From: Coward, Jeffery

Sent: 10/29/2013 4:48:43 PM

To: TTAB EFiling

CC:

Subject: U.S. TRADEMARK APPLICATION NO. 85561168 - DEEP WEB INTELLIGENCE - 4335.14US01 -
Request for Reconsideration Denied - Return to TTAB - Message 2 of 5

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 5k 3k %k 3k >k 3k 5k 3k 3k 3k >k 5k 5k %k sk %k %k ok sk sk sk sk ok ko sk sk sk kkkkkkk ok

Attachment Information:
Count: 5

Files: RDDW2-03.jpg, RDDW2-04.jpg, RDDW2-05.jpg, RDDW2-06.jpg, RDDW2-07.jpg



http:fhwebcache. googleusercontent. cornfsearch?g=cache \WRObUx- YA fip: Mftp. coe. ohio-state. edufpubftech-report

[2008/TR10. pdf+&cd=7 &hl=enfct=clnkgl=us 10/2952013 01:27:41 PM

TLOTEE UL LOS LW BT G e CUTITSCLES Uy 4 CUTUTHUSUTIE
using database SNP300Cancer. i 2., it turns out that the
two genes are located in the same chromosome 10q11.2.

Evsaiall heysral i o e sl ik inowies Rawe
specific features that are very distinct from keyword ssarches
over relational databases. First, the number of deep wab
data sources in 2 domain can be substantially larzer than
the number of data tables in a relational database. For ex-
ample, thers arz about 500 deep web data sovress about
SNP (Single Nuclzotide Polymorphizm) data, which is only
a small branch of bicloey. S2cond, in many domains, it
is common that a kevword query contains as many as 20
keywords, which rarely occurs in keyword queries over rela-
tional databases. Third, many relationships of intersst can
ba derived only by querving across multiple data sovrces.

Our system intsgrates online bological dzep web data
souress and them as a multi inter-d 4
hyper-gragh. A novel bidirectional query planning alzorithm
Eenerates multipls valid plans for answering keyvword search
AR PO - o LR S g e el O
main ontology and 2 novel ranking strategy to select the

most relevant set of data sources.

Tt ek St gt el s Pl W B
our data model for keyword search in Ssction 2. In Sec-
tion 3, we i our bigirscti query ing algo-
rithm. The domain ontclogy and dependence graph ranking
strategy are introduced in Section 4 and Szction 3, respec-
tively. In S=ction 6, we evalvate our system. We compare
our work with related efforts in Section 7 and conclede in
Section 8.

2. QUERY AND DATA SOURCE MODEL

In this section, we will introduce the query and data source
model we consider in this paper

2.1 Query Model

A gquery consists of n, 0> 1, szarch terms t, tz,..jta.
The szarch terms are of two types, which are defined as
follows.

Attribute 82t AS: AR contains all attributes in the stud-

ied domain. An attribute is 2 part of the metadata (column
name of the hidden databases) of a deep web data sourcs.
In other words, an attribute corresponds to an attribute of
an entity in the ER diagram of the deep web data sovree’s
hidden databases. For example, suppose data source A has a

Table 1: Data Model for SeattleSNP Data Source

Data M (o)) o C

FTULSIIL, Lie Ly UL & Ky WU 15 GELETTIATSS Uy 4 GUTILATL

entology, which we will introduce in Szction 4. Becavse the
keywords involved in our ssarches are technical terms from
2 specific domain, it is relatively =asy to decide the intsntion
of zach query. In generalizing our system in the future, we
will incorporate the existing work [18, 26, 29] on this topic.

2.2 Data Model for a Single Deep Web Data
Source

Each online dzep web data sovres has a query interface
2nd an output format. A vser can construct 2 query by
specifying some input attributes and constraints. Cur modal
capturas the above fzatures of a deep web data sovree.

In our data source modal, we view all the desp web data
sources belonging to one sub-domain of bology (such as
SNP) as a virtual relational table. In this virtual table, 2ach
data tupls is the query schema of a deep web data source.
We call such a data tuple as a virtual data tuple. The virtual
data tuples are i by the inter-d d lati
ship between deep web data sources.

Fiiimmons, 11 e din wob s boa koo awe
query intarface (query schema), we modsl it 25 one virtual

data tuple. If it has multipls query interfaces, we vse mul-
tipla virtual data tuples to represent it. Each virtual data
tuple is modeled as a record with three types of attributes,
the input attributes, which are required in the query form,
ibutes, which are the it returned for
the corresponding query, and the inherent constraints, which
ara the attribute conditions imposed on the data sourcs by
its desizgner. In addition, we s=parate the input attributes
inte two catesories, the must-fill ones which have to be pro-
vided to gat the query results and the optional ones which
can be omitted and only provide extra constraint conditions
te narrow down the search space. If the optional attributes
ar2 not provided in a quary, we assume they will appear in
the ootput attributes.

We denote a virtual data tuple formally as R(MILOL0.C),
where MI, OI, O and C correspond to the ssts of must-fill
attributes, optional attributes, output attributes and inher-
ent constraints. For example, data source S=attl=8NP has

the output

two query schemas, so it is modeled as two virtval data
tuples as in Table 1. The first schema takes Gene Name
25 a must-fill input attribute, Up Base and Down Base as
the optional attributes, and SNP Function and Fraquency
information as the outputs. It also has an inherent con-

Page 3



f2008/TR10. pdf+&cd=7 &hi=endct=clnk&gl=us

http:fhwebcache. googleusercontent. cornfsearch?g=cache \WRObUx- YA fip: Mftp. coe. ohio-state. edufpubftech-report

10/2952013 01:27:41 PM

Lata L uL u
Source
Zzattle Gene Up Baz= SNP Function
NMams Down Bass Fraquency
Seattle SNPID Up Base Alleles Dis-
Tawen Rasa seilibrinm

straint which means that all data in this data sovres are
from human species. Wa notice that the modal only contain
high-laval terms, not the real content of the database. For
example, we only know that Szattl=8NP can retven SNP
function information, but we do not know which 8NP is
includad in this data source,

Orzanizm=
Human
Orzanizm=

Hrman

2.3 Data Model for Inter-Dependent Data Sources

Data sovress are 3 by the inter-d . be-

tween them. For a certain query, a data source may need to

b= guaried prior to another data soures, so as to obtain the
necessary input attribotes of the second data souree.
Consider a group of n deep web data sovrces,

Ri(MI;, OL, Or, C2),... (ML, OL, Ox, C)

We assuzme all their attributes belong to a vniversal sst of
attributes. For two dzep web sources Fi and Bz, we defins
three types of dependence relationships: Type 1) The query
output ot Kican be applied to K:'s must-#ill inpuot 1f U1
MI:= €; Type 2) the quary output of Rican be appli=d to
Ea's optional inpat i Oh 1 Oli= & Type 3) the optional
input of Ri, which is also part of its output, can be applied
to B="s must-fill input or optional input attribute, 12, OL N
(MT 11 O} = & Tha first bypa nf ralation shows that R
has to be queried before R:in order to obtain the necessary
input attributes of R=. The second tvpe of relation shows
that if R is queried bafors Rz, vsing the output from R,

we can narrow down the ssarching scope of R-or make

the query on B=meore acevrate. The third type of relation
is the combination of the first two. These thres types of
dependencizs play different roles when we are generating
query answering plans. Figurs 1 shows the inter-dependence
among: v tdhecp wib sata sources for BRI data, Modes

are virtual data tuples, and three different tvpes of arrows
represent the theee types of dependenee relations abowe. We
can s=e that ¢bSNP and Entrez protein form a hyper node
for its descendant BLAST, which means that to be able

to query BLAST, one needs to query both of ¢b8NP and
Entren Protein first.

Besidas the dependence relationship between two data
sourees, B and B can also share common must-fill input
attributes or output attributes. The first cass impliss that
thew share the same predacessor in the dependency graph.
The szcond cass impliss that they can be the pradecessors
of the same descendant. We call this data redendancy.

3. BIDIRECTIONAL PLANNING ALGORITHM

FOR KEYWORD SEARCH

We now consider the problem of keyword szarch over deep
web data sovrces. For keyword szarch in traditional databasss,

Figurz 1: Dependence Relations betwaen Five Data

Sources

the sat of data tuples in every relational table as nodes, and
the forsign key relation betwesn tuples as =dges. Relational
tables are also connected by foreign key relations forming 2
schema sraph. Keyword query answaring is done by using
sraph ssarching algorithms [14,13,17.9. 22,1, 7]

Algorithm 3.1: Bidirectional-Query-Planning(Q, N odas)

Initizlize IL, Vuell, 2dd v to FQ, FE=%, FN=%
Initizlize BQ, BE=%, BN=%
Creatz 2 pesudo-starting nodz PE

VueNodes, ¥jcKeywords
ifje 0.
distznea.; =0

elsz distance, =@
Vuiell, VjeKaywords
ifje O

dacedantz.: =u

VueNodes, VjeKaywords, sibling.; =aull
Yo reNodes, Bith 2pGraphas=0
ifvell

whils (FQ= % or BQ= #) and continueSsarch=trus
12 nods with the highast pricsity scor: Som FQ 2nd BQ
czll it nevtnods
ifnextnodacsIl
Explor{PS nextnods)
ifFind AnswerPE)
Plan Constructor)
ifdossn"t nesd to gensrate more plans
continuesszrch=flsa
232 Refrezn)
ifnextnods comes fom FQ
Forwasd Explors{nextnode)
alza
ifnextnodasilL




http:fhwebcache. googleusercontent. cornfsearch?g=cache \WRObUx- YA fip: Mftp. coe. ohio-state. edufpubftech-report

[2008/TR10. pdf+&cd=7 &hl=enfct=clnkgl=us 10/2952013 01:27:41 PM
we have the direct access to the data. As a result, ressarch in Beckward-Explors(nzitands)
literaturs on keyword szarch with relational databases takes Sl RIplOos, ende)
Page 4
Algorithm 3 2: Forward-Explore{nods) Algorithm FindAnswer(PE)
foreach veNeighbors{nods) find=trus
ifvell forsach kayword &
ExplorsPs.noes) st =
slza find=Elzs
artnars{nodav) saturn (find)
iU iz 2 single nods
Explors(Uv)

ifU is a hypar-nods
iffor 2ll neU, neFE or n=BE
Exploss(U
sls2 put unerplorsd partnars into BQ
ifveFQand veFE
2dd v toFQ
ifnod=eFQ
decay the priority scors of nods
=dd nods to FN

Algorithm 3 3: Backward-Explors{nods)

forzch UsParentzinods)
17 iz 2 singls nods
Explorz{Unods)
ifTJ iz 2 hvper-nods
iffor all neU, neFE cr nsBE
Explor={nods)
els2 put unevplored partners into BQ
ifnodecFQ znd nodaFE
2dd nodato TQ
ifnodesFQ
dacay the priority score of nods
dd node to FN
forzzch 0l
ifneBQandne BE
ddntoBQ
irnEEg
dacay the priority scors ofn
add n to BN

Algorithm 3 4: Explors{l7, v)

forszch keyword &
ifU is a single noda
ifthers iz 2 shorter path fom U tok viav
nextnoden: = newdis, decadentsue =v
propagats the newdis to 2l reached ancestors of U

ifTT iz 2 honar-noda

For deep web data sources, we do not know the data inside
the hidden databases. 30, keyword search cannot be dirzctly
performed on the data tuple granularity level. Instead, we
naed to address the kevword search problem at a highar-
level (schema-lavel). Racall that in our data sovrcs modal,
we vizw all the deep web data sources belonging to ons sub-
domain (such as SNP) as a virtual relational table. In this
virtual table, 2ach data tuple is the query schema of a deep
web data source, which we had earlier referred to 2s a virtual
data tuple

These virtual data tvples are 3 by the inter-g

relationship between deep web data sources. The number
of deep web data sources of a sub-domain is substantially
large in most cases, as we pointed out in Section 1, and
srserrry s e st apmery it Gave oo reaproding
to diffarent query schemas. Thus, scale of the gragh com-
posad by virtval data tuples is comparable to the scale of the
zraph composad by real data tuples in traditional keyword
s=arch. By making this analogy, we want to adapt graph
alzorithms onte a higher granularity, in order to solve the
Aksgrwnial mecarvchrizip: groulibesta vvier dhaegs el il i
Swstems for keyword szarch on i databazs, such
25 DBXplorer [1] and DI3COVER. [14], model the query an-
swaring plan as a trez and have the dirsct access to the ac-
tual data. In a well defined r=lational database, there is not
much data redundancy. As a result, the above systems do
not consider dara table ranking. The number of tuple stz
for generating the candidate nstwork used in DISCOVER
system is proportional to tha size of the power sat of the
kavword sat. It is reasonable for kevword queries on rala-
tional database. In our scenaric, we do not know the actual
data inside the deep web data sources, and because some
data sources can be gueried in parallsl (thers iz no depen-
deney between them), therafors, a tres is not sufficient for
Bs, instead, wa n=ed a forast structurs to raprasent the quary
answering plan. Furthermore, wa nead to take the data re-
dundancy into accovnt to perform data source ranking, Fi-
nally, it is commeon to have keyword queries with more than




f2008/TR10. pdf+&cd=7 &hi=endct=clnk&gl=us

http:fhwebcache. googleusercontent. cornfsearch?g=cache \WRObUx- YA fip: Mftp. coe. ohio-state. edufpubftech-report

10/2952013 01:27:41 PM

ifJ iz 2 hvper-node
compute zn olddis which is the cument shortest distzncs

nExtnoden: = N2Wis, decedentian =V
compute CASCommOnAnCESon L)
Brazchasl
forzzch 2nce Ancastor{n)
ifanceCA
propagate newdis to anc
BrachczeCA
ifca is not an ancestor of another common
ancestorin CA
newdis = Max{BitMapGraphe
+distenceniln & U
olddiz =distancaa.
ifnewdis<olddis
updats the distancs
tznce to s ancestor

add sibling information to zny nodein U

10 or 2ven 20 keywords. Due to these reasons, we need to
propose 2 new algorithm to solve our problam.

One of the keyword searching algorithms is the bidirec-
tional searching alzorithm addressed in [17]. Since our data
maodel iz also a eraph modal, which is analogous with the
model usad in [17], we can address our problem by building
on this bidirzctional szarch algorithm. Howsver, the charac-
teristics of our dependence graph model give vs many new
il Faril vl tha Frarpas kisyr ralafion o rile
tional database, our dependence relation is dirscted. This
requires that our bid ional alzorithm is di ion sen
sitive. Sacond, since the dependence relation is 2 multi-
souree relation, in our new algorithm, we not only need to
keep track of the sequential order of node exploration, but
Al b el ot thia Tl i el st Tonbunicos nakcilss
source pradecessors. Furthermore, we need to come vp with
2 new adge exploration function which can deal with hyper-

ik ol v e o e e b g
plan can be a forast with disconnectad component, we need

Figure 2: Running Example of 2 Sample Query

multiple starting nodss to initiate the ssarch on different

component.
3.1 Algorithm Overview and Assumptions

Given a keyword guery with n kevwords and the depen-

danew hvnar-eranh data model introdnead in Saction 7 3

It should bz notad that our alzorithm can ba nsad on any
domain. We assume that we have a ranking stratesy for
ranking ach data sovree schema (node in graph) and a da-
R LA L o T TR R
that a domain ontclogy is built which can support the rank-
inz stratesv. The usabilitv of the alrorithm is independent

Page 5



f2008/TR10. pdf+&cd=7 &hi=endct=clnk&gl=us

http:fhwebcache. googleusercontent. cornfsearch?g=cache \WRObUx- YA fip: Mftp. coe. ohio-state. edufpubftech-report

10/2952013 01:27:41 PM

deney hyper-graph data model introduced in Section 2.3,
we nead to first map the keywords onto the nodas in the
dependency graph. Next, we want to traverse the graph vs-
ing some algorithm to find multiple connected components
which connect the mapped nodas to form a forast strue-
ture. Though we will discuss an example later, an example
of the query answering plan forast can be seen in Figure 2.
T Fraeivimicr o1 Hhie g o6 o w4 Baduechbcunal ot
ner. A forward exploration tovches as many executable data
sources as possible from a current data sovree. But, if one
data source has many dependent data sovrces, it is likely
to explors some vnnecessary sources as well. If wa are sure
that some data sources should certainly be queried to answer
the given query, we can view them as targsts and perform a
backward exploration.

To prasent the alzorithm, the following concepts are da-
fined.
Starting Node: From Section 2.1, we know that a query
Q) in our system must contain at least one entity name. The
entity names are sarved as the triggering kevwords which
initiate the query. The answering of the kevword query must
start from the data sources which can take the triggering
kevwords as their input. We call these data sources the
starting nodzs.
Data Source Nacessity: Each data soures has a set of
output attributes. If an attribute can only be provided by
5 ket o ot v i e B o Ry
priority to be sslected. Conversely, if the attribute can be
provided by multiple data sources, a lower node scors can
b= assizn=d to thes= data sources with respect to this at-
tribute. Based on this idea, zach term is associated with a
Data Source Nacessity valve. Formally, for a term k if R
data sources can provide it as ovtput, the data sourcs ne-
cassity value for k is D8Mu=

necessity value for 2 data sovrca d is daﬁnaé'aﬁﬁb%e et sonres

DSNs=Max{D8N:}, k < Q..

ing strategy. The usability of the algorithm is independent
of the ranking strategy and domain ontology proposed for
this specific domain.

3.2 Algorithm Details

In this section, we first introdues the data structures we
us2 in our algorithm, followad by the detail alsorithm de-
scription. Alporithma 3.1, 9.2, 3.9, 3.4 and 3.5 ahow the
peendo-code.

3.2.1 Data Structures

Supposs there are N nodes in the dependence sragh and
K keywords in the query. Our bidirectional query planning
algorithm vses the following data structurss (some of these
ara based on [17]).
InitialodeList IL: A list ining all the starting nodes
of the search.
ForwardQueve FQ: A priority queve containing all nodes
which are ready to be explorad in the forward fashion.
ForwardExplorsd FE: A quese containing all nodes that have
already been axplored in the the forward manner.
ForwardNextRound FN: A priority quee containing all nodes
which have already been explored in the forward fashion in
the currant round, 3nd raady to be sxplorsd in the forward
manner in the next round.
Backward(Queve BQ: A priority queve containing all nodes
o s v o e - s Sl i
BackwardExplored BE: A queue containing all nodes that
have alrzady been explored in the the backoward manner.
BackwardHexiloond FIE A pricrity e comtaiang all
nodes which have already been explorad in the backward
manner in the current round, and rzady to be exploredin
the bacloward manner in the next round.
distance[IN][K]: An array contains the shortest distance from
any node to any keyword. The shortest distance is computed
in terms of dependence sraph edse score. which we will de-

fine later.

descendants[IN][K]: An array maintains the naxt s=t of nodes
that nead to be visitad in order to obtain the shortest dis-
tance from any node to any keyword.

sibling[IN][K]: An array maintains a sat of siblings (partners)
nesded to obtain the shortest distance from any node to any
Seyword. This dala stioclue is desizoed fur Laking are ol
hyper-nods pradecessors.

BithMapGraph[N][N]: An array maintains the shortest dis-
tance for avery pair of nodas in the sraph.

3.2.2 Algorithm Initialization

currently, we cannot access v. Only when all predecessors
are explored, we can call the Explors function to do adgs
exploration.

We perform =dss exploration between U and v as follows.
If U is not a hyper-node, the Explors function just vpdates
the shortest distance information from U to any kevword
via v aud Les Lhe upalalesd infy Livn Lo U's anwces-
tors if necessary. If U is a2 hyper-node, we use a different

propagation stratezy. We obtain all common ancestors of
U to form a commeon ancestor set CA. A common ancestor
2 is a2 node which is an ancestor of all nodesin U. For

any nodenin U, we tha distance i ion to

Page 6



