From: Coward, Jeffery

Sent: 10/29/2013 4:48:43 PM

To: TTAB EFiling

CC:

Subject: U.S. TRADEMARK APPLICATION NO. 85561168 - DEEP WEB INTELLIGENCE - 4335.14US01 -
Request for Reconsideration Denied - Return to TTAB - Message 3 of 5

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 5k 3k %k 3k >k 3k 5k 3k 3k 3k >k 5k 5k %k sk %k %k ok sk sk sk sk ok ko sk sk sk kkkkkkk ok

Attachment Information:
Count: 3

Files: RDDW2-08.jpg, RDDW2-09.jpg, RDDW2-10.jpg



f2008/TR10. pdf+&cd=7 &hi=endct=clnk&gl=us

http:fhwebcache. googleusercontent. cornfsearch?g=cache \WRObUx- YA fip: Mftp. coe. ohio-state. edufpubftech-report

10/2952013 01:27:41 PM

Because of the nature of the deep web quaries we are
considering, 2 valid query answering plan can be a forast
with di d

, 28 in the axampls shown
in Figure 2. This feature requires that we need a start-

ing node for 2ach disconnected component which results in
multiple starting nodes. The original Bidirectional search
alzorithm uses the idza of Dijlkstra algorithm, which solves
the single-sovree shortest-paths problem on a weighted di-
racted graph [7]. In order to solve our multi-souree problem,
we nesd to convert a multi-source shortest path problem to a
single wurce shorlesl path problen, Dassd vn (his idea, we
2dd a prendo-starting node (P8) into our graph. P§ sarves

as single entering point for the search. It is connected by a
peeudo-dependant relation edge with sach data sovres node

in the initial list with sdg= score of zero. This means that
there is no cost to travel from P8 to anv of the actual start-
ing nodes. Wa can use PR to check whether an answar has
besn found or not for a query. If the distance from P35 to

any kevword is a finite number, an answer is found.

The data structures of the algorithm are initialized as fol-
lows: W add the starting nodas to the initial list and the
torward queve. Lhen, we tind all data source nodes whose
output attributes cover any of the non-triggering keywords
into the backward quese. All other gqueves are initialized as
empty. If a data sourca covers a certain keyword, the dis-
tance from this sovree to the kevword in the distance array
iz st 2z () ntharmiza tha valns is 2at as infinity Othar areazs

arz initialized similarly.

3.2.3 Edge Expioration

The bidirsctional s=arch is performed within a loop vatil
the top k guery answering plans are found. At sach round,
we szlect the node with the highest node score from the
forward and backward queve. Edge exploration is conducted
basad on the queve from which the highest scored node is
selected. In forward expl ion, all out-going neighbors of
the current noda will be explored. In backward manner, all
in-coming parents of the current node will be explorad. In
=dge axploration, we taks two nodes. One is the pradecessor
denoted as U, the other one is the descendant denoted as v.
Forward edge axpl ion is i from the d
(U} to the descendant (v) and bacloward edge exploration is
performed from v to U.

TE 1 vk oy, 2, o e o oty
the Explore function directly. If U is a hyper-noda (U is
composad of multiple nodes), first, we check whether all the
et e T R Bty bl ok T iy o i
pradecessors have not been explored, we will skip the axplo-
ration in this round and add the vnexplored predacessors
s Bk el oo T e il
the dependent node depends on the accessibility of all its
pradecessors, as a rasult, if any one of U is not accessible

n's ancestors as normal except the ancestors in CA. This is
becauss the shortest distance from any common ancestor to
2 kevword depends on all nodes in the set U. The distance
from a commeon ancestor ca to a keyword is the longest dis-
tance from ca to 2 keyvword via any of the node in U. If this
distance 15 smaller, we update the distance intormation on
ca. Then we add U as the descendants of ca. The sibling
information between nodes in U is also vpdated. Finally,
we the distance infi ion to any ancestor of
ca. The example in Szction 3.3 shows the idea.

Aftar tha axploration of adga (U, v), wae nead to vpdata FQ
a2nd BQ. In the forward manner, v is addad to FQ becanse
we want to continue to explors from v. In the backward

manner, we first add U to BQ, bacavse we want to continue
v emphons feiies T Badkwaitli sesond, we sl v 15 FQ
order to explore the frontier of v.

In order to detect an answer as soon as it has been gener-
ated vsing P8, We need to obtain the distance information
from P8 to any keyword as socon as possible. As a result, we
do the psendo-d dent =dze sxploration frequently. This
0 wesheen e ook e s wcilkwatacn Tt el
ever we detect the corrent being explored node is in the
initial list.

3.2 4 Kernel Nodes and Decay Factor

An important difference between our algorithm and the
algorithm in [17] is that in their alzorithm, 2s long as one
o i L wll A e el ke
Then, it can never be vsed again for the current query when
Eenerating other query answering paths. But in our prob-
lem, some kevwords can only be provided by 2 single data
source, which has DEN value of 1. It must be raused for
zenerating other valid query answering plans. We call the
data sovrces of this kind the kernel nodes.

Kernel nodes ars the nodes we want to reuse. Thers are
2lso nodes we do not want to reuse when generating the
naxt query answering plan for a query. If a keyword can be
providad by multiple data sources with a2 similar score, we
want to change the score of the vsed sovree and give other
souress a chanee to be selected while generating the naxt
P Tl s e it el it Py BTt
plans. We introduce a decay factor B for 2ach node which is
zoing to be put into FN or BN queves. The decay factor B
will decraasa the score of the node according to the node’s
possibility of being a kernel node. The decayad score of node
1 would be B = N3cora(n). In future exploration, node n
i ine Hh dhiaield wecare: vk Hhie: vl ool Fomimally:
we define the decay factor of 2 node n to be fu= DN,
whers DEN. is the data source necessity value introduced
in Section 3.1. Here, if the DSN value of thenode n is
large, for example D8N = 1, this means that this noda is
2 kernsl node, we do not want to decay this node’s score,




f2008/TR10. pdf+&cd=7 &hi=endct=clnk&gl=us

http:fhwebcache. googleusercontent. cornfsearch?g=cache \WRObUx- YA fip: Mftp. coe. ohio-state. edufpubftech-report

10/2952013 01:27:41 PM

as we can s22 the decayed score would be 1 » N3corz(n).
But if 2 nods has a very small DS value, it means many
othar data sources have the same attributes as this nods, as
a rasult, the scorz of this node will be seversly decreaszed.
In this way, other similar nodes can be vsed in later query
plans.

2.2 Example

We give a simple example of the algorithm proposed above
to illustrate the idza. Wa focus on the zeneral idea in our
description, and the actual execution of the alsorithm is
much mors complex than what we discuss hers.

We have a kevword query

Q= {ERCCE, NIV NSNP, MOLA, ORT H BLAST}

and six data sovrees dbSNP, S=attl=8NP, Gene, Protsin,
BOND and BLAST. ERCC6 iz a gene name. NSYNENP
(K1) is coverad by dbSNP and SeattleSNP, ORTH BLAST
(K2) is covercd by BLAST and MOLA (E3) is coversd by
BOND. For simplicity, we assume the score of zach adge in
the dependance sraph is 1. We run the bidirectional plan-
ning algorithm to find a query answering plan for this query.
Initially, the IL list contains data sovree nodes db8NP, Saat-
18P, Gene and BOND, because these four data sources
have Gene Name as their input attributes. FQ is initialized
the same s IL and BQ contains BLAST at the beginning
A partial dependence sraph is constructed and shown in
Figura 2. The order of the data sources according to their
node scoras is BOND, dbSNP, Seattle§NF, BLAST, Protein,
Gene (from high to low). Figure 2 shows the six steps vsed
in this smample. At each step, we display the state of main
data structures after the execution of the step.

At the first step, BOND is selacted and because BOND
iz in IL, we explora the adse (P3,BOND). Kevword K3 iz
reached, and the corresponding values in the distance and
descendant array are vpdated. At step 2, dbSNE is selected
to be explored. Bacanse bEMNT is also in IL, the adze
(P5,6bSNP) is explored and keyword K1 is reached. We try
to forwardly explore the edge ({éb8NP Protein} BLAST), in
which {gbSNF.Protein} forms a hyper-node predecessor for
BLAST. Since Protein has not been explorad yet, we skip
this exploration but add Protein to BQ to make it as a tar-
2ol wanl Lo be saplured in backward Lasbion. Al slep 3,
we try to explore using SsattlsSNP, suppose the distance
from P8 to K1 via Seattl=8NP is no shorter than the dis-
tance using dbSNP, the exploration of Szattl=SNP will not
change the state of the data strocture. At step 4, we try to
explore the edge ({dbSNP Protein} BLAST) in a backward
stuemimien . Sz Prulen = nul eaplured yel, we ships (his ea-
ploration. At step 3, Protein is selected from BQ todo a
bacloward axploration using the edge (Gene, Protein). Af-
ter this exploration, the nodes Gene and P8 are connected.
But K2 is still not reachable. Wa add Protzin into FQ
wishing a forward exploration from it. At step 6, Protein

that it is a forast with two disconnected components.
Then, the data sources dbSNP, Gens, Protein, BLAST
and BOND will be put into FN 2nd BN respectively and
their scorss will be decayed properly. In the next rovnd,
Seattle8NP is likely to be selected instead of dbSNP to form
e i kP BLART b thatay
factor of 1 (only BLAST can cover K2), it is served asa
kernel node, and it will be incloded in the next query plan
P
3.4 Query Plan Construction

We me a fwo dimensonal, N <N, anay QoeryBithiap to
stors a query answering plan, where N is the total number
of nodes in the dependence graph, excluding the psando-
starting point. Taking the psesdo-starting point as the
starting iterator, we follow the descendants data structure.
If the descendants of 2 node vis 2 set of nodes vi,... Ve,

we mark QueryBithMap[u][v:] = 1. If wa mest a nods with
siblings, we obtain its sibling and create another iterator
starting from that sibling, continving to complate query con-
struction. The QuaryBitMap array will serve as the vnigue
id f1 of a query ing plan,

Given the QueryBitMap of a query answering plan, we
use graph topological sorting alzorithm to obtain the query
b e ey b weall R i) el ity e
level containing all the data sources which can be executed
in parallel

4. DOMAIN ONTOLOGY

In this szction, we will introduce the desizn of our domain
ontology and sxplain how we sse ontology to support node
i

4.1 Ontology Design

Our domain ontology is dasizned with the following goals.

First, we want to identify the relationship between domain

terms, which could appear as keywords, to vnderstand the

intent behing a query. For example, if a query contains

keyword human and from the ontology we know human is

2 tvpe of organism which is vsad to catesorize genes, we

would know the query ses keyword human to imposs a

constraint on szarch scope. S3econd, a vser may not vse the

vl suienlific lerms which are ssed by Uhe dala svsces.

She may us= some aliazss or synonyms or even some words

with a fuzzy meaning instead of the axact scientific terms in

2 quary. We need to map thess terms into a form in which all

terms ars recognizabls by the data sources. For example, if

2 query contains keyword SNP Fraquency, we need to map

SINP Treyuency which is an abslract lerm inle (e eaacl

terms genotype frequency and alleletype frequency. Third,

25 we had mentioned sarlier, there is data redundancy in

deep web data sovrees. We want to obtain a data source

quality score for sach keyword by vsing domain ontology.
Our ontology contains attribute tarms (and a faw coneept

Page 7



f2008/TR10. pdf+&cd=7 &hi=endct=clnk&gl=us

http:fhwebcache. googleusercontent. cornfsearch? g=cache \WRObL VRN frp: dtp.

cse. ohio-state. edufpubftech-report

10/2952013 01:27:41 PM

iz selected from FQ), and a forward exploration on adze
({8bSNP Protein} BLAST) is performed. Keyword K2 is
reachad, and we vpdate the distance and descendant infor-
mation. Becavse P8 is a common ancestor of db8NF and
Protein, we cannot dirsctly vpdate the distance from P3 to
K2 via db8NP and Protein separately. The distance from
P2 to K2 is the longest distance between the two possible
paths. The first one iz passing through bSNP, and the sec-
oud cessis graesing heooph Gone and Biotis. The finsl
query answering plan is shown in Figure 2, and we can s2e

terms from the same domain). The ontelogy do=s not con-
tain entity names. For example, Gene Nams, which is an
attribute term, is includad in the ontology, but ERCC6 or
other actual gene names arz not incleded in the ontology. In
thizs z=nz=, our ontology is 2 schema level ontology. Becanse
the number of attribute terms is likely quite limited in a
domain, our ontelogy remains small and scalable to a large
number of data sources. As a quary can also contain names
such as ERCCE, wa vse hevristics to map it to the attribute
term Gene Name in the ontolegy.

Our ontology is a connacted dirsctad graph OG = (ON, OE).
ON is the sat of nodes in the ontology graph, and OF is set
of edges. The nodes in ontology graph are the domain terms
and =dges ars relations between thess tarms.

Domain Term: Thers are three types of domain terms in
the ontology: biclogieal concept terms, attribute terms, and
a single special Root trm. Biological concept terms ars
high lavel conceptual terms such as Chromosome and SNP
which are not among the input or output attributes of any
desp web data sources. Attribute terms were introduced

in Saction 2.1 as the s=t AS. An attribute term can also

ba 2 synonym or high-levsl abstract term of other attribute
terms. For example, Heman is 2 synonym of Homo Sapi-
2ns and SNP Fraquency is a high lavel attribute term which
covers four lower-level attribute terms.

Ontology Relation: We dafine four types of ontology ra-
lativm. 1} A Lype relativn. IL cunmecls a len with ils
synonym. An A tvpe link comes from a term within the
wocabulary of 2 data souree to its alias or synonym which
is not within that scope. For example_ thers isan A type

link pointing from Orzanism to Spacizs. 2). B type relation.
It connects two biclogical concept terms, which are related
in the domain of 1 For le, biological concept

terms Gene and 8NP are connected by 2 B tvpe relation
bacause a SNP iz located in 2 specific gens. B type link

is undirected. 3). C type relation. It captures the class-
subelass relationship. A C type link points from a biclogical
concept term to an attribute term by which the concept
term can be catezorized into several sub-classes. For ex-
ample, 8NP and NP Function are connected by 2 C type
relation, because SNP can be divided into several different
classes by its SNP Function attribute. 4). F typs relation.

Tt ronnacts 2 hinlagical coneant barm with its atbribnta barms
or connacts 2 hish-lavel abstract attribute term with its low
level attribute terms. For example, SNP Frequency is con-
nected to its four low lavel attribute terms population, sam-
ple, genotype frequency, and allelstype frequency by four F
type relations.

batween the number of output attributas of D which finally
rzach to biclogical concept term r.and the total number of
output attributes of D. In other words, if a greater number
of output attributes of D can bz mapped to a raprasanta-
tive ., this reprasentative will have a higher weight. This
is beeavse we beliewe that the data sovree D is more lileely

to be focusing on providing information abost r..

5. RANKING STRATEGY

In this szction, we will introducs the ranking stratesy vsed
in our current implementation. Our ranking strategy has
i e N o el ks ik sk
and query answering plan ranking. We first outline the de-
sirad propertiss for ranking functions, then we define our
e T

5.1 Desired Properties and Main Ideas

For our bidirectional s=arch to be efficient, the node rank-
ing fonction should giva a data source higher noda score if
the node has the following properties: 1) it can cover more
kevwords. 2) it is =asier to reach from the sst of starting
nodes, 3) it provides the data with higher quality, and 4) it
satisfies the constraints which are specified in the query.

Similarly, an adge should be given higher priority if the
exploration of this =dzg= can help to narrow down the s=arch
space or provide mors accurates answer to a query. For ex-
ample, 1t 2n edge 2 between node v and v contains two types
of dependence r=lations, which are the first type and the s=c-
ond type introduced in Section 2.3, we know the second type
of dependence relation can be considerad as providing sup-
plemental information, which may shrink the search space.
In this cass, the sdzes o should ba ranked higher than other
zdges which only have the first type of dependence relation.

Finally, a query answering plan should be ranked hisher
if its nodes and edees are highly ranked.

5.2 Node Ranking Strategy

Page 8



