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4.2 Data Source Representatives

We introduce 2 new concept, reprasentative of a data soures.
Each data sovres schema has a list of output attributes
which characterize the main focus or intersst of the data
source. If we know the main focus of a data source, we
can vse this information to rank the data sovree’s relevance
with raspect to 2 keyword. For example, data sovrce A has
20 ouvtput attributes. We find that 15 output attributes
come from the concept term SNP, and the rest 5 comes
from the concept term Protein. With this information, we
roughly lenow that data source A is about SNP and protein
data, and the main focus of A is providing SNP information.
Data sovrce B has 10 output attributes, and we find that
all the 10 terms come from the Protein node. Data sourcs
B is built solely for providing protein information. Given
the above information, if a user kevword can be mapped to
the protein node in the ontology graph, we can have a high
confidence in concluding that the data source B can provide
more relevant information than A.

Wa dafine the reprasentatives of 2 data source to be all bi-
ological concept terms in the ontology which can be reached
bw reverse traversing F or C twpe links starting from the
data souree’s output attribute. Suppose a data sovree D
has n reprazentatives r, 2. fa, and sach representative

1. is associated with a weight w.. The weight w.is the ratio

Supposs 2 query contains a sst of keywords Q = {k:
A node corrasponds to 2 data soures schema. Given a node
1., we first define the node score of n: with respect to query
kevword k as NBcore(n:, k) = e ® ge % DEN.. Here,
o is the nods coverage score of the node n: with respect to
Ik, 2nd g is the node quality scor= of node n:with raspect
te k. If multipls data sovree can provide this kevword ke |
i.2. DENuis small, the scors of this node n is decreased.
MNode Coverage Score: The nods coverage score of nods
. with respact to k is defined as ey = :

Lewal(i) is the shortast distance in terms of the number o
edges from any of the starting points to the current node n..
T Cliseebanin(y) a8 Bise-tio vl nohonns 0 i data sorwce

1: do=s not contain k as its output, returns 1 otherwise
Note that the Leval(i) value can vary across queries, be-
cause differant querizs have different starting points. This
ranking function gives a node higher scors if it covers more
kaywords and is sasier to rach.

Node Quality Scors: The node quality scors of 2 node

1. with raspact to k is defined as g = OntoScora(i, j).

The fenction Onto3 i, j) retuens a 2l score of
node n: with respact to ko . The intvition behind this fune-
tion is as follows. Wa obtain the representatives of a data
source which illustrate the focss of the sourcs, then we try
to compute 2 kind of distance between the keyword and the

representatives of the source. The shorter the distanes, the

.

sernes 11 Contain(j).
£

closar the keyword to the focus of the data source, and the
PR R D
To compute OntoScora(i,

tives of data soures n, as o, 1=,

), first, we find the representa-

o with weights wi, we,

...;wm. For sach repressntative r, w= compute the l=ast
common suparclass of rowith respect to the keyword k

foll the general & ion of Learning A = from
Chmtanc ot 4L [6F Tealk; ) = g BOK: €3+

B(r., ) + BRoot, )}, where &(a, b) is the shortest distance
batwesn node 2 2nd b in the ontolozy. Then, we compute
the similarity score between r and k as follows:

&Root, £+1
S(Root, )1+ B(r, £) + 8(k. )
whare f = les(r, k). We dafine the ontology quality scors
of data soures n: with respect to keyword k as follows:

i o) - P I ), whers m is the
s the

=t Wy % Simfr,
total number of reprasentatives of noce fand w o

Sim(n, k) =

weight of reprasentative r.. The node quality score gu =
ontoScora(i, j).
Biowe of Mistcheal Conatramnti: Souse kejron segs-

rzsents CovntConstraints(n., Q) = NCM and NCM <

0. y reprasents CountConstraints(n., Q) = NCM and

NCM »= 0. m is the number of keywords in query Q.

The abowve node score function considers the effcet of node
o Ve ol e s el b o itk
constraints.

Node Score for Quary Answering Plan: The node scors

i e ey g e QAT & ddied 2

NScora(QAR) =P m--wl‘r&n;‘_e{n:}
whera N is the number of nodes in QAP. Wa can ses that
the node score of query answering plan QAP is roushly the
average node score for all nodes in the plan. This function
o i e ety b (B
redundant nodes).

5.3 Edge Ranking Strategy

The =dz= score is considerad as a cost one nesds to pay to
traverss from one node U to its descendant V. Therafore 2
higher ranked =dg= has a lowsr score. An =dge can be built

Page 9
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sent constraints that a vser ssts on the query. For example,
the keyword “Human” impliss that the user wants to find
data about humans. Each data source has a C attribute

which the inherent of the data source.
We prafer to us= 2 data source which has inherent constraints
hing with the wser ified ints. The higher the

number of matched constraints, the higher the node score.
We vse function CountConstraints(n., Q) to compute the
score of matchad constraints of a data sovree with respact
to a query. If a query has a constraint set UC, and the
node nhas inherent constraints set NC, We compute the
scorz of had ints based on the following cases:
1). UC= & and NC = €. In this case, both the query

and the data source do not have any constraint, we sim-
ply aimply retum zero. 2). UC= & and NC = 4. In

this case, vser does not s=t any constraints, but the cor-
rent data source has inherent constraints. The data source

inherent constraints will shrink the answers to 2 narrower
range, as a rasult, the data sovree should receive a penalty.
We return —NC|. 3). UC =& and NC=&. In this

cass, vser sets constraints, but data soures doss not have
constraints. We return zero. 4). UC =¥ and NC =&

and HazConfliction(UC NC) = true. HasConfliction()

is a function to detect whether thers is any confliction be-
tween UC and NC. For example, user sats constraint on
“Organism=Human", but the data sovrcs has constraint
“Organism=Nouse". In this case, this data sovres defi-
nitely cannot be chosen for this query. 3o we will return

a special valve null. 5). UC=@ and NC =& and
HasConfliction(UC,NC) = false. In this case, we return
UC N NC-MNC - UC|. [UC M NC| is the number of ssar
specified constraints which are also matched in data sovres
constramt sat. NG — UC| 13 the number of data soures
constraints which are not requastad by the vser.

Node Score for A Single Node: Now we define the node
score for 2 node n:as

5 mll

L ezl
NScore(n) = ]

e

& reprasents CountConstraints(n.. Q) = null. ¥ rep-

ify.

T e e P e S

between U and V and a constant score is assignad to it

only when there is a first tvpe dependence relation between
. A s i s e disiaead sy toe s Baction 5.1 48
thers exists second and'or third type dependence relation,
wa raduce the adge scors, sssentially ziving it 2 bonus. Along
o Tt P e s 0 & R T ) ¥ i B
defined az

©
e

EScor(U, V) =8 :
»;t—Tl—TJ—TE ifhas first type dapendence

relztion batwe:

0ifno s2cond type dependence relation between Tand V.

T=(
¥ 1 ifhas sacond typs dependance relztion betwesn Uznd V

HO ifno third type dependence ralation betwesn Uznd ¥,
T1=8  1ifhas third typs dependence relation berween Uznd V
P and it is pointing Fom cptional input to muet-A1] input

HO ifno third typs dependance ralation betwesn Uand ¥,
Ti=8 1ifhzs thisd type dependenca ralation batween Uznd V
b 2nd it iz pointin input input

The total edg= score for query answering plan QAP is
definad as:
1

EScor=(QaP) = Povese EScora(U, V)

5.4 Query Answering Plan Ranking Strategy

Combining the nodz and =dge ranking functions above,
i s v i s Tt 2
binatinn of itx node srore and sdzs scors, which s defined
as:

Scors(QAP) = hxNicore(QAP)(1-1)*EScor=(QAR)

In our current system, we set the parameter ) to be 0.5, We
prefer quary answering plans that have a hizher score.

ifno first tvpe dependance
relztion between Uand V,

nUand V.
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Figurs 3: Comparison among BLA, NA and ENA: (2) Comparison batween BIA and NA;(b) Comparison

between BIA and EXA.

Table 2: Quary Statistics

Query ID Number of Tarms
1-10 23

11-18 8-12

15-24 1723

252 27-33

28.30 3743

6. EVALUATION

This section describes the i wa h d to

evalvate our algorithm.
6.1 Experiment Setup

Crur evalvation was done using 14 different biclogical deep
web databases we have integrated. W craated 30 queries for
our evalvation. Among these 30 gueries, 10 are real queries
specified by 2 domain expert we have collaborated with. The
remaining 20 querizs wers gensrated by randomly select-
i B T Ehs Dk b Pk g W
craate two types of queries, kevword-attributes queries and
leeyword-keyword relation queries. Among the 30 queries,

22 querizs are of the first type, and 8 queries are of the sec-
ond type. We also vary the number of terms in sach query
in order to evaluate the scalability of our algorithm. Table 2

summarizes the statistics for the 30 queries.

Among our queries, we have several quaries with a larze
number of kevwords. We choose thase queries for the fol-
lowing reasons. Unlike the traditional relational database
queries in commercial domains, a bological domain query is

vy tikely Lo have o lage nunbe, ie, 20 01 more, keywords.

This iz becavss vsars tend to vss high-level abstract terms
in their kevword search. For examgple, SNP Fraquency, a
wvery common query keyword, is 2 hish-lavel abstract term
that to four low-lavel . Another rea-

son for creating long queries was that we wanted to test our

algurithrn in ealrerne cases.

In the . W our E Alzo-
rithm (BIA) with three other alzorithms, which ara the
Naive Algorithm (IMA), the EXhaustive Alsorithm (EXA)
and the Bacloward Algorithm (BA).

Maive Algorithm: As the name suggests, this alzorithm

all data sources which can be quaried at sach round, vntil
all kevwords are coverad. This alzorithm can quickly find
2 query answering plan_ but it is likely to have a very low
score and a long exacution time.

Exhaustive Algorithm: This alzorithm searches the en-
tire space in a recursive manner, and compares eVary pos-
sible query answering plan. Then, it selects the plan with
the highast score. Thiz algorithm always finds the optimal
answering plan, but has high time and space raquirements.
Baclkoward Algorithm: This algorithm uses exactly the
same data stroctures as the bidirectional planning alzorithm.
The only difference is that backward alzorithm can only
search from the backoward direction.

6.2 Evaluation Metrics

Query Answering Plan Score: We use the ranking fone-

tion introduced in Saction 5 to compute 2 score for sach
query answering plan. We prafer the plan with a higher
score, bacause higher score implies that 2 smaller number of
data sovrees are involved, and they have hisher relevance.
Guary A ing Plan Eati AE jon Time:

The quary axacution time of a deep wab data sovres is asti-
mated by issuing multipls randomly selected sample queries.
Since the query ing plan has a di i compo-
nant and some souress can be execsted in parallel, the asti-

matad execution time of the entirz plan is computad basad
on the parallel excestion model. The longest path (in terms
of time) in the plan d=termines the sxecution time.
Qrery Planning Time: Efficiency of query planning al-
zorithm is an important consideration. We record the query
planning algorithm’s running time.
Planning Time for Gensrating the First Query Plan:
DIA aud DA alguritbrees vem grerer ate mmltiple guery ax-
swering plans. We racord the time vsad to generate the first
(possibly the best) plan. We prefer the aleorithm which can
zenerata the first plan quickly.
Awerage Quary Planning Time: For BIA and BA, we
compute the average query planning time by dividing the
lulal guery planming e by e neobe of guery plans
Eenerated.

In addition to comparing different alzorithms ssing the
above metrics, we have also evaluated the scalability of the
tidirsctional planning alsorithm with respect to the number

of data soureas involvad in the quary.
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doss query planning in a naive way. The algorithm sslects

Table 3: Query Planning Time Comparison Betwsen
BIA, NA and EXA

Selectad NA Plan- EXA BIA Plan-
Quary ning Time Planning ning Time
(ms) Timea (ms) (ms)

1 6 1385 30

2 3 774 28

3 5 1020 131

4 15 3050 2

5 4 615 48

high scors doss not necessarily have a low astimated axecu-
Finm time, and vies vers Tha raasnn is that 2 very highly
kalaadt ol Wescirts iy Bt Ao e . Ao
rasult, it is possible to se= a gquery answering plan with hish
score but a large execution time.

6.3 Experiment Results

6.3.1 Comparing B4 against NA and EXA

In Figure 3, sub-figura (2) shows the comparison batwaen
BIA and NA. Tt is plotted in logarithmic scals. The SRa-
tio (Dizmond) is the ratio between BIA's generated query
answaring plan’s scors and 1A 's zenaratad quary answaring
plan’s score. The ETRatio (Rectangle) is the ratio between
NA's d plan’s esti d tims and BIA's
1 phecs eatiinated fame Figzwe (). sl
the same comparison between BIA and EXA In both the
ah-Fignras (3) and (b}, tha x-axix is the query T, and tha

w-axis is the ratio valve.

From sub-figure (2), we can sze that except for queries 1
and 4, the plans generated by BIA always have much higher
(mors than 3 times) scors than the plans generated by AL
Similarly, the execution time of the plans generated by BLA
are always lowar than the exscution time of plans generated
by IMA. For querizs 1 and 4, INA can also obtain very good
rasults. This is because these two queries ars very simple,
and only nead a single data source. For the query 4, the
axecution time of NAs query plan is even shorter than that
of BIA's gquery plan. This is reascnable, becavss a data
souree with higher relevance may have long exscution time.

From sub-figure (b), we can cbserve that the score of plans
genarated by BIA ars almost the same as the score of the
plans generated by EXA. This shows that the quality of the
plans generated by BIA is very closs to the quality of the

One important observation is that a query plan with a

Page 11

Figure 5: The Scalability of BIA according to Num-
ber of Data Souvrces Involved in Querizss

6.3.2 Comparing BI4 against BA

In Figurs 4, sub-figura (2) shows the SRatio and ETRatio
between BIA and BA. Becavse BIA and BA use the same
data structers, we expect both the ratics should be near
1. Wea can observe that this is actually the case. Wa can
also note that for some queries (10 out of 30), BIA obtains
answers with higher scores than BA. This shows that in
terms of the quality of query answering plan BIA and BA
have nearly the same performance, with BIA outperforming
BA in some cases.

Because BA ssarches only from one dirsction, we expect
that BIA will beat BA in terms of query planning time.

b Fgure (b) and () are plotied i Yogarthmee acale.
Fizure 4, sub-fizurs (b) shows the ratio between BA's av-
araga quary planning tima and BIA's average quary plan-
ning time. We can observe that for most queries, BIA takes
smaller amount of time to generate a query plan. The sub-
figura (c) shows the time ratio for the first generated query
plan between BA and BIA. We have the same observation,

i.2. BIA can gensrate the first query plan much faster than
BA.

6.3.3 The Scalability of BIA:

From Figure 5, we can observe that in terms of the average
planning time, there is a sharp increase when the number
of dara sovreas incraasas from 2 to 4. Than, the planning
time increases moderately with raspect to the number of
data sourees. In terms of the first plan seneration time,
thers is a sharp increase when the number of data souress
inersases from 7 to 10, otherwise, the increass is moderate.
This shows that our svstem has good scalability.
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DIANS Eenerarss 0y DLA 15 VEry CI0SE [0 [0S qUAUTY OF the
optimal plans generated by EXA. The axecution time has
the same pattern as the scors, except for queries 5 and 7.
For thess two queries, we can s== that the estimated exe-
cution time for query plans of BIA are aven shorter than
the optimal query plan’s execution time. This is reason-
able becavse our optimal query plan is generated bassd on
query answering plan score and BIA algorithm, for this two
queries, selacts the data source with a lower execution time.

In Table 3 we show the comparison of query planning time
batween BIA, NA, and EXA We can clearly s2= that BIA
takes much less time than EXA Comparsd to the time= of
NA, BIA's running time is still modest.

In summary, BIA outperforms NA in terms of zenerated
plan’s quality. BIA can generate nearly optimal query an-
swering plans while take much less time than EXA.

(=)

“Lhis shows that our system has good scalability.

6.3.4 Actual Query Resuit Evaluation of BI4

The answars retrievad by our system were chacked by 2
biologist collaborating with vs. Currently, wa have wrappers
for § deep web data souress, out of the 14 we used for query
planning. For the plans that only extract data from thess §
sourcas, the plans are avtomatically axecuted and answars

ara retrisved and tabulated. For all other plans, the answers

wars 1ly. Both

and

ratrieved answars wars presented to the bologist.

From the feedback from the domain scientist, all answers
to the 30 experimental queries are correct and sufficient,
it s i o oot g, The iy i Tz,
13129821927, which is intended to find the relationship be-
twaen the two SNPs. The expected answer was that the
two SNPs are located in the gene APOE and the chromo-
some 18, Our system can correctly find the first relation-

&) (=)

Figure 4: Comparison betwzen BIA and BA: (2) Query Plan Comparison between BIA and BA:(b) Average
Planning Time Ratio between BA and BIA;(c) First Plan Generating Time Ratio between BA and BIA.

ship. For the second relationship. our svstem indeed finds 2
correct gquary answering plan, but becavsa the data sovres
our system chose has incomplete data (rs12882192 are not
in its database), the relationship is not di i. This
limitation can be addressed in tha future by having 2ddi-
tienal knowledge about the data sovrees. Our system can
also enable execution of another query plan on request from
the domain seientist, which may ratrieve data from different

soufces.

7. RELATED WORK
We now compars our work with existing work on 2 number
of related topics, including query planning, keyvword s=arch

do query planning and for answering the quary.

Eeyword Search on Bebdional Distabaser: Becently,
parforming keyword based search over rzlational databases
has attracted a lot of attention [14, 13, 17,22, 1, 2, 23].
Tk el At et weicl; et i s i
sented as graphs. Each row in relation table is reprasented
25 2 node. and forsien kevs ars reprasented as sdses. The
eraph storss the actsal data in the databases. The critical
difference in our algorithm are as follows. We also represent
the entire deep web as a graph. The nodes in our graph

e i W Mt it i, sk i 5 v,

our graph modsl only contains the high level abstract infor-
mation for each data source. We do not know the actual
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