
Registered Dec. 26, 2017
Int. Cl.: 5
Trademark
Principal Register

LOVEBUD, LLC (CALIFORNIA LIMITED LIABILITY COMPANY), BA LOVEBUD 578 Washington Blvd., \#507
Marina Del Key, CALIFORNIA 90292
CLASS 5: Medicated lip balm and medicated skin care preparations comprised of hemp seed oil and menthol

FIRST USE 3-1-2017: IN COMMERCE 4-11-2017
THE MARK CONSISTS OF STANDARD CHARACTERS WITHOUT CLAIM TO ANY PARTICULAR FONT STYLE, SIZE OR COLOR

SER. NO. 87-426,938, FILED 04-26-2017


Joseph Manor Under Secretary of Commerce for Intellectual Property and Director of the Intellectual Property and Director of the
United States Patent and Trademark Office

# REQUIREMENTS TO MAINTAIN YOUR FEDERAL TRADEMARK REGISTRATION 

WARNING: YOUR REGISTRATION WILL BE CANCELLED IF YOU DO NOT FILE THE DOCUMENTS BELOW DURING THE SPECIFIED TIME PERIODS.

## Requirements in the First Ten Years* <br> What and When to File:

- First Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) between the 5th and 6th years after the registration date. See 15 U.S.C. $\$ \$ 1058,1141 \mathrm{k}$. If the declaration is accepted, the registration will continue in force for the remainder of the ten-year period, calculated from the registration date, unless cancelled by an order of the Commissioner for Trademarks or a federal court.
- Secona Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between the 9th and 10th years after the registration date.* See 15 U.S.C. § 1059.


## Requirements in Successive Ten-Year Periods* <br> What and When to File:

- You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between every 9 th and 10 th-year period, calculated from the registration date.*


## Grace Period Filings*

The above documents will be accepted as timely if filed within six months after the deadines listed above with the payment of an additional fee.
*ATTENTION MADRID PROTOCOL REGISTRANTS: The holder of an international registration with an extension of protection to the United States under the Madrid Protocol must timely file the Declarations of Use (or Excusable Nonuse) referenced above directly with the United States Patent and Trademark Office (USPTO). The time periods for filing are based on the U.S. registration date (not the international registration date). The deadines and grace periods for the Declarations of Use (or Excusable Nonuse) are identical to those for nationally issued registrations. See 15 U.S.C. $\S \S 1058,1141 \mathrm{k}$. However, owners of international registrations do not file renewal applications at the USPTO. Instead, the holder must file a renewal of the underlying international registration at the International Bureau of the World Intellectual Property Organization, under Article 7 of the Madrid Protocol, before the expiration of each ten-year term of protection, calculated from the date of the international registration. See 15 U.S.C. §1141j. For more information and renewal forms for the international registration, see http://www.wipo.int/madrid/en/.

NOTE: Fees and requirements for maintaining registrations are subject to change. Please check the USPTO website for further information. With the exception of renewal applications for registered extensions of protection, you can file the registration maintenance documents referenced above online at $h$ ttp://www.uspto.gov.

NOTE: A courtesy e-mail reminder of USPTO maintenance filing deadlines will be sent to trademark owners/holders who authorize e-mail communication and maintain a current e-mail address with the USPTO. To ensure that e-mail is authorized and your address is current, please use the Trademark Electronic Application System (TEAS) Correspondence Address and Change of Owner Address Forms available at http://www.uspto.gov.

Generated on: This page was generated by TSDR on 2018-11-09 14:38:36 EST
Mark: PRIME MY BODY
PRIMEMBODY

```
US Serial Number: 87794756 Application Filing Feb. 12, 2018
Date:
    US Registration 5589298
        Number:
Filed as TEAS RF: Yes
Currently TEAS RF: Yes
    Register: Principal
    Mark Type: Trademark
            Status: Registered. The registration date is used to determine when post-registration maintenance documents are due.
    Status Date: Oct. 23, 2018
Publication Date: Aug. 07, 2018
```


## Mark Information

## Mark Literal PRIME MY BODY

Elements:
Standard Character No
Claim:
Mark Drawing 3-AN ILLUSTRATION DRAWING WHICH INCLUDES WORD(S)/LETTER(S)/NUMBER(S) Type:

Description of The mark consists of the distressed stylized word "PRIME"; next to the cursive stylized word "MY" in a circle; next to that is the stylized Mark: word "BODY"

Color(s) Claimed: Color is not claimed as a feature of the mark.
Design Search 26.01.21 - Circles that are totally or partially shaded. Code(s):

## Goods and Services

Note: The following symbols indicate that the registrant/owner has amended the goods/services:

- Brackets [..] indicate deleted goods/services;
- Double parenthesis ((..)) identify any goods/services not claimed in a Section 15 affidavit of incontestability; and
- Asterisks *..* identify additional (new) wording in the goods/services.

For: Skin moisturizers; Cosmetic preparations, namely, firming creams
International 003-Primary Class
U.S Class(es): 001, 004, 006, 050, 051, 052

Class(es):
Class Status: ACTIVE
Basis: 1(a)
First Use: Jul. 2013
Use in Commerce: Jul. 2013
For: Dietary and nutritional supplements; Protein supplements; Hemp oil for use as a dietary supplement
International 005 -Primary Class
Class(es):
Class Status: ACTIVE
Basis: 1 (a)
First Use: Jul. 2013

Basis Information (Case Level)

| Filed Use: Yes | Currently Use: Yes | Amended Use: No |
| :--- | :--- | :--- |
| Filed ITU: No | Currently ITU: No | Amended ITU: No |
| Filed 44D: No | Currently 44D: No | Amended 44D: No |
| Filed 44E: No | Currently 44E: No | Amended 44E: No |

## Current Owner(s) Information

```
            Owner Name: Digital Media Group - US, LLC
Owner Address: }1501\mathrm{ LBJ Freeway, Suite 500
    Dallas, TEXAS 75234
    UNITED STATES
Legal Entity Type: LIMITED LIABILITY COMPANY
                                    State or Country NEVADA
                                    Where Organized:
```


## Attorney/Correspondence Information



TM Staff and Location Information

## TM Staff Information - None

File Location
Current Location: PUBLICATION AND ISSUE SECTION

# WAnted States of Elnrerica PRIME, BODY 

Reg. No. 5,589,298
Registered Oct. 23, 2018
Int. CI.: 3, 5
Trademark
Principal Register


Andrei lance
Director of the United States
Patent and Trademark OfficeDigital Media Group - US, LLC (NEVADA LIMITED LIABILITY COMPANY)1501 Lbj Freeway, Suite 500
Dallas, TEXAS 75234
CLASS 3: Skin moisturizers; Cosmetic preparations, namely, firming creams
FIRST USE 7-00-2013; IN COMMERCE 7-00-2013
CLASS 5: Dietary and nutritional supplements; Protein supplements: Hemp oil for use as a dietary supplement
FIRST USE 7-00-2013; IN COMMERCE 7-00-2013
The mark consists of the distressed stylized word "PRIME"; next to the cursive stylized word"MY" in a circle; next to that is the stylized word "BODY"

SER. NO. 87-794,756, FILED 02-12-2018

# REQUIREMENTS TO MAINTAIN YOUR FEDERAL TRADEMARK REGISTRATION 

WARNING: YOUR REGISTRATION WILL BE CANCELLED IF YOU DO NOT FILE THE DOCUMENTS BELOW DURING THE SPECIFIED TIME PERIODS.

## Requirements in the First Ten Years* <br> What and When to File:

- First Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) between the 5th and 6th years after the registration date. See 15 U.S.C. $\$ \$ 1058,1141 \mathrm{k}$. If the declaration is accepted, the registration will continue in force for the remainder of the ten-year period, calculated from the registration date, unless cancelled by an order of the Commissioner for Trademarks or a federal court.
- Secona Filing Deadline: You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between the 9th and 10th years after the registration date.* See 15 U.S.C. § 1059.


## Requirements in Successive Ten-Year Periods* <br> What and When to File:

- You must file a Declaration of Use (or Excusable Nonuse) and an Application for Renewal between every 9 th and 10 th-year period, calculated from the registration date.*


## Grace Period Filings*

The above documents will be accepted as timely if filed within six months after the deadines listed above with the payment of an additional fee.
*ATTENTION MADRID PROTOCOL REGISTRANTS: The holder of an international registration with an extension of protection to the United States under the Madrid Protocol must timely file the Declarations of Use (or Excusable Nonuse) referenced above directly with the United States Patent and Trademark Office (USPTO). The time periods for filing are based on the U.S. registration date (not the international registration date). The deadines and grace periods for the Declarations of Use (or Excusable Nonuse) are identical to those for nationally issued registrations. See 15 U.S.C. $\S \S 1058,1141 \mathrm{k}$. However, owners of international registrations do not file renewal applications at the USPTO. Instead, the holder must file a renewal of the underlying international registration at the International Bureau of the World Intellectual Property Organization, under Article 7 of the Madrid Protocol, before the expiration of each ten-year term of protection, calculated from the date of the international registration. See 15 U.S.C. §1141j. For more information and renewal forms for the international registration, see http://www.wipo.int/madrid/en/.

NOTE: Fees and requirements for maintaining registrations are subject to change. Please check the USPTO website for further information. With the exception of renewal applications for registered extensions of protection, you can file the registration maintenance documents referenced above online at $h$ ttp://www.uspto.gov.

NOTE: A courtesy e-mail reminder of USPTO maintenance filing deadlines will be sent to trademark owners/holders who authorize e-mail communication and maintain a current e-mail address with the USPTO. To ensure that e-mail is authorized and your address is current, please use the Trademark Electronic Application System (TEAS) Correspondence Address and Change of Owner Address Forms available at http://www.uspto.gov.


[^0]:    Date: November 9, 2018
    Attorneys for Applicant:
    Adam Wolek
    Jane S. Berman
    TAFT STETTINIUS \& HOLLISTER LLP
    111 East Wacker Drive, Suite 2800
    Chicago, Illinois 60601-3713
    Telephone: 312-840-4333
    Email: jberman@taftlaw.com

[^1]:    <210>SEQ ID NO 3
    <211> LENGTH: 38
    <212> TYPE: DNA
    <213> ORGANISM: Artificial Sequence
    <220> FEATURE
    <223> OTHER INFORMATION: Primex

